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Abstract
Nonnegative Matrix Approximation is an effective matrix
decomposition technique that has proven to be useful for a
wide variety of applications ranging from document anal-
ysis and image processing to bioinformatics. There exist
quite a few algorithms for nonnegative matrix approxima-
tion (NNMA), for example, Lee & Seung’s multiplicative
updates, alternating least squares, and gradient descent based
procedures. However, most of these procedures suffer from
either slow convergence, numerical instability, or at worst,
serious theoretical drawbacks. In this paper we present new
and improved algorithms for the least-squares NNMA prob-
lem, which are theoretically well-founded and overcome
many of the deficiencies of other methods. In particular,
we use non-diagonal gradient scaling to obtain Newton-type
methods with rapid convergence. Our methods provide nu-
merical results superior to both Lee & Seung’s method as
well as to the alternating least squares (ALS) heuristic, which
is known to work well in some situations but has no theoret-
ical guarantees (Berry et al. 2006). Our approach extends
naturally to include regularization and box-constraints, with-
out sacrificing convergence guarantees. We present experi-
mental results on both synthetic and real-world datasets that
demonstrate the superiority of our methods, in terms of bet-
ter approximations as well as efficiency.
Keywords: Nonnegative matrix approximation, factoriza-
tion, projected Newton methods, active sets, least-squares

1 Introduction
Nonnegative matrix approximation, also known as nonneg-
ative matrix factorization [12] or positive matrix factoriza-
tion [17], is a popular and effective matrix decomposition
technique. By now it has become an established method for
performing dimensionality reduction and related tasks such
as clustering, image processing, and visualization, to name a
few. The nonnegative matrix approximation (NNMA) prob-
lem setting is defined as follows. Let A = [a1, . . . ,aN ]
be the matrix of nonnegative inputs, where each ai ∈ RM

+ .
NNMA seeks to approximate these input vectors by nonneg-

ative linear, i.e., conic, combinations of a small number of
non-negative representative vectors b1, . . . , bK , so that

(1.1) ai ≈
K∑

k=1

bkcki,

where the coefficients cki are also nonnegative. We remark
in passing that various alternative restrictions on bk or ci =
[c1i c2i . . . cKi]T may be placed to obtain different types of
approximations. For the purpose of this paper, we focus only
on the problem with nonnegativity constraints.

The quality of the approximation in (1.1) may be mea-
sured using an appropriate distortion function, for example,
the Frobenius norm distortion or the Kullback-Leibler diver-
gence. In this paper we focus on the former distortion, which
leads to the least-squares NNMA problem,

(1.2) minimize
B,C≥0

F(B;C) = 1
2‖A−BC‖2F,

where A is the input matrix and B, C are the output (or
factor) matrices. The matrix B may be intuitively viewed
as providing a set of basis vectors that are combined by the
coefficients in C to approximate the input A.

In this paper we develop two new Newton-type algo-
rithms for solving (1.2) along with a theoretical analysis to
establish their convergence. Both of our algorithms improve
upon the de facto procedure of Lee & Seung [11], here-
after referred to as LS, as well as upon the popular alternat-
ing least-squares (ALS) heuristic, which has been reported
to perform well in practice [1]. However, LS suffers from
slow convergence and ALS lacks theoretical guarantees on
its performance—our new algorithms rectify both of these
deficiencies.

Researchers have also considered the following regular-
ized NNMA problem

(1.3) minimize
B,C≥0

1
2‖A−BC‖2F + λ‖B‖2F + µ‖C‖2F,

where λ > 0, and µ > 0 are regularization parameters. The
motivation behind studying (1.3) can be ascribed to certain



practical concerns. For example, the basic NNMA problem
estimates the product BC that has (M + N)K parameters.
Such a large number of parameters can lead to over-fitting,
which despite the apparent sparse representations yielded by
NNMA, might be difficult to counter without regularization.
Yet another interesting variation arises when one bounds the
solution values by imposing box-constraints on the variables.
For NNMA this results in the problem

minimize 1
2‖A−BC‖2F,

subject to P ≤ B ≤ Q,

R ≤ C ≤ S,

(1.4)

where the inequalities are component-wise. Both these
variants can be handled with equal ease by our methods.

2 Background and Related Work
The NNMA objective function (1.2) is not simultaneously
convex in both B and C due to the presence of the product
BC. Hence, in general it is very difficult to find globally
optimal solutions to (1.2). However, the objective function
is individually convex in B and in C. Therefore, most
algorithms for solving (1.2) are iterative and perform an
alternating minimization or descent that takes the form

1. Initialize B0 and/or C0; set t← 0.
2. Fix Bt and find Ct+1 such that

F(Bt,Ct+1) ≤ F(Bt,Ct),

3. Fix Ct+1 and find Bt+1 such that

F(Bt+1,Ct+1) ≤ F(Bt,Ct+1),

4. Let t ← t + 1, and repeat Steps 2 and 3 until some
convergence criteria are satisfied.

Based on the above procedure we can categorize NNMA
methods into two groups, namely the exact and inexact meth-
ods. The former perform an exact minimization at each iter-
ative step so that Ct+1 = argminCF(Bt,C) (similarly for
Bt+1), while the latter merely ensure that F(Bt,Ct+1) ≤
F(Bt,Ct) (similarly for F(Bt+1,Ct+1)).

Since the Frobenius norm of a matrix is just the sum of
Euclidean norms over columns (or rows), minimization or
descent over either B or C boils down to solving a sequence
of nonnegative least squares (NNLS) problems of the form

minimize
x

f(x) = 1
2‖Gx− h‖22,

subject to x ≥ 0.
(2.1)

Exact methods find a global optimum of this subprob-
lem, while inexact methods roughly approximate it. There
do exist well-known methods for solving the NNLS problem,

such as the Lawson-Hanson procedure [10], FNNLS [5], and
other procedures mentioned in [4]. However, as we show in
[9], our approach to solving NNLS outperforms the other
methods, hence we favor it as the method of choice for solv-
ing (2.1). At this point we alert the readers against a potential
misinterpretation that could arise from our choice of nomen-
clature in terms of exact and inexact methods. It is not the
case that the exact methods are superior to the inexact ones,
or even that the exact methods could converge to a global
optimum of (1.2). However, the exact methods do provide
better theoretical properties and they tend to produce better
quality solutions, even though there is still no guarantee on
the global optimality due to the non-convexity of (1.2). In-
exact methods often provide great savings of computational
effort by trading-off precision of the solutions for speed.

In this paper we present a new exact method for NNMA,
which we call FNMAE. There have been other exact ap-
proaches in the literature. For example, Paatero [15, 16],
Paatero and Tapper [17] introduced a set of algorithms for
NNMA and provided a convergence proof for one of their
methods that employs the preconditioned conjugate gradient
method. However, their methods are described in a nebulous
fashion, and they cite the need for considerable engineer-
ing effort (see [15]) for an actual implementation. Bierlaire
et al. [3] developed a projected gradient method for NNLS,
which Lin [13] applied to solve Problem (1.2). Recently,
Merritt and Zhang [14] developed an interior-point gradient
method for NNLS—a gradient descent based method with-
out projection that maintains feasibility of intermediate solu-
tions throughout the iterations. They also provided a conver-
gence proof for their method under the mild assumption that
G has full-rank. Though Problem (2.1) can be solved by any
constrained optimization technique, the above methods are
all based on gradient descent since it allows for efficient han-
dling of simple nonnegativity constraints. However, gradient
based methods are known to have linear convergence rate at
best, and often suffer from a phenomenon known as zigzag-
ging or jamming. FNMAE subsumes the projected gradient
based method as a special case while retaining its algorith-
mic simplicity, and overcoming its deficiencies by employ-
ing a non-diagonal gradient scaling matrix.

The group of inexact methods has witnessed greater
popularity and it includes Lee and Seung’s [2000] multi-
plicative algorithms. Gonzalez and Zhang [7] proposed a
variant of Lee and Seung’s method that utilizes a different
scaling scheme for negative gradients to get faster conver-
gence. Berry et al. [1] report the Alternating Least Squares
(ALS) procedure to be a simple but effective method for per-
forming NNMA. The ALS procedure is somewhat ad-hoc—
it solves the unconstrained least squares problem at each step
exactly, followed by a truncation of the negative entries to
zero. However, ALS does not have any convergence guar-
antees, and we discuss this in more detail in §2.1. Another



rf(xk)
x1xk

xk � �Dkrf(xk) level sets of f
�x = xk � (GTG)�1(GTGxk �GTh)x�

P+[xk � �Dkrf(xk)℄P+[xk � (GTG)�1(GTGxk �GTh)℄
x2

Figure 1: Example where P+[xk − αDk∇f(xk)] fails to decrease the objective for an arbitrary α > 0. In this figure,
the ellipses represent level sets of f (the inner ellipses correspond to a smaller objective value), and Dk is assumed to be
exactly equal to the inverse of the Hessian. The current iterate is given as xk. Note that for Problem (2.1), the Newton
method reaches the unconstrained optimum x̄ in a single iteration. However, the projected solution P+[xk −Dk∇f(xk)]
for nonnegatively constrained problems leads to an increase in the objective since the current iterate (xk) moves from an
inner ellipse to an outer one by the update rule.

inexact approach is provided by the method of Zdunek and
Cichocki [21] who proposed the combination of projection
with a quasi-Newton procedure for NNMA, which we refer
to as the ZC method.

Our FNMAE procedure is a quasi-Newton method that
removes the theoretical deficiencies of both the ALS and
ZC methods. As an alternative, we present an inexact
method called FNMAI that shares the same algorithmic
framework as its exact counterpart FNMAEwhile providing
a computationally more efficient procedure.

2.1 ALS and ZC Methods. As alluded to above, both the
ALS and ZC methods have theoretical deficiencies, which
can lead to non-monotonic changes in the objective function
value and to inferior approximations. We illustrate these
deficiencies more clearly in this section providing further
motivation for our algorithms.

Both ALS and ZC are intimately related to FNMAE and
FNMAI. A critical difference between FNMAE and both
these approaches (ZC and ALS) is that the former is an
exact approach, whereas the latter two are inexact methods.
To see why these methods are inexact consider the NNLS
subproblem (2.1) that they must solve. Let us denote a
projection onto the nonnegative orthant by P+[·]. Assuming
G to be of full rank, the ALS update for subproblem (2.1)
may be written as

(2.2) x = P+[(GT G)−1GT h],

or equivalently,

x = P+[x− (GT G)−1(GT Gx−GT h)].

For the ZC approach, the update is

(2.3) xnew = P+[xold − αD(GT Gxold −GT h)],

where α > 0 and D is some positive definite matrix that ap-
proximates (GT G)−1, i.e., the inverse of the Hessian. Note
that the ALS update has D = (GT G)−1 and α = 1 in this
form. Figure 1 illustrates why the updates (2.2) and (2.3) are
inexact, moreover they fail to decrease the objective function
for an arbitrary positive α. Observe that (2.2) performs an
exact-Newton step followed by projection, while (2.3) does
quasi-Newton with projection. Hence, we see that both the
ALS and the ZC approaches can lead to an increase in the ob-
jective function value (also see Figure 6). Our exact method,
FNMAE, fixes this problem and is provably convergent un-
like the ALS and ZC methods.

3 Algorithms and Theory
In this section we develop an algorithm and associated
supporting theory for solving (1.2). An efficient solution
of the NNLS subproblem (2.1) forms the core of FNMAE.
Hence, first we focus our attention on efficiently solving the
NNLS problem.

Broadly viewed, our method for solving NNLS may be
viewed as combining the active set method with the projected



gradient scheme. This approach is founded upon the obser-
vation that if the constraints active at the final solution are
known in advance, the original problem can be solved by
optimizing the objective in an equality-constrained manner
over only the variables that correspond to the inactive con-
straints.

However, by itself, the projected gradient method, be-
ing a direct analogue of steepest descent, suffers from de-
ficiencies such as slow convergence and zigzagging. For
unconstrained optimization problems, it is known that the
use of non-diagonal positive definite gradient scaling matri-
ces alleviates such problems. To overcome problems associ-
ated with gradient based methods, Bertsekas [2] developed
a projection framework for simply constrained cases based
on the Newton-method. We build on that idea and employ
non-diagonal gradient scaling based on the Quasi-Newton
method for Problem (2.1), which is a constrained minimiza-
tion problem. However, since the constraints are particularly
simple, this approach remains feasible and relatively simple.

3.1 Overview of our method for NNLS. Our algorithm
for solving (2.1) is iterative and at each iteration it partitions
the variables into two groups, namely the free and fixed vari-
ables. The fixed variables are the components of xk with
active constraints (equality satisfied) that have a correspond-
ing positive derivative at iteration k. We index them by the
fixed set, i.e.,

(3.1) I+ =
{
i
∣∣xk

i = 0, [∇f(xk)]i > 0
}
.

For brevity, we will slightly abuse notation and say that
xk

i ∈ I+ whenever i ∈ I+.
Denote the free variables and the fixed variables at iter-

ation k by yk and zk respectively. Without loss of generality
we can assume that xk and ∇f(xk) are partitioned as

xk =
[
yk

zk

]
, ∇f(xk) =

[
∇f(yk)
∇f(zk)

]
,

where yk
i /∈ I+ and zk

i ∈ I+. Once the free variables at the
current iteration are identified, we compute the projection y
as follows

(3.2) y = P+

[
yk − αD̄

k∇f(yk)
]
,

where α ≥ 0, and D̄
k is an appropriate positive definite gra-

dient scaling matrix. Note that∇f(yk) is the gradient vector
restricted to the free variables, and D̄

k is a corresponding re-
stricted scaling matrix.

Finally, given y we update xk to obtain

(3.3) xk+1 ←
[

y
zk

]
=
[
P+

[
yk − αD̄

k∇f(yk)
]

0

]
,

where the last equality uses the fact that zk is fixed to zero.
Now we can compute∇f(xk+1) and update the fixed set I+

to obtain yk+1 and zk+1.

Note that any algorithm that finds y such that

(3.4) gk(y) < gk(yk), y ≥ 0,

where

(3.5) gk(y) = 1
2

∥∥G[y;zk]− h
∥∥2

2
,

can be used to update xk in (3.3), but since (3.4) is again a
constrained problem, (3.2) remains a good choice for feasi-
bility and efficiency of the overall algorithm. Furthermore,
due to the resemblance of (3.2) to an iteration of the standard
quasi-Newton update, it is possible to exploit the curvature
information of gk to obtain a faster convergence rate.

However, the computation of a proper D̄
k at each

iteration is not a trivial task as the size of yk may vary
across iterations, and it may be necessary to vary the size
of D̄

k from one iteration to the next. To address this
difficulty, we note that the curvature information from {yk}
is essentially captured by the sequence {xk}. Therefore, D̄k

can be approximated by taking a proper sub-matrix of Dk,
which contains curvature information from the vectors {xk}.
Based on the above rationale, we maintain a gradient scaling
matrix Dk that covers the entire vector xk at each iteration
and build the restricted matrices D̄

k from Dk according to
the free variables yk.

There are many possible choices for Dk, ranging from
the identity matrix to the inverse of the Hessian. We choose
the well-established BFGS method [2] which incrementally
approximates the inverse of the Hessian using only gradient
information at each iteration.
The BFGS Update. Suppose Hk is the current approxi-
mation to the Hessian. The BFGS update adds a rank-two
correction to Hk to obtain

(3.6) Hk+1 = Hk − HkuuT Hk

uT Hku
+

wwT

uT w
,

where w = ∇f(xk+1)−∇f(xk), and u = xk+1−xk. Let
Dk denote the inverse of Hk, then applying the Sherman-
Morrison-Woodbury formula to (3.6) yields

Dk+1 = Dk − (DkwuT + uwT Dk)
uT w

+

(
1 +

wT Dkw

uT w

)
uuT

uT w
.

(3.7)

Since, ∇f(xk) = GT Gxk −GT h for the NNLS problem,
(3.7) can be rewritten as

Dk+1 = Dk − (DkGT GuuT + uuT GT GDk)
uT GT Gu

+

(
1 +

uT GT GDkGT Gu

uT GT Gu

)
uuT

uT GT Gu
.

(3.8)



Remark: Note that ‖Gu‖22 appears as the denominator in
the last two terms of (3.8). When G is of full-rank, (3.8) is
always well-defined, since

‖Gu‖2 = 0, iff u = 0,

which in turn implies that the method has converged and the
update (3.8) is not needed anymore. In general, even if G
is rank-deficient, we can avoid trouble by simply bypassing
the update. The only requirement that we need to satisfy
is that Dk+1 remains positive definite, which can be easily
satisfied by simply setting Dk+1 = Dk. However, in
practice (3.8) remains well-defined, and we do not usually
encounter ‖Gu‖ = 0.
Line-search. From (3.2) we see that in addition to the
computation of Dk, the update also involves a parameter
α > 0. Like many other iterative optimization procedures,
standard line-search methods can be used to choose the step-
size α. We omit a discussion of the same for brevity and
refer the reader to [9].

3.2 Convergence. In this section we prove that our
method for NNLS as described above is an exact method,
i.e., it converges to the globally optimal solution of (2.1).
The main result of this section is the following theorem.

Theorem 3.1 (Convergence and Optimality). If G is of
full-rank and {xk} is the sequence of points generated
by (3.3), then every limit point of {xk} is a stationary point
of Problem (2.1), and hence optimal since (2.1) is strictly
convex.

The proof of this theorem depends on several lemmas
that we prove below. Our proof is structured as follows. First
we show that the update (3.3) ensures a monotonic descent
in the objective function value (Lemma 3.1). Then we show
that the resulting sequence of iterates {xk} has a limit-point
(Lemma 3.2). Finally, we show that any limit point of the
sequence {xk} is also a stationary or KKT point of (2.1),
thereby concluding the proof.

Lemma 3.1 (Descent). If xk is not a stationary point
of (2.1), then there exists some constant ᾱ such that

f(xk+1) < f(xk), ∀α ∈ (0, ᾱ],

where xk+1 and f(x) are given by (3.3) and (2.1) respec-
tively.

Proof. By the construction of I+, all components of yk

satisfy:

either yk
i 6= 0 or [∇f(yk)]i ≤ 0.

Furthermore, since xk is not a stationary point, there exists
at least one i such that

[∇f(yk)]i 6= 0.

Thus letting d = −D̄k∇f(yk), we see that

∇f(yk)T d < 0,

since D̄k is a principal submatrix of the positive definite
matrix Dk, and is therefore itself positive definite. This
establishes the fact that d is a feasible descent direction. Now
let

γ(α) = yk + αd,

and consider partitioning the free variables into two disjoint
sets of indices such that

I1 = {i|yk
i > 0 or (yk

i = 0 and di ≥ 0)},
I2 = {i|yk

i = 0 and di < 0}.

It is easy to see that there exists α1 > 0 such that ∀i ∈ I1,

yk
i + αdi ≥ 0, ∀α ≤ α1.

Let us define a new search direction d̄,

d̄i =
{

di, i ∈ I1,
0, otherwise.

Then we have

P+[γ(α)] = yk + αd̄, ∀α ∈ (0, α1].

Since
[
∇f(yk)

]
i
≤ 0 and di < 0 for i ∈ I2, we get∑

i∈I2

[
∇f(yk)

]
i
· di ≥ 0. Now we can conclude that

∇f(yk)T d̄ =
∑
i∈I1

[
∇f(yk)

]
i
· di

≤
∑

i∈{I1∪I2}

[
∇f(yk)

]
i
· di = ∇f(yk)T d < 0.

Hence d̄ is also a feasible descent direction. Therefore,
letting y = P+[γ(α)], there exists ᾱ ∈ (0, α1] such that

gk(y) < gk(yk), ∀α ∈ (0, ᾱ]

where gk is as in (3.5). From (3.3), since zk remains fixed in
xk+1, we conclude that

f(xk+1) < f(xk), ∀α ∈ (0, ᾱ].

Lemma 3.2 (Limit point). Let {xk} be a sequence of points
generated by (3.3). Then this sequence has a limit point.

Proof. Assume that we start the iteration at x0 where
f(x0) = M . By Lemma 3.1, {f(xk)} is a monotonically
decreasing sequence, whereby x0 is a maximizer of f over
the M -level set of f . If a convex quadratic function f is
bounded above, its M -level set is also bounded. Denote this
M -level set by X. Then we can choose u ∈ X such that

‖u‖2 ≥ ‖x‖2,∀x ∈ X.

Then {xk} is bounded as 0 ≤ ‖xk‖2 ≤ ‖u‖2 for all k,
hence the sequence has a limit point. This concludes the
proof of the lemma.



Gradient Related Condition. Let {xk} be a sequence
generated by (3.3). Then for any subsequence {xk}k∈K that
converges to a nonstationary point,

(3.9) lim sup
t→∞

‖xkt+1 − xkt‖ <∞,

(3.10) lim sup
t→∞

∇f(xkt)T (xkt+1 − xkt) < 0.

This is known as the gradient related condition in optimiza-
tion literature and plays a crucial role to prove the conver-
gence of a number of methods. (3.9) follows from lemma 3.2
and it can be shown that our method also satisfies condi-
tion (3.10) [9].

Finally we present a proof of our main theorem 3.1.

Proof. Assume {xk} converges to a nonstationary point x̄.
From lemma 3.1, it can be shown that there exists some εk

such that limk→∞ εk = 0 and

f(xk)− f(xk+1) = −∇f(xk)T (xk+1 − xk)− εk > 0,

Since f is continuous, limk→∞ f(xk) = f(x̄).
Consequently,

lim
k→∞

f(xk)− f(xk+1) = 0.

In turn, it implies

lim
k→∞

∇f(xk)T (xk+1 − xk) = 0,

which contradicts (3.10).

3.3 FNMAE: an exact method for NNMA. Now we
extend the ideas from §3.1 to the matrix case. To that end,
we need to redefine various quantities in terms of matrices.
First, observe that the gradient matrices ∇CF(B;C) and
∇BF(B;C) are

∇CF(B;C) = BT BC −BT A, and

∇BF(B;C) = BCCT −ACT .

Then we redefine the fixed set accordingly. For example, the
fixed set corresponding to B is defined as:

I+ =
{
(i, j)

∣∣Bij = 0, [∇BF(B;C)]ij > 0
}
.

Finally, we define the zero-out operator Z+ with respect to
the fixed set I+ so that

(3.11)
[
Z+[X]

]
ij

=
{

Xij , (i, j) /∈ I+,
0, otherwise.

Now we have all the pieces to describe the overall al-
gorithm for solving the NNMA problem (1.2). Algorithm 1

Algorithm 1 FNMAE

Input: A ∈ RM×N
+ , K s.t. 1 ≤ K ≤ min{M,N}

Output: B ∈ RM×K
+ , C ∈ RK×N

+

1. Initialize B0,C0, t = 0,D = I .
repeat

2. B ← Bt, Cold ← Ct.
repeat

3.1. Compute the gradient matrix ∇CF(B;Cold).
3.2. Compute fixed set I+ for Cold.
3.3. Compute the step length vector α using line-
search.
3.4. Update Cold as

U ← Z+

[
∇CF(B;Cold)

]
; U ← Z+

[
DU

]
;

Cnew ← P+

[
Cold −U · diag(α)

]
.

3.5. Cold ← Cnew.
3.6. Update D if necessary.

until Cold converges
4. Ct+1 ← Cold.
5. C ← Ct+1, Bold ← Bt.
repeat

6.1. Compute the gradient matrix ∇BF(Bold;C).
6.2. Compute fixed set I+ for Bold.
6.3. Compute the step length vector α using line-
search.
6.4. Update Bold as:

U ← Z+

[
∇BF(Bold;C)

]
; U ← Z+

[
UD

]
;

Bnew ← P+

[
Bold − diag(α) ·U

]
.

6.5. Bold ← Bnew.
6.6. Update D if necessary.

until Bold converges
7. Bt+1 ← Bold.
8. t← t + 1.

until Stopping criteria are met

presents our proposed method which we name Fast Nonneg-
ative Matrix Approximation - exact, i.e., FNMAE.

In Steps 3.4 and 6.4 of Algorithm 1, the first Z+[·]
eliminates the “fixed” gradient information from the search
direction, the second Z+[·] ensures that the fixed set remains
fixed, and the projection P+[·] maintains feasibility of the
next iterate.

Note that we maintain only one gradient scaling matrix
D at each alternating step even though our algorithm for
NNLS suggests that each column should have its own gra-
dient scaling matrix. We justify this strategy as follows. In
Problem (2.1), a series of BFGS updates for D aim at esti-
mating the inverse of the Hessian. However, the true Hes-
sian for Problem (2.1) is GT G which is a constant matrix.



Thus in Problem (1.2), a matrix-wise extension of NNLS,
every column shares the same true Hessian, whereby each
column can also share the approximation of the inverse Hes-
sian, namely D. As long as we retain the positive definite-
ness of the matrix D, this shared D provides an effective
gradient scaling, and it does not impede convergence of the
algorithm. Also note that since the Hessian is of size K×K,
its exact inverse can be used if K is not too large at a com-
putational cost of O

(
K2(M + N) + K3

)
operations. This

strategy is included in our second algorithm, FNMAI, in the
next section.

Theorem 3.2 (Convergence of FNMAE). If Bt and Ct re-
tain full-rank, then the sequence {Bt,Ct} generated by Al-
gorithm FNMAE converges to a stationary point of Prob-
lem (1.2).

Proof. Algorithm 1 essentially performs the following alter-
nating minimization at each outer iteration

Ct+1 ← argmin
C≥0

‖A−BtC‖2F,

Bt+1 ← argmin
B≥0

‖A−BCt+1‖2F.

Similar to the argument in Lemma 3.2, the domain of
Problem (1.2) can be considered to be compact. Since
{F(Bt;Ct)} is monotone decreasing and bounded below,
it has a limit point, (B̄, C̄), i.e.,

lim
t→∞

F(Bt;Ct) = F(B̄; C̄).

Since F is continuous, we have

lim
t→∞

Bt = B̄, and lim
t→∞

Ct = C̄.

Now we can invoke the proof of the two-block Gauss-Seidel
method [8] to conclude our claim.

3.4 FNMAI: an inexact method for NNMA. In this
section we present an inexact version of our approach. This
method has the same underlying framework as FNMAE, but
uses some heuristics to reduce computational effort at each
iteration.

Algorithm 2 gives the pseudocode for FNMAI and it dif-
fers from the exact method in three main aspects. First, it
uses the inverse of the Hessian as the non-diagonal gradient
scaling matrix D. Whenever the rank K of the factor ma-
trices B and C is small, using the inverse Hessian can be
advantageous for problems where O(K3) costs are accept-
able. Second, the step-size α is made an input parameter,
and FNMAI guarantees monotonic descent on the objective
function for a sufficiently small α. Third, FNMAI accepts
the number of iterations for each alternating step as an input
parameter. This modification permits premature termination
of each alternating step, which naturally translates into large
computational savings by trading-off accuracy for speed.

Algorithm 2 FNMAI

Input: A ∈ RM×N
+ , K, τ ∈ N, α ∈ R+.

Output: B ∈ RM×K
+ , C ∈ RK×N

+

1. Initialize B0,C0, t = 0.
repeat

2. B ← Bt, Cold ← Ct.
for i = 1 to τ do

3.1. Compute the gradient matrix ∇CF(B;Cold).
3.2. Compute fixed set I+ for Cold.
3.3. Update Cold as:

U ← Z+

[
∇CF(B;Cold)

]
; U ← Z+

[(
BT B

)−1
U
]
;

Cnew ← P+

[
Cold − αU

]
.

3.4. Cold ← Cnew.
end for
4. Ct+1 ← Cold.
5. C ← Ct+1, Bold ← Bk.
for i = 1 to τ do

6.1. Compute the gradient matrix ∇BF(Bold;C).
6.2. Compute fixed set I+ for Bold.
6.3. Update Bold as:

U ← Z+

[
∇BF(Bold;C)

]
; U ← Z+

[
U
(
CCT

)−1];
Bnew ← P+

[
Bold − αU

]
.

6.4. Bold ← Bnew.
end for
7. Bt+1 ← Bold.
8. t← t + 1.

until Stopping criteria are met

Theorem 3.3 (Monotonicity of FNMAI). If Bt and Ct

retain full-rank, then FNMAI decreases its objective function
monotonically for sufficiently small α.

Proof. It is enough to consider Steps 2-3 from FNMAI(the
argument for Steps 4-5 is similar). Since B is assumed to be
full-rank at every step,

(
BT B

)−1
is positive definite. For a

sufficiently small α that satisfies

α ≤ min{αi, i = 1, · · · ,K},

where the αi are computed by Step 3.3 or 6.3 from FNMAE,
it can be shown that Steps 2-3 decrease the objective mono-
tonically by arguments similar to the ones in the proof of
Lemma 3.1.

Remark 1: If any αi is zero, then the inner loop for the
current alternating step should be terminated to guarantee
monotonicity.
Remark 2: A sufficiently small α is important to guarantee
monotonicity of FNMAI, but too small a value will hurt the



computational benefit by slowing down convergence. On the
other hand, if α is too large, it can push the search direction
out of the feasible region, or introduce too many zeros into
the current iterate, resulting in a singular or ill-conditioned
Hessian for the next iterate.

To overcome these subtleties and to find a proper α in
practice, the following simple heuristic can be used. Writing
Steps 3.3 and 6.3 from FNMAI in the form

W ← P+

[
W − αU

]
,

• let number of inner iterations be small (τ = 2 or 3),
• start with a large scaling λ (typically 0.1) and compute

α = λ
‖W ‖F
‖U‖F

,

for each alternating step,
• decrease λ until it passes the inner steps without error,
• increase the number of iterations (typically τ = 10).

3.5 Extensions to handle regularization. The regular-
ized NNMA problem (1.3) can be solved by suitably mod-
ifying the FNMAE and FNMAI procedures. Essentially the
gradient and Hessian get redefined. For example, the gradi-
ent

∇CF(B;C) = (BT B + λI)C −BT A,

and the Hessian

∇2
CF(B;C) = (BT B + λI),

are suitably modified to include the contribution of the regu-
larization term. We just use these updated values in the algo-
rithms FNMAE and FNMAI to handle regularization. Notice
that regularization provides the benefit of ensuring that the
Hessian remains positive-definite. All the convergence re-
sults carry over without any additional work.

3.6 Handling box-constraints. FNMAE and FNMAI can
be easily extended to handle box-constraints, i.e., constraints
of the form p ≤ x ≤ q. We motivate the details by first
looking at the box-constrained version of (2.1), which is also
known as Bounded Least Squares (BLS) [4],

minimize
x

1
2‖Gx− h‖2,

subject to p ≤ x ≤ q.
(3.12)

Problem (3.12) can be solved just as we solved (2.1). We
need to modify the definition of the fixed-set (3.1) so that

I+ =
{

i
∣∣∣(xk

i = pi, [∇f(xk)]i > 0
)

or
(
xk

i = qi, [∇f(xk)]i < 0
)}

,

and to replace the P+[·] projection by PΩ[·], where

(3.13) [PΩ[x]]i =

 pi : xi ≤ pi

xi : pi < xi < qi

qi : qi ≤ xi

Given these definitions, it can be verified that Lemma 3.1
holds without significant modification and Theorem 3.1 also
follows. The fact that the domain of (3.12) is a compact set
obviates the need for Lemma 3.2 in this case.

Given the above method for BLS we can appropriately
modify FNMAE and FNMAI for solving the Bounded Matrix
Approximation (BMA) problem (1.4). We omit the details
for brevity, noting that the modifications needed are minor,
for example, the fixed set for B is redefined as

IΩ =
{

(i, j)
∣∣∣(Bij = Pij , [∇BF(B;C)]ij > 0

)
,

or
(
Bij = Qij , [∇BF(B;C)]ij < 0

)}
.

By taking a projection step similar to (3.13) we can construct
the desired method.

4 Experiments
We now present experimental results to demonstrate the
performance of our FNMAE and FNMAI methods. We
give numerical results to assess the performance of our
methods as compared to the standard Lee & Seung (LS)
method [11], Zdunek and Cichocki’s (ZC) method [21], and
the ALS approach [1] for solving the least-squares NNMA
problem. We show results on random dense matrices (§4.1),
real-world sparse matrices (§4.2), and real-world dense data
(§4.3). Our experiments show that FNMAE and FNMAI

produce better quality approximations than the LS, ZC, and
the ALS procedures. We implemented LS, ALS, FNMAE,
and FNMAI in MATLAB, while the ZC method was available
in the NMFLAB toolbox [6]. We present results for the
ZC method only with small matrices as the implementation
available in NMFLAB was unable to run on larger matrices.

Since NNMA enjoys a vast number of applications [19],
all of them stand to benefit from our new methods, especially
because our methods achieve better objective function values
and come with theoretical guarantees. As an illustration we
include some simple results on text analysis in §4.2, and on
image processing in §4.3.

4.1 Error of approximation. For our experiments, we
initialize all the methods randomly or with one step of LS.
Our results below show plots of the relative error of approxi-
mation, i.e., ‖A−BC‖F/‖A‖F against the number of iter-
ations. However, a word of caution is in order—iterations of
these different methods are not strictly comparable to each
other, since some methods do more work than others in one
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Figure 2: Relative error of approximation against iteration count for ZC, FNMAI, and FNMAE. The relative errors achieved
by both FNMAI and FNMAE are lower than ZC. Note that ZC does not decrease the errors monotonically.

iteration. A more interesting plot would have been “time”
on the X-axis; however at present we are unable to conduct
such experiments since different implementations of each of
the methods can change the running time substantially, for
example, implementations that use BLAS3 versus those that
do not. To perform timing comparisons, we intend to com-
pare C/C++ implementations of these methods in the future.

4.1.1 Comparisons against ZC. The first experiment
compares FNMAE and FNMAI against ZC on three data ma-
trices. The results are reported in Figure 2. As previously
noted, the data matrices used are fairly small since ZC (NM-
FLAB) seems to be unable to cope with larger matrices. We
initialized all methods using one iteration of LS, which it-
self was initialized randomly. However, in the figures we
do not report the relative error for the random initialization
as it is too large to display properly. Figure 2(a) indicates
that our methods outperform ZC. The differences between
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Figure 3: Relative error values against iteration count for
a random dense matrix of size 1600 × 320 for a rank
50 approximation. All methods other than ALS show a
monotonic decrease when initialized with one step of LS.

the three algorithms are sharper in Figure 2(b). Also note
that ZC actually increases the approximation errors after the
first iteration.

4.1.2 Comparisons against LS and ALS. On a larger
matrix, Figure 3 shows a comparison of the approximation
errors for LS, ALS, FNMAE, and FNMAI.
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Figure 4: Relative error values against iteration count for a
random dense matrix of size 6400×1280 for a rank 100 (top)
and rank 200 approximation (bottom).
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Figure 5: Relative errors obtained by ALS, LS, and FNMAI on the Classic3, Classic300, and Yahoo-News datasets. Observe
the range of the errors on the y-axes of all the plots. Even though there seems to be a difference amongst the three algorithms,
they all perform essentially the same, since the rank of the approximation sought in each problem is very small relative to
the dimensionality of the data. ALS and FNMAI behave very similarly, both of them slightly better than LS. Note that the
error values for the initialization are not fully shown as they are too large to display properly without obscuring the rest of
the plot.

We see that FNMAE achieves the best objective function
values of all the methods presented. However, FNMAE can
take more running time than the other methods because of
its exact nature. Therefore, FNMAE is to be preferred when
reconstruction accuracy is more important, while FNMAI

is recommended when running time is more important.
We now present two more experiments to highlight the
advantages of FNMAI over ALS, which owing to its ad-hoc
nature leads to inferior accuracies (see also §2.1).

Figure 4 compares the relative errors of approximation
achieved by ALS and FNMAI for a dense random matrix
of size 6400 × 1280. We emphasize again that the number
of iterations is merely used as an indicator of progress of
the algorithms, and is not to be taken as an indicator of
time. From these figures one sees the interesting trend
that as the rank of approximation increases, ALS becomes
less and less competitive in terms of the objective function
value achieved. For a rank-200 approximation (Figure 4),
the accuracy achieved by FNMAI is 25% higher than that
achieved by ALS.

4.2 Application to Text Analysis. Owing to its ability to
produce sparse representations, NNMA has been applied to
text analysis, for example, see [12, 18, 20]. We show results
of running ALS, LS and FNMAI on three text datasets,
which are high-dimensional and sparse. These datasets are

• Classic3: A corpus containing 3891 documents drawn
from the areas of information retrieval (CISI), aero-
nautical systems (CRAN), and medical journal articles
(MED). After standard pre-processing, the dataset re-
sulted in a 4303× 3891 matrix.

• Classic300: A subset of 300 documents taken from
Classic3, with 100 randomly chosen documents from
each of the three categories given above. This data
matrix has size 5471× 300.

• Yahoo News (K-Series): This corpus consists of 2340
news articles belonging to 20 different categories. The
size of this data matrix is 21819× 2340.

Figure 5 illustrates the objective function values achieved by
running ALS, LS and FNMAI on these text datasets. The
rank of the decomposition was picked to be small, since that
was enough to separate the clusters inherent in the data. All
the algorithms seem to perform equally well, with marginal
differences in their final objective function values. We in-
fer that this is an outcome of the small rank of the approxi-
mation. As the rank increases, all the three algorithms en-
counter numerical difficulties due to singularities or divi-
sions by zero. To counter exactly this situation, the regu-
larized version of NNMA can be used.

Table 1 shows the top keywords obtained from a rank-3
approximation to the Classic3 matrix, wherein the ten largest
entries from each column of B are extracted, since columns
of B can be interpreted as the basis vectors for documents
(columns of matrix A). From the keywords, it is quite easy
to recognize that each of the three underlying categories is
well captured.

We remark that due to random initializations, it can
sometimes be the case that a rank-3 approximation does
not cover the three different categories, and one can end
up finding sub-categories of one of the bigger categories.
This is a well-known problem with many topic-discovery
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Figure 6: Image reconstruction as obtained by the ALS, LS, and FNMAI procedures. The figure illustrates two randomly
chosen images out of the 143 reconstructed images, each with 96 × 96 pixels. The reconstruction was computed from a
rank-20 approximation to the input image matrix, which was of size 9216× 143. The first image in each row is the original,
followed by reconstructions obtained via ALS, LS, and FNMAI. From the images above, FNMAI is seen to obtain the
best reconstruction and the relative errors as plotted on the right attest to this observation. Observe how ALS leads to a
non-monotonic change in the objective function value (as explained in §2.1). Note that the error values for the initialization
are not fully shown as they are too large to display properly without obscuring the rest of the plot.

Table 1: Top 10 keywords (per basis vector of B) ob-
tained by FNMAI for a rank-3 approximation to the Classic3
dataset

CISI CRAN MED
retrieval wing patients
system pressure cells
systems mach growth
indexing supersonic hormone
scientific shock cancer
science jet treatment
index lift buckling
search wings blood

computer body cases
document theory cell

systems. However, in an exploratory mining system, one
can always request a higher rank approximation, and usually
for the Classic3 dataset, a rank-4 approximation reveals all
three underlying categories. NNMA can be used as a topic
discovery and analysis system, especially due to the fact that
it yields a nonnegative decomposition of the input data, and
text-data is inherently nonnegative, whereby the resulting
decomposition is easy to interpret (as shown in Table 1).

4.3 Application to Image processing. NNMA was origi-
nally motivated by Lee and Seung [12] using an image pro-
cessing application. Many other authors have also consid-
ered NNMA for image processing, graphics, or face recog-

nition applications. Since, the quality of the reconstruction
achieved by NNMA is important to many image processing
applications, we provide a comparison of the various NNMA
methods in terms of reconstruction accuracy—sample results
are reported in Figure 6, which shows accuracies for a rank-
20 approximation to a 9216 × 143 matrix of face images.1

All methods were initialized with the same random B and
C values.

This image dataset is an example of a real-world dense
matrix for which ALS fails to decrease the objective func-
tion monotonically, resulting in a corresponding poorer re-
construction accuracy. FNMAI achieves the best objective
values of all three algorithms compared, and a correspond-
ing better reconstruction is observed (Figure 6).

5 Conclusions
In this paper, we have presented new and improved Newton-
type methods for the least-squares NNMA problem. By em-
ploying a non-diagonal gradient scaling scheme, our algo-
rithms use curvature information and thus overcome defi-
ciencies of gradient descent based methods. Our methods
also rectify serious drawbacks in existing methods such as
alternating least squares and Zdunek and Cichocki’s quasi-
Newton heuristic. We provide convergence guarantees for
our algorithms and verify their performance on real-life data
from applications.

1We preprocessed a publicly available face image database to create a
subset of 143 grey-scale images of dimension 96× 96 for our experiments.



We provide two implementations based on the same al-
gorithmic framework. Our exact method FNMAE, which
shows good performance in terms of approximation accu-
racy, is suitable for applications that require superior accu-
racy. Our inexact implementation FNMAI is more suitable
for applications that are more constrained by computational
efficiency rather than accuracy.
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