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Abstract

Metric and kernel learning arise in several machine legraipplications. However, most existing
metric learning algorithms are limited to learning metoesr low-dimensional data, while existing
kernel learning algorithms are often limited to the trarihe setting and do not generalize to new
data points. In this paper, we study the connections betwetric learning and kernel learning that
arise when studying metric learning as a linear transfdaondearning problem. In particular, we
propose a general optimization framework for learning fogtvia linear transformations, and an-
alyze in detail a special case of our framework—that of mirming the LogDet divergence subject
to linear constraints. We then propose a general reguthfiaenework for learning a kernel matrix,
and show it to bequivalento our metric learning framework. Our theoretical conratsibetween
metric and kernel learning have two main consequenceselgénned kernel matrix parameterizes
a linear transformation kernéinctionand can be applied inductively to new data points, 2) our
result yields a constructive method for kernelizing mosstiaxg Mahalanobis metric learning for-
mulations. We demonstrate our learning approach by applyto large-scale real world problems
in computer vision, text mining and semi-supervised kedmlensionality reduction.

Keywords: metric learning, kernel learning, linear transformatiomtrix divergences, logdet
divergence
1. Introduction

One of the basic requirements of many machine learning algorithms (e.g., Seen4sed cluster-
ing algorithms, nearest neighbor classification algorithms) is the ability to centpwarobjects to
compute a similarity or distance between them. In many cases, off-the-shatiagisor similarity
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functions such as the Euclidean distance or cosine similarity are usedgaiopée, in text retrieval
applications, the cosine similarity is a standard function to compare two textroots. However,
such standard distance or similarity functions are not appropriate forcddlgms.

Recently, there has been significant effort focused on task-splegifiting for comparing data
objects. One prominent approach has been to learn a distance metricrbebjeets given addi-
tional side information such as pairwise similarity and dissimilarity constraints theedata. A
class of distance metrics that has shown excellent generalization prepsrtiee learnedaha-
lanobis distancéunction (Davis et al., 2007; Xing et al., 2002; Weinberger et al., 20@idBerger
et al., 2004; Shalev-Shwartz et al., 2004). The Mahalanobis distamckecdgiewed as a method
in which data is subject to near transformation and the goal of such metric learning methods
is to learn the linear transformation for a given task. Despite their simplicity andrgkzation
ability, Mahalanobis distances suffer from two major drawbacks: 1) timeben of parameters to
learn grows quadratically with the dimensionality of the data, making it difficult aonlelistance
functions over high-dimensional data, 2) learning a linear transformatioadgequate for data sets
with non-linear decision boundaries.

To address the latter shortcomirgernel learningalgorithms typically attempt to learn a ker-
nel matrix over the data. Limitations of linear methods can be overcome by emplayion-linear
input kernel, which implicitly maps the data non-linearly to a high-dimension&lifeapace. How-
ever, many existing kernel learning methods are still limited in that the learmadlkalo not gener-
alize to new points (Kwok and Tsang, 2003; Kulis et al., 2006; Tsuda €&@5). These methods
are therefore restricted to learning in the transductive setting where albthglabeled and unla-
beled) is assumed to be given upfront. There has been some work windgleernels that generalize
to new points, most notably work on hyperkernels (Ong et al., 2005}hbuesulting optimization
problems are expensive and cannot be scaled to large or even medadata sets. Another ap-
proach is multiple kernel learning (Lanckriet et al., 2004), which leamrmsx¢éure of base kernels;
this approach is inductive but the class of learnable kernels can bietrestr

In this paper, we explore metric learning with linear transformations ovatrauty high-
dimensional spaces; as we will see, this is equivalent to learniirgear transformation kernel
functiong(z) "We(y) given an input kernel functiop(z) " @(y). In the first part of the paper, we
formulate a metric learning problem that uses a particular loss function cabedogiDet diver-
gence, for learning the positive definite matvix This loss function is advantageous for several
reasons: it is defined only over positive definite matrices, which makesgpthmipation simpler, as
we will be able to effectively ignore the positive definiteness constraill¥ oRurthermore, the loss
function has precedence in optimization (Fletcher, 1991) and statistics {JamdeStein, 1961).
An important advantage of our method is that the proposed optimization algdsteoalable to
very large data sets of the order of millions of data objects. But perhapsimpertantly, the
loss function permits efficient kernelization, allowing efficient learning lai@ar transformation in
kernel space. As a result, unlike transductive kernel learning metbodsnethod easily handles
out-of-sample extensions, that is, it can be applied to unseen data.

We build upon our results of kernelization for the LogDet formulation to tgve general
framework for learning linear transformation kernel functions and sti@t such kernels can be
efficiently learned over a wide class of convex constraints and losgidasc Our result can be
viewed as a representer theorem, where the optimal parameters canréssegppurely in terms
of the training data. In our case, even though the m&ttimay be infinite-dimensional, it can be

520



METRIC AND KERNEL LEARNING USING A LINEAR TRANSFORMATION

fully represented in terms of the constrained data points, making it possiblenfpute the learned
kernel function over arbitrary points.

We demonstrate the benefits of a generalized framework for inductineldearning by apply-
ing our techniques to the problem of inductive kernelized semi-superdisezhsionality reduction.
By choosing the trace-norm as a loss function, we obtain a novel Keareing method that learns
low-rank linear transformations; unlike previous kernel dimensionality methods, varieteither
unsupervised or cannot easily be applied inductively to new data, our chiethiosically possesses
both desirable properties.

Finally, we apply our metric and kernel learning algorithms to a number of cialig learning
problems, including ones from the domains of computer vision and text miningikeJexist-
ing techniques, we can learn linear transformation-based distancerel kenctions over these
domains, and we show that the resulting functions lead to improvements oeo&the-art tech-
niques for a variety of problems.

2. Related Work

Most of the existing work in metric learning has been done in the Mahalana#de (or metric)
learning paradigm, which has been found to be a sufficiently powerfs dmetrics for a variety
of data. In one of the earliest papers on metric learning, Xing et al. {20@pose a semidefinite
programming formulation under similarity and dissimilarity constraints for learniMgaalanobis
distance, but the resulting formulation is slow to optimize and has been outpedddy more
recent methods. Weinberger et al. (2005) formulate the metric learnifudgpndn a large margin
setting, with a focus ok-NN classification. They also formulate the problem as a semidefinite
programming problem and consequently solve it using a method that combbmgsadient descent
and alternating projections. Goldberger et al. (2004) proceed to |dareea transformation in the
fully supervised setting. Their formulation seeks to ‘collapse classesdbgtraining within-class
distances to be zero while maximizing between-class distances. While eaels@fllgorithms was
shown to yield improved classification performance over the baseline metrgsconstraints do
not generalize outside of their particular problem domains; in contrashpmuoach allows arbitrary
linear constraints on the Mahalanobis matrix. Furthermore, these algorithregaile eigenvalue
decompositions or semi-definite programming, which is at least cubic in the donetfis/ of the
data.

Other notable works for learning Mahalanobis metrics include Pseudo-retlice Learning
Algorithm (POLA) (Shalev-Shwartz et al., 2004), Relevant Componengysis (RCA) (Schultz
and Joachims, 2003), Neighborhood Components Analysis (NCA) (éadbet al., 2004), and
locally-adaptive discriminative methods (Hastie and Tibshirani, 1996 Jaftiqular, Shalev-Shwartz
et al. (2004) provided the first demonstration of Mahalanobis distanceitgain kernel space.
Their construction, however, is expensive to compute, requiring cubicganéeration to update
the parameters. As we will see, our LogDet-based algorithm can be impledmante efficiently.

Non-linear transformation based metric learning methods have also bgeyspdh though these
methods usually suffer from suboptimal performance, non-convexitggmputational complexity.
Examples include the convolutional neural net based method of Chogka2005); and a general
Riemannian metric learning method (Lebanon, 2006).

Most of the existing work on kernel learning can be classified into twodcagegories. The first
category includes parametric approaches, where the learned kemogbh is restricted to be of a
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specific form and then the relevant parameters are learned accordligimvided data. Prominent
methods include multiple kernel learning (Lanckriet et al., 2004), hypeete (Ong et al., 2005),
and hyper-parameter cross-validation (Seeger, 2006). Most a thethods either lack modeling
flexibility, require non-convex optimization, or are restricted to a supeiMisarning scenario. The
second category includes non-parametric methods, which explicitly moodi@leggc structure in the
data. Examples include spectral kernel learning (Zhu et al., 2005), ofddiésed kernel learning
(Bengio et al., 2004), and kernel target alignment (Cristianini et al.1 2Mowever, most of these
approaches are limited to the transductive setting and cannot be used tallyaganeralize to
new points. In comparison, our kernel learning method combines both afinee approaches.
We propose a general non-parametric kematrix learning framework, similar to methods of the
second category. However, based on our choice of regularizattbnarstraints, we show that our
learned kernel matrix corresponds to a linear transformation kernetifunrparameterized by a PSD
matrix. As a result, our method can be applied to inductive settings without sagyifiignificant
modeling power. In addition, our kernel learning method naturally prowdeselization for many
existing metric learning methods. Recently, Chatpatanasiri et al. (201@)esghernelization for
a class of metric learning algorithms including LMNN and NCA; as we will see,result is
more general and we can prove kernelization over a larger class loepre and can also reduce
the number of parameters to be learned. Furthermore, our methods cpplieel 0 a variety of
domains and with a variety of forms of side-information. Independent ofvauk, Argyriou et al.
(2010) recently proved a representer type of theorem for speetralarization functions. However,
the framework they consider is different than ours in that they are inégt@ssensing an underlying
high-dimensional matrix using given measurements.

The research in this paper combines and extends work done in Davi{20@r), Kulis et al.
(2006), Davis and Dhillon (2008), and Jain et al. (2010). The foci¥awis et al. (2007) and Davis
and Dhillon (2008) was solely on the LogDet divergence, while the maihigdailis et al. (2006)
was to demonstrate the computational benefits of using the LogDet and wrnaxa divergences
for learning low-rank kernel matrices. In Jain et al. (2010), we shithe equivalence between
a general class of kernel learning problems and metric learning problentisis paper, we unify
and summarize the work in the existing conference papers and also pdetalked proofs of the
theorems in Jain et al. (2010).

3. LogDet Divergence Based Metric Learning

We begin by studying a particular method, based on the LogDet divexgémrclearning metrics
via learning linear transformations given pairwise distance constraintslidéess kernelization of
this formulation and present efficient optimization algorithms. Finally, we addmaitations of the
method when the amount of training data is large, and propose a modifiedtatytw efficiently
learn a kernel under such circumstances. In subsequent sect®nsl] take the ingredients devel-
oped in this section and show how to generalize them to adapt to a much lasgeoidoss functions
and constraints, which will encompass most of the previously-studiedapipes for Mahalanobis
metric learning.

3.1 Mahalanobis Distances and Parameterized Kernels

First we introduce the framework for metric and kernel learning that is gredldn this paper.
Given a data set of object$ = [x1,..., ),z € R% (when working in kernel space, the data
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matrix will be represented a8 = [@(x1),...,®(xn)], Where@is the mapping to feature space, that
is, @: R% — RY), we are interested in finding an appropriate distance function to compare tw
objects. We consider the Mahalanobis distance, parameterized by agdsifinite matrixV; the
squared distance betwegnandzx;j is given by

dw (@i, @) = (zi —2)) "W(zi —2)). 1)

This distance function can be viewed as learning a linear transformatioe dath and measuring
the squared Euclidean distance in the transformed space. This is seactdryzing the matrix
W = G'G and observing thathy (zi,zj) = ||Gzi — Gz;||3. However, if the data is not linearly
separable in the input space, then the resulting distance function may poweeful enough for
the desired application. As a result, we are interested in working in kepaeks that is, we will
express the Mahalanobis distance in kernel space using an appropappeng from input to
feature space:

o (@(@i), @) = (@(@i) — ;) W(P(@i) — @la))).

Note that when we choosgto be the identity, we obtain (1); we will use the more general form
throughout this paper. As is standard with kernel-based algorithms, quéireethat this distance
be computable given the ability to compute the kernel funckigfx,y) = ¢(x) @(y). We can
therefore equivalently pose the problem as learning a parameterizedl Kenctionk(x,y) =
o(z) "Wq(y) given some input kernel functiaty(z,y) = @(x)" @(y).

To learn the resulting metric/kernel, we assume that we are given conswaitkte desired
distance function. In this paper, we assume that pairwise similarity and dissiynd@anstraints are
given over the data—that is, pairs of points that should be similar underaheeld metric/kernel,
and pairs of points that should be dissimilar under the learned metric/kerneh &nstraints
are natural in many settings; for example, given class labels over thepdaits in the same class
should be similar to one another and dissimilar to points in different class@geveq our approach
is general and can accommodate other potential constraints over the eiftaction, such as
relative distance constraints.

The main challenge is in finding an appropriate loss function for learning th@r#é so that 1)
the resulting algorithm is scalable and efficiently computable in kernel spadee resulting met-
ric/lkernel yields improved performance on the underlying learning pnojdeich as classification,
semi-supervised clustering etc. We now move on to the details.

3.2 LogDet Metric Learning

The LogDet divergence between two positive definite mattiveésw € R9*9 is defined to be

Dia(W, W) = tr(WW 1) — logdetww 1) —d.

We are interested in findiry that is closest td\p as measured by the LogDet divergence but that
satisfies our desired constraints. WhEn= |, we can interpret the learning problem as a maximum
entropy problem. Given a set of similarity constraisitand dissimilarity constraint®, we propose

1. The definition of LogDet divergence can be extended to the case WhandW are rank deficient by appropriate
use of the pseudo-inverse. The interested reader may refer to Kalig2908).
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the following problem:
anqéra Dw(W, 1), s.t. dw(@(zi), (xj)) <u, (i,]) €S,
dw (i), o)) > ¢, (i,]) € D. )

We make a few remarks about this formulation. The above problem wasgsgdmnd studied
in Davis et al. (2007). LogDet has many important properties that makeeftulutr machine
learning and optimization, including scale-invariance and preservatior oatiye space; see Kulis
et al. (2008) for a detailed discussion on the properties of LogDet. iEtlds, we prefer LogDet
over other loss functions (including the squared Frobenius loss asius&dthlev-Shwartz et al.,
2004 or a linear objective as in Weinberger et al., 2005) due to the fadhihaesulting algorithm
turns out to be simple and efficiently kernelizable, as we will see. We notddimatlation (2)
minimizes the LogDet divergence to the identity matriX his can easily be generalized to arbitrary
positive definite matricedp. Further, (2) considers simple similarity and dissimilarity constraints
over the learned Mahalanobis distance, but other linear constraintessible. Finally, the above
formulation assumes that there exists a feasible solution to the proposed ofiimiz@blem;
extensions to the infeasible case involving slack variables are discusseste Section 3.5).

3.3 Kernelizing the LogDet Metric Learning Problem

We now consider the problem of kernelizing the metric learning problem. egulesitly, we will
present an efficient algorithm and discuss generalization to new points.

Given a set oh constrained data points, I denote the input kernel matrix for the data, that
is, Ko(i, j) = Ko(zi,zj) = @(zi)T@(xj). Note that the squared Euclidean distance in kernel space
may be written a¥(i,i) +K(j, j) — 2K(i, j), whereK is the learned kernel matrix; equivalently,
we may write the distance agki(ei —ej)(ei —ej)"), wheree; is thei-th canonical basis vector.
Consider the following problem to fin:

min Dya(K, Ko), st t(K(ei—ej)(ei—e)")<u,  (i,j) €S,
tr(K(ei—ej)(ei—e))") =6, (i,j) €D €)

This kernel learning problem was first proposed in the transductitimgén Kulis et al. (2008),
though no extensions to the inductive case were considered. Note abémr(2) optimizes over a
d x d matrix W, while the kernel learning problem (3) optimizes ovemaxn matrix K. We now
present our key theorem connecting (2) and (3).

Theorem 1 Let Ky > 0. Let W* be the optimal solution to proble2) and let K* be the optimal
solution to problen{3). Then the optimal solutions are related by the following:

K'=d™W'd, W =1+ PSP,
where S= Ky 1(K* —Ko)Kyt, Ko=@T®d, &= [@(z1),9(x2),...,0xn)].

The above theorem shows that the LogDet metric learning problem (Hecaalved implicitly by
solving an equivalent kernel learning problem (3). In fact, in Sectisre4how an equivalence be-
tween metric and kernel learning for a general class of regularizatiarifuns. The above theorem
follows as a corollary to our general theorem (see Theorem 4), whithenproven later.
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Next, we generalize the above theorem to regularize against arbitrsitivpalefinite matrices

Wo.

Corollary 2 Consider the following problem:

min Dya(W. o), s.t. dh(@(ai), o)) < u, (i,]) € 5.
(@), 0() = £, (i.]) € D. @

Let W* be the optimal solution to probleid) and let K be the optimal solution to probleg).
Then the optimal solutions are related by the following:

Kf= 0TW' D, W* =W+ WodSDTWp,
where S= Ky 1(K* —Ko)Ky?, Ko=@"Wod, @ = [@(x1),®(x2),...,0xn)].

Proof Note thatDg(W,Wp) = Da(W, YAWW, 2 1). Let W =W, YAwwyg /2

now equivalent to:

. Problem (4) is

min  D(W,1), st dg(@=i),9z))<u (i,j) €S,
W0 )

dy (@), @2)) >0 (i,j) €D,

whereW =W, YAww, 72, & = W'%d and & = [@(a1), §(x2),...,®xn)]. Now using Theo-
rem 1, the optimal solutiokV* of problem (5) is related to the optim&l* of problem (3) by

K* = dTW'd = oTW AW, 2w w, AW 20 = oTWr . Similarly, W* = W AV-W/? =
Wo +Wo PSP Wh whereS= K1 (K* — Ko)Kg L. ]

Since the kernelized version of LogDet metric learning is also a linearlytieined optimization
problem with a LogDet objective, similar algorithms can be used to solve eitiobigm. This
equivalence implies that we camplicitly solve the metric learning problem by instead solving for
the optimal kernel matrix*. Note that using LogDet divergence as objective function has two sig-
nificant benefits over many other popular loss functions: 1) the metricenmé¢ldearning problems
(2), (3) are both equivalent and therefore solving the kernel legrfioinmulation directly provides

an out of sample extension (see Section 3.4 for details), 2) projection wgipectto the LogDet
divergence onto a single distance constraint has a closed-form solhtismmaking it amenable to
an efficient cyclic projection algorithm (refer to Section 3.5).

3.4 Generalizing to New Points

In this section, we see how to generalize to new points using the learneal keatrix K*.

Suppose that we have solved the kernel learning problerKfdfrom now on, we will drop
the * superscript and assume thatandW are at optimality). The distance between two points
¢(x;) and@(xj) that are in the training set can be computed directly from the learned keatek
asK(i,i)+K(j,j) —2K(i, j). We now consider the problem of computing the learned distance
between two pointg(z1) and@(z2) that may not be in the training set.
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In Theorem 1, we showed that the optimal solution to the metric learning protdenbe ex-
pressed a®/ = | + ®SP'. To compute the Mahalanobis distance in kernel space, we see that the
inner productp(z1)"Wq(z2) can be computed entirely via inner products between points:

O(z1)"Wo(z2) = @(z1)" (I +OSPT)P(22) = @(z1)T P(22) + P(z1) PSPT (),
= Ko(zl, 22) + kI Sk,, wherekj = [Ko(Zi R ml), . Ko(zi , acn)}T. (6)

Thus, the expression above can be used to evaluate kernelized distaticeespect to the learned
kernel function between arbitrary data objects.

In summary, the connection between kernel learning and metric learningsalot generalize
our metrics to new points in kernel space. This is performed by first sothadkernel learning
problem forK, then using the learned kernel matrix and the input kernel function to ctenlgarned
distances using (6).

3.5 Kernel Learning Algorithm

Given the connection between the Mahalanobis metric learning problenefdrtld matrix W and
the kernel learning problem for threx n kernel matrixK, we develop an algorithm for efficiently
performing metric learning in kernel space. Specifically, we provide aorigthgn (see Algorithm 1)
for solving the kernelized LogDet metric learning problem (3).

First, to avoid problems with infeasibility, we incorporatack variablesnto our formulation.
These provide a tradeoff between minimizing the divergence betWemmd Ky and satisfying the
constraints. Note that our earlier results (see Theorem 1) easily fizaeoethe slack case:

anign Drd(K,Ko) +Y- Dra(diag(§), diag(éo))

st. t(K(ei—ej)(ei—e))) <& (i,j) €S, (7)
tr(K(ei —ej)(ei—ej)") > &j (i,]) € D.

The parametey above controls the tradeoff between satisfying the constraints and minimizing
Duw(K,Kp), and the entries ofp are set to bei for corresponding similarity constraints aAdor
dissimilarity constraints.

To solve problem (7), we employ the techniqgueByeégman projectionsas discussed in the
transductive setting (Kulis et al., 2008). At each iteration, we choosestraint(i, j) from $ or D.
We then apply a Bregman projection such tasatisfies the constraint after projection; note that
the projection is not an orthogonal projection but is rather tailored to thepkr function that we
are optimizing. Algorithm 1 details the steps for Bregman’s method on this optimizatodoiem.
Each update is a rank-one update

K+ K+BK(ei—ej)(e; —ej)TK,

wheref is a projection parameter that can be computed in closed form (see Algonithm 1
Algorithm 1 has a number of key properties which make it useful for variarnel learning
tasks. First, the Bregman projections can be computed in closed formingsthat the projection
updates are efficientq(n?)). Note that, if the feature space dimensionatitys less tham then
a similar algorithm can be used directly in the feature space (see Davis ed@f). 2nstead of
LogDet, if we use the von Neumann divergence, another potential lastida for this problem,
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Algorithm 1 Metric/Kernel Learning with the LogDet Divergence

Input: Kp: inputn x n kernel matrix,S: set of similar pairs®: set of dissimilar pairgy, £: distance
thresholdsy: slack parameter

Output: K: output kernel matrix

1.K<—Ko,)\ij (—OVij
2.&jj «—ufor (i, ) € S; otherwiseg;j < ¢
3. repeat
3.1. Pick a constrairt, j) € S or D
3.2. p«+ (g —ej)TK(ei —ej)
3.3. 8+ 1if (i,]) € §, —1 otherwise

34.q emin(hij,%(%—é»

3.5. B« da/(1—0dap)
3.6. &ij «+ Y&ij/(y+0ag))
3.7. Ajj < Ajj —a
3.8. K+ K—|—BK(ei —ej)(ei —ej)TK
4. until convergence
return K

O(n?) updates are possible, but are much more complicated and require usefasttheultipole
method, which cannot be employed easily in practice. Secondly, the projectiaintain positive
definiteness, which avoids any eigenvector computation or semidefiniteapmogng. This is in
stark contrast with the Frobenius loss, which requires additional computatimaintain positive
definiteness, leading ©©(n?) updates.

3.6 Metric/Kernel Learning with Large Data Sets

In Sections 3.1 and 3.3, we proposed a LogDet divergence-badealdtabis metric learning prob-
lem (2) and an equivalent kernel learning problem (3). The numbga@meters involved in these
problems isO(min(n,d)?), wheren is the number of training points ardlis the dimensionality
of the data. The quadratic dependence affects not only the running tmieaifing and testing,
but also requires estimating a large number of parameters. For exampls setlavith 10,000
dimensions leads to a Mahalanobis matrix with 100 million entries. This represemdamental
limitation of existing approaches, as many modern data mining problems posksaely high
dimensionality.

In this section, we present a heuristic for learning structured Mahakdidtance (kernel) func-
tions that scale linearly with the dimensionality (or training set size). Insteadpoésenting the
Mahalanobis distance/kernel matrix as a tui d (or n x n) matrix with O(min(n,d)?) parameters,
our methods use compressed representations, admitting matrices parachéte@enin(n,d))
values. This enables the Mahalanobis distance/kernel function to bedeatored, and evaluated
efficiently in the context of high dimensionality and large training set size.ahtiqular, we pro-
pose a method to efficiently learn an identity plus low-rank Mahalanobis destaratrix and its
equivalent kernel function.

Now, we formulate this approach, which we call the high-dimensional identity lpw-rank
(IPLR) metric learning problem. Consider a low-dimensional subspafé iand let the columns
of U form an orthogonal basis of this subspace. We will constrain the leMaédlanobis distance
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matrix to be of the form:
W=194+W=194+ULUT,

wherel? is thed x d identity matrix,\ denotes the low-rank part & andL e S with k <
min(n,d). Analogous to (2), we propose the following problem to learn an identity Iplugank
Mahalanobis distance function:

Jin - Dea(W,19) st dw(@(@), @) <u (i) €S,

dw(@(i), @zj)>¢ (,j)eDd, W=I19+ULUT. (8)

Note that the above problem is identical to (2) except for the added egntstf = 19 +ULUT. Let
F =¥+ L. Now we have
Dg(W,1%) =tr(194+ULUT) —logdet19 +ULUT) —d,

=tr(14+L) +d—k—logde(1®+L) —d = Dy(F, 1¥), (9)
where the second equality follows from the fact th@AB) = tr(BA) and Sylvester’s determinant
lemma. Also note that for alt € R™",

tr(WDCHT) = tr((19+ULUT)PCPT) = tr(dCP") + tr(LUTdCDTU),
= tr(PCPT) — tr(D'CP'") +tr(FD'CP' "),

where® =UT® is the reduced-dimensional representatioPof herefore,

dw (i), 0(z))) = tr(Wd(ei—ej)(ei—ej) @) (10)
= di(@(xi),p(x))) —d (g (i), @ (z})) + de (¢ (xi), @ ().

Using (9) and (10), problem (8) is equivalent to the following:
: k
min Dea(F,17),

st de(¢f(@i), ¢ () < u—di(Q(xi), z))) +di (@ (i), @ ())), (i,]) €S,
dr (¢ (i), @ () = £ — di (i), @()) + i (¢ (i), @), (,])eD.  (11)

Note that the above formulation is an instance of problem (2) and can beEdaading an algorithm
similar to Algorithm 1. Furthermore, the above problem solves fox& matrix rather than d x d
matrix seemingly required by (8). The optinl is obtained a¥v* = 19+ U (F* —1%UT.

Next, we show that problem (11) and equivalently (8) can be solvedesftly in feature space
by selecting an appropriate baBigU = R(R'R)~%/?). LetR= ®J, whereJ € R™K. Note thaty =
DI(ITKod) Y2 andd’ =UTd = (JTKed) Y2JTK,, that is,®’ € R**" can be computed efficiently
in the feature space (requiring inversion of onlak matrix). Hence, problem (11) can be solved
efficiently in feature space using Algorithm 1, and the optimal keligk given by

K* = ®TW*® = Ko + Kgd(ITKod) Y2 (F* — 1%)(ITKod) Y23 K.

Note that (11) can be solved via Algorithm 1 usi@gk?) computational steps per iteration.
Additionally, O(min(n,d)k) steps are required to prepare the data. Also, the optimal solidor
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K*) can be stored implicitly usin@(min(n,d)k) memory and similarly, the Mahalanobis distance
between any two points can be compute®imin(n,d)k) time.

The metric learning problem presented here depends critically on the ekesitesl. For the case
whend is not significantly larger thanand feature space vectabsare available explicitly, the basis
R can be selected by using one of the following heuristics (see Section & &=V Dhillon, 2008
for more details):

e Using the togk singular vectors ofb.
e Clustering the columns @b and using the mean vectors as the b&sis

e For the fully-supervised case, if the number of classess(greater than the required dimen-
sionality () then cluster the class-mean vectors iktdusters and use the obtained cluster
centers for forming the basR If ¢ < k then cluster each class inkgc clusters and use the
cluster centers to forrR.

For learning the kernel function, the baBis= ®J can be selected by: 1) using a randomly sampled
coefficient matrixJ, 2) clusteringd using kernek-means or a spectral clustering method, 3) choos-
ing a random subset @b, that is, the columns af are random indicator vectors. A more careful
selection of the basiR should further improve accuracy of our method and is left as a topic for
future research.

4. Kernel Learning with Other Convex Loss Functions

One of the key benefits of our kernel learning formulation using the Logli¥ergence (3) is in
the ability to efficiently learn a linear transformation (LT) kerrfiehction (a kernel of the form
o(z)"Wq(y) for some matrixW = 0) which allows the learned kernel function to be computed
over new data points. A natural question is whether one can learn similaelKenctions with
other loss functions, such as those considered previously in the litefatuahalanobis metric
learning.

In this section, we propose and analyze a general kernel matrix legonatdem similar to
(3) but using a more general class of loss functions. As in the LogDstfloxtion case, we
show that our kernel matrix learning problem is equivalent to learning arimansformation (LT)
kernelfunctionwith a specific loss function. This implies that the learned LT kernel functam c
be naturally applied to new data. Additionally, since a large class of metricitgammethods can
be seen as learning a LT kernel function, our result provides a cmtistr method for kernelizing
these methods. Our analysis recovers some recent kernelization resufstfic learning, but also
implies several new results.

4.1 A General Kernel Learning Framework

Recall thatkg : R% x R% — R is the input kernel function. We assume that the data vectoxs in
have been mapped vig resulting in® = [@(x1),®(x2),...,®(xn)]. As before, denote the input
kernel matrix aKo = ®'®. The goal is to learn a kernel functionthat is regularized against
Ko but incorporates the provided side-information. As in the LogDet formulatiee will first
consider a transductive scenario, where we learn a kernel ni&titnat is regularized againsl
while satisfying the available side-information.
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Recall that the LogDet divergence based loss function in the kernakrtestrning problem (3)
is given by:

Dia(K,Ko) = tr(KKy 1) —logdetKKy 1) —n,

~1/2 1/2

= tr(Ky Y2KKy ) — log det K, /2KKy %) —n.

The kernel matrix learning problem (3) can be rewritten as:

min  f(K PKKG V%), st k(e —ej)(ei—e)) <u (i)€S

tr(K(ei —ej)(ei —ej)T) >/, (i,]) €D,

wheref(A) =tr(A) — logde(A).

In this section, we will generalize our optimization problem to include more gklosafunc-
tions beyond the LogDet-based loss functiospecified above. We also generalize our constraints
to include arbitrary constraints over the kernel makixather than just the pairwise distance con-
straints in the above problem. Using the above specified generalizatiorgtimézation problem
that we obtain is given by:

min f(Kg V2KKsY?), stgi(K)<b,1<i<m, (12)
wheref andg; are functions froniR™" — R. We call f theloss function(or regularizer) angj the
constraints Note that iff and constraintg;’s are all convex, then the above problem can be solved
optimally (under mild conditions) using standard convex optimization algorithmas@Bel et al.,
1988). Note that our results also hold for unconstrained variants ofbitneegproblem, as well as
variants with slack variables.

In general, such formulations are limited in that the learned kernel caeadily be applied to
new data points. However, we will show that the above proposed prablequivalent to learning
linear transformation (LT) kernel functions. Formally, an LT kerneldiion kyy is a kernel function
of the formk(z,y) = @(x)"Wq(y), whereW is a positive semi-definite (PSD) matrix. A natural
way to learn an LT kernel function would be to learn the parameterization matrising the
provided side-information. To this end, we consider the following genettadiz of our LogDet
based learning problem (2):

min (W),  stg(®'We)<b, 1<i<m, (13)
where, as before, the functiohis the loss function and the functioggs are the constraints that
encode the side information. The constraigtare assumed to be a function of the mathkwad
of learned kernel values over the training data. Note that most Mahasametric learning methods
may be viewed as a special case of the above framework (see Sectiéiss).for data mapped
to high-dimensional spaces via kernel functions, this problem is seemingbssiiple to optimize
since the size oV grows quadratically with the dimensionality.

4.2 Analysis

We now analyze the connection between the problems (12) and (13). Véhaithat the solutions
to the two problems are equivalent, that is, by optimally solving one of the prahléhe solution
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to the other can be computed in closed form. Further, this result will yield insighthe type of
kernel that is learned by the kernel learning problem.
We begin by defining the class of loss functions considered in our analysis

Definition 3 We say that f R"™" — R is aspectral function if f(A) = 3; fs(Aj), whereAq,...,An
are the eigenvalues of A and:fR — R is a real-valued scalar function. Note that if if a convex
scalar function, then f is also convex.

Note that the LogDet based loss function in (3) is a spectral function. Siynitaost of the existing
metric learning formulations have a spectral function as their objectiveitumc

Now we state our main result that for a spectral functioproblems (12) and (13) are equiva-
lent.

Theorem4 Let Kp=d'd =0, f be a spectral function as in Definition 3 and assume that the
global minimum of the corresponding strictly convex scalar functigrs & > 0. Let W* be an
optimal solution tq(13) and K* be an optimal solution t¢12). Then,

W*=ald+ o3P,
where S= K, 1(K* — aKg)Ky . Furthermore, K = ®TW*®.

The first part of the theorem demonstrates that, given an optimal sokitiom (12), one can con-
struct the corresponding solutidi* to (13), while the second part shows the reverse. Note the
similarities between this theorem and the earlier Theorem 1. We provide tbegfrihis theorem
below. The main idea behind the proof is to first show that the optimal solutioh3joig always
of the formW = al¥ + ®SdT, and then we obtain the closed form expressionJasing simple
algebraic manipulations.

First we introduce and analyze an auxiliary optimization problem that will hefgoring the
above theorem. Consider the following problem:

Jmin f(W), st gi(®We)<b, 1<i<m W=al+ULUT, (14)
whereL € Rk U € R9*K is a column orthogonal matrix, arld is thed x d identity matrix. In
general k can be significantly smaller than niimd). Note that the above problem is identical to
(13) except for an added constraivt= al? +ULUT. We now show that (14) is equivalent to a
problem ovek x k matrices. In particular, (14) is equivalent to (15) defined below.

Lemmab Let f be a spectral function as in Definition 3 and ¢et- 0 be any scalar. Ther{14)is
equivalent to:
min f(al®+L), st gad'd+dTULUTD) <b, 1<i<m (15)

L>=—alk

Proof The last constraint in (14) asserts thidt= al9+ULUT, which implies that there is a one-
to-one mapping betweeW andL: givenW, L can be computed and vice-versa. As a result, we
can eliminate the variabM from (14) by substitutingil9 +ULUT for W (via the last constraint in
(14)). The resulting optimization problem is:

min  f(al®+ULUT), st g(ad d+d"ULUT®) <b, 1<i<m (16)

L>=—alk
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Note that (15) and (16) are the same except for their objective functBeiew, we show that both

the objective functions are equal up to a constant, so they are inteedizlagn the optimization
problem. LetU’ € R99 be an orthonormal matrix obtained by completing the basis represented
by U, that is,U’ = [U U, ] for someU; € R™(@K st UTU, =0 andUU, =19k Now,

W=ald+ULUT =U’ <0(I dy [L O] > U’T. Itis straightforward to see that for a spectral function

0 0
f, f(VWVT) = f(W), whereV is an orthogonal matrix. AlsoyA,B ¢ R9¥d, f (['8‘ ED —
f(A)+ f(B). Using the above observations, we get:

alk+L 0

f(W):f(aIdJrULUT):f([ 0 qlok

D:f(alk+L)+(dk)f(a). (17)
Therefore, the objective functions of (15) and (16) differ by onlyastant, that is, they are equiv-
alent with respect to the optimization problem. The lemma follows. |

We now show that for strictly convex spectral functions (see Definitioin@pptimal solutiow*
to (13) is of the formW* = al9 + ®SPT, for someS.

Lemma 6 Suppose f, Kanda satisfy the conditions given in Theorem 4. Then, the optimal solu-
tion to (13)is of the form W = al9 + ®SdT, where S is a ix n matrix.

Proof Note thatkg >~ O implies thad > n. Our results can be extended wher n, thatis,Ko > 0,
by using the pseudo-inverse k§§ instead of the inverse. However, for simplicity we only present
the full-rank case.

Now, letW =UAUT = 5 ;Ajuju] be the eigenvalue decomposition/sf Consider a constraint
g (PTW®) < by as specified in (13). Note that if theth eigenvectomj of W is orthogonal to the
range space @b, that is,®"«; = 0, then the corresponding eigenvalyds not constrained (except
for the non-negativity constraint imposed by the positive semi-definitetmsstraint). Since the
range space ob is at mosin-dimensional, we can assume thgt> 0,V > n are not constrained
by the linear inequality constraints in (13).

Since f satisfies the conditions of Theorem #W) = 5 ; fs(Aj). Also, fs(a) = miny f5(x).
Hence, to minimize (W), we can seleckj = a > 0,Vj > n (note that the non-negativity constraint
is also satisfied here). Furthermore, the eigenveetprs'j <n, lie in the range space @, that is,
Vj <n, uj = Pz for somez; € R". Therefore,

n d n d
W* = ZATuTuTT +a Z uTuTT = Z()\’J‘ - O()uTu]‘T +a Z u]‘u’J‘T = oSO’ +al’,
I= j=n+1 I= =1
_<h * * kT
whereS= 3y ;(A] —a)zjz]". [ |

Now we use Lemmas 5 and 6 to prove Theorem 4.
Proof [Proof of Theorem 4] Leth = U¢ZVqI be the singular value decomposition (SVD) ®f
Note thatko = ®Td = VpZ2V], sozV] =VJ Ké/z. Also, assumingb € R to be full-rank and
d>n,VoVd =1.

Using Lemma 6, the optimal solution to (13) is restricted to be of the fatm al9 + dSHT =

al9+UpIVI SWIUT = al®+UgpVg K2 SKY AUT = al 9+ UV LVoUJ, wherel = KJ/2SK/2,
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As a result, for spectral functiorfs (13) is equivalent to (14), so using Lemma 5, (13) is equivalent
to (15) withU = UeVy andL = KS/ZSKS/Z. Also, note that the constraints in (15) can be simplified
to:

g (adT®+dTULUT®) < by = gi(aKo+ K3/ LKY?) < by.

Now, let K = aKo + Kg/2LK3'? = aKg + KoSKy, that is,L = K, /2(K — aKo)K, /. Theorem 4

now follows by substituting fok. in (15). |

As a first consequence of this result, we can achieve induction overdireelbkernels, analo-
gous to (6) for the LogDet case. Given tiat ®"W®, we can see that the learned kernel function
is a linear transformation kernel; thatigzi, z;) = @(zi) "We(z;). Given a pair of new data points
z1 and z,, we use the fact that the learned kernel is a linear transformation katoeg with the
first result of the theorenW = al9 4+ ®SdT) to compute the learned kernel as:

(p(zl)TW(p(zz) =0 -Ko(21,22) —i—kISkg,WhHGki = [Ko(zi, 1), ...,Ko(zi,wn)]T. (18)

Since LogDet divergence is also a spectral function, Theorem 4 isergéezation of Theorem 1
and implies kernelization for our metric learning formulation (2). Moreovemyridahalanobis
metric learning methods can be viewed as a special case of (13), sollargood Theorem 4 is
that we can constructively apply these metric learning methods in kerrneg dyasolving their cor-
responding kernel learning problem, and then compute the learned médrids8y. Kernelization
of Mahalanobis metric learning has previously been established for se@umbkgases; our results
generalize and extend previous methods, as well as provide simpler teesmgsome cases. We
will further elaborate in Section 5 with several special cases.

4.3 Parameter Reduction

As noted in Section 3.6 that the size of the kernel matficasd the parameter matricBgaren x n,
and thus grow quadratically with the number of data points. Similar to the spasibé the LogDet
divergence (see Section 3.6), we would like to have a way to restrictemargl optimization prob-
lem (12) over a smaller number of parameters. So, we now discuss aaljeatérn of (13) by
introducing an additional constraint to make it possible to reduce the nurhparameters to learn,
permitting scalability to data sets with many training poetsl with very high dimensionality.

Theorem 4 shows that the optimiél is of the form dTW* D = aKgy + KoSKy. In order to
accommodate fewer parameters to learn, a natural option is to replace th@wr&matrix with
alow-rankmatrix JLJ", whereJ € R™X is a pre-specified matrix, € R¥*K is unknown (we usé
instead ofSto emphasize thais of sizen x n wheread. is k x k), and the ranlk is a parameter of
the algorithm. Then, we will explicitly enforce that the learned kernel is offthris.

By plugging inK = aKp -+ KoSKy into (12) and replacin§with JLJT, the resulting optimization
problem is given by:

min f(al"+ KY2ILITKY), st gi(aKo+KodLITKp) < by, 1<i<m (19)

Note that the above problem is a strict generalization of our LogDet funbésed parameter re-
duction approach (see Section 3.6).

While the above problem involves onlkyx k variables, the function$ andg;’s are applied to
nx n matrices and therefore the problem may still be computationally expensivéruzsm Below,
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we show that for any spectral functidnand linear constraintg (K) = tr(GiK), (19) reduces to a
problem that applie$ andg;’s to k x k matrices only, which provides significant scalability.

Theorem 7 Let Ky = ®Td and J be some matrix iR"*K. Also, let the loss function f be a spectral
function (see Definition 3) such that the corresponding strictly convdarstimction f has the
global minimum atx > 0. Then problen(19) with g (K) = tr(GiK) is equivalent to the following
alternative optimization problem:

min  f(K?) Y2(aK? + KILK?)(K7)~1/2
LU (K ™“(aK-"+ )(KS)™79),

s.t. tr(LITKoGiKod) < by —tr(aKeCi), 1 <i<m, (20)

where K = JTKpJ.
Proof LetU = KJ/2J(3TKoJ)~%/2 and letJ be a full rank matrix, thek) is an orthogonal matrix.
Using (17) we get,

f(al"+U(ITKod)Y2L(ITKed)Y2UT) = f(al X+ (3TKd)Y2L(ITKod)Y/?).

Now consider a linear constraint@; (aKo + KoJLJ"Kg)) < bj. This can be easily simplified to
tr(LJTKoCi KoJ) < by —tr(aKeCi). Similar simple algebraic manipulations to the PSD constraint
completes the proof. [ |

Note that (20) is ovek x k matrices (after initial pre-processing) and is in fact similar to the kernel
learning problem (12), but with a kernéP of smaller sizek x k, k < n.

Similar to (12), we can show that (19) is also equivalent to LT kerneltfandearning. This
enables us to naturally apply the above kernel learning problem in thetivelgetting.

Theorem 8 Consider(19) with g (K) = tr(CiK) and a spectral function f whose corresponding
scalar function § has a global minimum at > 0. Let J€ R"™K. Then,(19) and (20) with g (K) =
tr(CiK) are equivalent to the following linear transformation kernel learning prob{amalogous
to the connection betwedh2) and (13)):

Jmin f(W), st tr(®"Wo) <bj, 1<i<m W=al+dJLITo". (21)

Proof Consider the last constraint in (24 = al4+®JLIT®T. Letd =U>VT be the SVD ofd.
Hence,W = al9+ UVTVEVTILIVEVTVUT = ald + UVTK2ILITKY/?VUT, where we used

Ké/z =V3VT. For dis-ambiguity, rename asL’ andU asU’. The result now follows by using

Lemma 5 wherd&) = U'VT andL = KY/2IL/3TKS/2. u

Note that, in contrast to (13), where the last constraint ¥ves achieved automatically, (21) re-
quires this constraint oW to be satisfied during the optimization process, which leads to a reduced
number of parameters for our kernel learning problem. The aboveeaimesinows that our reduced-
parameter kernel learning method (19) also implicitly learns a linear transfiorm@rnel function,
hence we can generalize the learned kernel to unseen data pointsruskpgyession similar to (18).
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5. Special Cases

In the previous section, we proved a general result showing the cthong between metric and
kernel learning using a wide class of loss functions and constraintsisisehtion, we consider a
few special cases of interest: the von Neumann divergence, thessigfeibenius norm and semi-
definite programming. For each of the cases, we derive the required ogiinizroblem and
mention the relevant optimization algorithms that can be used.

5.1 Von Neumann Divergence

The von Neumann divergence is a generalization of the well known Kérdgénce to matrices. It
is used extensively in quantum computing to compare density matrices of tveoediffsystems
(Nielsen and Chuang, 2000). It is also used in the exponentiated matdiegtranethod by Tsuda
et al. (2005), online-PCA method by Warmuth and Kuzmin (2008) and fdBt &lver by Arora
and Kale (2007). The von Neumann divergence betweandA, is defined to beDyn(A, Ag) =
tr(AlogA— AlogAy — A+ Ag), where bothA andA are positive definite. Computing the von Neu-
mann divergence with respect to the identity matrix, we dgf{A) = tr(AlogA— A+1). Note that
fun is a spectral function with corresponding scalar functfgga(A) = AlogA — A and minima at

A = 1. Now, the kernel learning problem (12) with loss functiigp and linear constraints is:

min fn(Kg V2KKyY3), st t(KC) <b;, vi<i<m (22)

As fyn is an spectral function, using Theorem 4, the above kernel learngieon is equivalent to
the following metric learning problem:

min D(W,1), st tWOCd™) <b;, Vi<i<m

Using elementary linear algebra, we obtain the following simplified version:

[ F(A) =t —C(MK b(A
pamin o, FO) = tr(exp(=C(A)Ko)) +b(A),
whereC(A) = 3 AiCG andb(A) = S Aib;. Further,g—; = tr(exp(—C(A\)Ko)CiKp) + by, so any first-
order smooth optimization method can be used to solve the above dual problésnnatively,

similar to the method of Kulis et al. (2008), Bregman'’s projection method carsée to solve the
primal problem (22).

5.2 Pseudo Online Metric Learning (POLA)

Shalev-Shwartz et al. (2004) proposed the following batch metric leafoingulation:

Vn\}igllwlléa s.t. yij(b—dw(zi, zj)) = 1, ¥(i,]) € P,
wherey;j = 1 if zj andzj are similar, angjj = —1 if zj andx; are dissimilar is a set of pairs of
points with known distance constraints. POLA is an instantiation of (13) #i#) = 3||A||2 and
side-information available in the form of pair-wise distance constraints. tatethe regularizer
f(A) = 3|/Al|2 was also employed in Schultz and Joachims (2003) and Kwok and Tsz0®)(20d
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these methods also fall under our general formulation. In this daseynce again a strictly convex
spectral function, and its global minimumads= 0, so we can use (12) to solve for the learned kernel
K as

i 1|2 L gi(K)<b, 1<i<
min [KKo“lF, st gi(K)<b, 1<i<m,
The constraintg); for this problem can be easily constructed by re-writing each of POL&s ¢
straints as a function sb"Wa®. Note that the above approach for kernelization is much simpler than
the method suggested in Shalev-Shwartz et al. (2004), which involvemalized Gram-Schmidt
procedure at each step of the algorithm.

5.3 SDPs

Weinberger et al. (2005) and Globerson and Roweis (2005) prdpuséic learning formulations
that can be rewritten as semi-definite programs (SDP), which is a spestabtél3) with the loss
function being a linear function. Consider the following general semidefpridgram (SDP) to
learn a linear transformation:

min tr(WdCodT), st tfWdCPT) <b;, Vi<i<m (23)

Here we show that this problem can be efficiently solved for high dimensiétata in its kernel
space, hence kernelizing the metric learning methods introduced by Wgénletral. (2005) and
Globerson and Roweis (2005).

Theorem 9 Problem(23)is kernelizable.

Proof (23) has a linear objective, that is, it is a non-strict convex problemntiagt have multiple
solutions. A variety of regularizations can be considered that lead to slidifféyent solutions.
Here, we consider the LogDet regularization, which seeks the solutiomveifimum determinant.
To this effect, we add a log-determinant regularization:

min tr(WdCod") —ylogdeW, st t{WOCPT) <b;, vi<i<m (24)

The above regularization was also considered by Kulis et al. (2009i0) pvovided a fast projection

algorithm for the case when ea€his a one-rank matrix and discussed conditions for which the

optimal solution to the regularized problem is an optimal solution to the original $pé*above

formulation also generalizes the metric learning formulation of RCA (Bar-Hitlal.e2005).
Consider the following variational formulation of (24):

mtinvrmr(} t —ylogdetw, st tWdGPT) <bj, Vi<i<m,
tr(WdCoyd') <t. (25)

Note that the objective function of the inner optimization problem of (25) iseatspl function and
hence using Theorem 4, (25), or equivalently (24), is kernelizable. |
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5.4 Trace-norm Based Inductive Semi-supervised Kernel Dimensiality Reduction
(Trace-SSIKDR)

Finally, we apply our framework to semi-supervised kernel dimensionaldyatgon, which pro-
vides a novel and practical application of our framework. While therasaigariety of methods for
kernel dimensionality reduction, most of these methods are unsupereigedkernel-PCA) or are
restricted to the transductive setting. In contrast, we can use our keaneing framework to learn
a low-rank transformation of the feature vectors implicitly that in turn provalksv-dimensional
embedding of the data set. Furthermore, our framework permits a varieiyesirformation such
as pair-wise or relative distance constraints, beyond the class labehation allowed by existing
transductive methods.

We describe our method starting from the linear transformation problem. @uliigto learn
a low-rank linear transformatiow/ whose corresponding low-dimensional mapped embedding of
x;i is WY2@(z;). Even when the dimensionality qi(x;) is very large, if the rank oWV is low
enough, then the mapped embedding will have small dimensionality. With that in enpaksible
regularizer could be the rank, that igA) = rank(A); one can easily show that this satisfies the
definition of a spectral function. Unfortunately, optimization is intractable megal with the non-
convex rank function, so we use the trace-norm relaxation for the matmkfunction, that is, we
set f(A) = tr(A). This function has been extensively studied as a relaxation for the vzckidn
in Recht et al. (2010), and it satisfies the definition of a spectral fun€tiith o = 0). We also
add a small Frobenius norm regularization for ease of optimization (thisriedfect the spectral
property of the regularization function). Then using Theorem 4, thétieg relaxed kernel learning

problem is:
wigrtr(Kal/zKKgl/z) KoK VA2, st #(GK)<b,1<i<m,  (26)

wheret > 0 is a parameter. The above problem can be solved using a method badedvea's
inexact algorithm, similar to Cai et al. (2008).
We briefly describe the steps taken by our method at each iteration. For siypmeEnote

K = Ky Y?KKy "% we will optimize with respect t& instead ofK. Let K! be thet-th iterate.
Associate variable}, 1 <i < mwith each constraint at each iteratigrand Ietz|-° =0,Vi. Let & be
the step size at iteratidn The algorithm performs the following updates:

UsUT « K%Ky,
K «—UmaxZ—1l,0UT, (27)
2 « 27— dmax(tr(GKY2K'KY2) —b;,0), Vi, (28)

whereC = 5;271C.. The above updates require computationkxéf2 which is expensive for
large high-rank matrices. However, using elementary linear algebra wesloav thatKk and

the learned kernel function can be computed efficiently without compdﬁj}@ by maintaining
S=K, Y?RK, 2 from step to step.

We first prove a technical lemma to relate eigenvectbrsf Ké/ZCKé/Z andV of the matrix
CKo.
Lemma 10 Let Ké/ZCKé/2 = UZU,T, where U contains the top-k eigenvectors cﬁ/%CKé/z and
2 contains the top-k eigenvalues oj/RCKé/Z. Similarly, let Ckgy = Vk/\kkal, where ¥ contains
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Algorithm 2 Trace-SSIKDR
Input: Ko, (Gi,b),1<i<m,1,0

1: Initialize: 2=0,t=0

2: repeat

3 t=t+1

4. ComputeVi and %, the topk eigenvectors and eigenvalues (f; 2 C;) Ko, wherek =

argma>f gj>T1

Dk(i,i) < 1/v] Kovj, 1 <i <k

Z « 21— dmax(tr(CiKoVkDkZkDkV, Ko) — by, 0), Vi.
until Convergence
- Return Zy, Dy, Wk

© N o g

the top-k right eigenvectors of Gkand Ak contains the top-k eigenvalues of €K hen,
Uc=Ko/MD,  Ze=Ax

where [k is a diagonal matrix with i-th diagonal element,i) = 1/v Kovi. Note that eigenvalue
decomposition is unique up to sign, so we assume that the sign has beerraety.

Proof Letw; bei-th eigenvector o€Kgy. Then,CKovi = Ajvi. Multiplying both sides With(é/z, we

getKé/ZCKé/zKé/zvi = }\iKé/zfui. After normalization we get:

(Kl/ZCKé/Z) Ké/z’vi ) Ké/z’vi
0 UiT Kovi ! viT Kovi
12,
Hence,:{’KO";'_ = Ké/zvka(i,i) is thei-th eigenvectow; of Ké/ZCKé/Z. Also, Zi(i,i) = Aj. |

Using the above lemma and (27), we dét= Ké/ZVka)\Dka‘lKé/z. Therefore, the update for the
zvariables (see (28)) reduces to:

Z + 271 — dmax(tr(C KoV DkADV, 1K) — by, 0), Vi.

Lemma 10 also implies that K eigenvalues o€Kq are larger tham then we only need the tdp
eigenvalues o€Ky. Sincek is typically significantly smaller than, the update should be signifi-
cantly more efficient than computing the whole eigenvalue decomposition.

Algorithm 2 details an efficient method for optimizing (26) and returns matiige®dy and
V, all of which contain onlyO(nk) parameters, wherk is the rank ofKt, which changes from
iteration to iteration. Note that step 4 of the algorithm complteggular vectors and requires
only O(nk?) computation. Note also that the learned embedding; Kl/ngl/zki, wherek; is a
vector of input kernel function values betweenand the training data, can be computed efficiently
asxj — Zi/szka:i, which does not requirl.-tié/2 explicitly.

6. Experimental Results

In Section 3, we presented metric learning as a constrained LogDet optimipatiblem to learn
a linear transformation, and we showed that the problem can be efficiemthelized to learn
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linear transformation kernels. Kernel learning yields two fundamentadrtdges over standard
non-kernelized metric learning. First, a non-linear kernel can be uskedto non-linear decision
boundaries common in applications such as image analysis. Second, in Segtiwe showed that
the kernelized problem can be learned with respect to a reduced bagslkfadmitting a learned
kernel parameterized b9(k?) values. When the number of training examptes large, this rep-
resents a substantial improvement over optimizing over the e@tiné) matrix, both in terms of
computational efficiency as well as statistical robustness. In Section gemaralized kernel func-
tion learning to other loss functions. A special case of our approach tsate-norm based kernel
function learning problem, which can be applied to the task of semi-supédriridective kernel
dimensionality reduction.

In this section, we present experiments from several domains: berchi@Gadata, automated
software debugging, text analysis, and object recognition for compigien. We evaluate perfor-
mance of our learned distance metrics or kernel functions in the contaxtt#ssification accuracy
for thek-nearest neighbor algorithm, b) kernel dimensionality reduction. For#ssiication task,
our k-nearest neighbor classifier udes- 10 nearest neighbors (except for Section 6.3 where we
usek = 1), breaking ties arbitrarily. We select the valuekadrbitrarily and expect to get slightly
better accuracies using cross-validation. Accuracy is defined as thieemwf correctly classified
examples divided by the total number of classified examples. For the dimalisisaduction task,
we visualize the two dimensional embedding of the data using our trace-rased lnethod with
pairwise similarity/dissimilarity constraints.

For our proposed algorithms, pairwise constraints are inferred froenctass labels. For each
classi, 100 pairs of points are randomly chosen from within clas®d are constrained to be similar,
and 100 pairs of points are drawn from classes otheritb@aform dissimilarity constraints. Given
c classes, this results in 108imilarity constraints, and 1@0dissimilarity constraints, for a total
of 20Qc constraints. The upper and lower bounds for the similarity and dissimilaritgticonts
are determined empirically as th& and 99" percentiles of the distribution of distances computed
using a baseline Mahalanobis distance parameteriz&biinally, the slack penalty parameter
used by our algorithms is cross-validated using vafu@s,.1,1,10,100,1000}.

All metrics/kernels are trained using data only in the training set. Test instanee&rawn from
the test set and are compared to examples in the training set using the ldiataade/kernel func-
tion. The test and training sets are established using a standard twodstivalidation approach.
For experiments in which a baseline distance metric/kernel is evaluatedkéiompde, the squared
Euclidean distance), nearest neighbor searches are again computdddt instances to only those
instances in the training set.

For additional large-scale results, see Kulis et al. (2009a), whichawsgzarameter-reduction
strategy to learn kernels over a data set containing nearly half a million ima@dsGa0 dimen-
sional space for the problem of human-body pose estimation; we alsoagppli@lgorithms on the
MNIST data set of 60,000 digits in Kulis et al. (2008).

6.1 Low-Dimensional Data Sets

First we evaluate our LogDet divergence based metric learning metbhedAgorithm 1) on the
standard UCI data sets in the low-dimensional (non-kernelized) settingreittld compare with
several existing metric learning methods. In Figure 1 (a), we compare étdgBear Ko equals
the linear kernel) and the LogDet Gaussi&g €quals Gaussian kernel in kernel space) algorithms

539



JAIN, KuLls, DAVIS AND DHILLON

—%— LogDet Linear
0.45f | —©— Euclidean
—»— MCML

0.4 | ——LMNN

5 10 20 25

15
Number of Dimensions

(a)UCI Data Sets (b) Clarify Data Sets (c) Latex

Figure 1: (a): Results over benchmark UCI data sets. LogDet metric learning was runirwith
input space (LogDet Linear) as well as in kernel space with a Gauksiael (LogDet
Gaussian)(b), (c): Classification error rates faenearest neighbor software support via
different learned metrics. We see in figure (b) that LogDet Linear is thealgorithm to
be optimal (within the 95% confidence intervals) across all data sets.,lwéc3ee that
the error rate for the Latex data set stays relatively constant for LiigBear.

against existing metric learning methodskelN classification. We also show results of a recently-
proposed online metric learning algorithm based on the LogDet diveegwrs this data (Jain et al.,
2008), called LogDet Online. We use the squared Euclidean distaficgy) = (z —y)' (z —y) as

a baseline method (i.8\p = 1). We also use a Mahalanobis distance parameterized by the inverse of
the sample covariance matrix (i.\ = >, whereX is the sample covariance matrix of the data).
This method is equivalent to first performing a standard PCA whiteningfoilanover the feature
space and then computing distances using the squared Euclidean digtaraampare our method
to two recently proposed algorithms: Maximally Collapsing Metric Learning byb&ison and
Roweis (2005) (MCML), and metric learning via Large Margin NearesgNeor by Weinberger
et al. (2005) (LMNN). Consistent with existing work such as Globersath Roweis (2005), we
found the method of Xing et al. (2002) to be very slow and inaccurate gSattier was not included
in our experiments. As seen in Figure 1 (a), LogDet Linear and Log@es&an algorithms obtain
somewhat higher accuracy for most of the data sets. In addition to olwageas on standard
UCI data sets, we also apply our algorithm to the recently proposed praifleearest neighbor
software support for the Clarify system (Ha et al., 2007). The baglseo€larify system lies in the
fact that modern software design promotes modularity and abstractiom sr®gram terminates
abnormally, it is often unclear which component should be responsiblapabée of providing an
error report. The system works by monitoring a set of predefinedranodeatures (the data sets
presented use function counts) during program runtime which are tleehbysa classifier in the
event of abnormal program termination. Nearest neighbor searoh@adicularly relevant to this
problem. Ideally, the neighbors returned should not only have theatatess label, but should also
represent similar program configurations or program inputs. Such &imgitan be a powerful tool
to help users diagnose the root cause of their problem. The four dataesete correspond to the
following software: Latex (the document compiler, 9 classes), Mpg32(a3 player, 4 classes),
Foxpro (a database manager, 4 classes), and Iptables (a Linukdeptieation, 5 classes).
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| DataSet | n [ d | Unsupervised LogDet Linear| HMRF-KMeans|

lonosphere| 351 | 34 0.314 0.113 0.256
Digits-389 || 317 | 16 0.226 0.175 0.286

Table 1: Unsupervise#t-means clustering error using the baseline squared Euclidean distance,
along with semi-supervised clustering error with 50 constraints.

Our experiments on the Clarify system, like the UCI data, are over fairly ionedsional data.
Ha et al. (2007) showed that high classification accuracy can be obhtaynesing a relatively small
subset of available features. Thus, for each data set, we use ardtamfdamation gain feature
selection test to obtain a reduced feature set of size 20. From this, wenhedirics fork-NN clas-
sification using the methods developed in this paper. Results are given i Hidn). The LogDet
Linear algorithm yields significant gains for the Latex benchmark. Notefthradata sets where
Euclidean distance performs better than the inverse covariance metrigdbBet Linear algorithm
that normalizes to the standard Euclidean distance yields higher accusaacthtt regularized to
inverse covariance (LogDet-Inverse Covariance). In genenathéoMpg321, Foxpro, and Iptables
data sets, learned metrics yield only marginal gains over the baseline Endlidéance measure.

Figure 1(c) shows the error rate for the Latex data sets with a varying eofitbeatures (the
feature sets are again chosen using the information gain criteria). Wesethht LogDet Linear
is surprisingly robust. Euclidean distance, MCML, and LMNN all achiewgrthest error rates for
five dimensions. LogDet Linear, however, attains its lowest error ratesoditd = 20 dimensions.

We also briefly present some semi-supervised clustering results for tie ¢JC| data sets.
Note that both MCML and LMNN are not amenable to optimization subject to pairdistance
constraints. Instead, we compare our method to the semi-supervisediotusigorithm HMRF-
KMeans (Basu et al., 2004). We use a standard 2-fold cross validgipwoach for evaluating semi-
supervised clustering results. Distances are constrained to be either sindlasimilar, based on
class values, and are drawn only from the training set. The entire datateen clustered inta
clusters using--means (where is the number of classes) and error is computed using only the test
set. Table 1 provides results for the basekrmeans error, as well as semi-supervised clustering
results with 50 constraints.

6.2 Metric Learning for Text Classification

Next we present results in the text domain. Our text data sets are creatdnard bag-of-
words Tf-Idf representations. Words are stemmed using a standaet Bmmmer and common
stop words are removed, and the text models are limited to the 5,000 words wignghst docu-
ment frequency counts. We provide experiments for two data sets: CME2@groups Data Set
(2008), and Classic3 Data Set (2008). Classic3 is a relatively small 8 mtablem with 3,891 in-
stances. The newsgroup data set is much larger, having 20 diffémesés from various newsgroup
categories and 20,000 instances.

Our text experiments employ a linear kernel, and we use a set of basiss/#etois constructed
from the class labels via the following procedure. tdie the number of distinct classes and let
k be the size of the desired basis.kl ¢, then each class meanis computed to form the basis
R=[ri...7¢]. If K< ca similar process is used but restricted to a randomly selected subset of
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(a) Classic3 (b) 20-Newsgroups (c)USPS Digits (d)USPS Digits

Figure 2: (@), (b): Classification accuracy for our Mahalanobis metrics learned over badi§
ferent dimensionality. Overall, our method (LogDet Linear) significantlypecforms
existing methods(c): Two-dimensional embedding of 2000 USPS digits obtained using
our method Trace-SSIKDR for a training set of just 100 USPS digits. Neattevik use
theinductive setting here and the embedding is color coded according to the underlying
digit. (d): Embedding of the USPS digits data set obtained using kernel-PCA.

k classes. Ik > c, instances within each class are clustered into approximételysters. Each

cluster’'s mean vector is then computed to form the set of low-rank badisrs&: Figure 2 shows

classification accuracy across bases of varying sizes for the Claisdr3et, along with the news-
group data set. As baseline measures, the standard squared Eudist@areds shown, along with
Latent Semantic Analysis (LSA) (Deerwester et al., 1990), which woyksrbjecting the data via

principal components analysis (PCA), and computing distances in this fojspgace. Comparing
our algorithm to the baseline Euclidean measure, we can see that for smaakast, the accuracy of
our algorithm is similar to the Euclidean measure. As the size of the basis iesreas method

obtains significantly higher accuracy compared to the baseline Euclideauraea

6.3 Kernel Learning for Visual Object Recognition

Next we evaluate our method over high-dimensional data applied to the obgagnition task
using Caltech-101 Data Set (2004), a common benchmark for this taskgolthés to predict the
category of the object in the given image usingiN classifier.

We compute distances between images using learning kernels with threentiffase image
kernels: 1) PMK: Grauman and Darrell’s pyramid match kernel (GraumdrDarrell, 2007) ap-
plied to SIFT features, 2) CORR: the kernel designed by Zhang etQd6{2applied to geometric
blur features , and 3) SUM: the average of four image kernels, namdly, (&rauman and Dar-
rell, 2007), Spatial PMK (Lazebnik et al., 2006), and two kernels obtkieegeometric blur (Berg
and Malik, 2001). Note that the underlying dimensionality of these embeddingpically in the
millions of dimensions.

We evaluate the effectiveness of metric/kernel learning on this data sgis®ek-NN classifi-
cation task, and evaluate both the original (SUM, PMK or CORR) and lddmmmels. We sek=1
for our experiments; this value was chosen arbitrarily. We vary the nuoflisaining example§
per class for the database, using the remainder as test examples, anderaeasracy in terms of
the mean recognition rate per class, as is standard practice for this data set.

Figure 3 (a) shows our results relative to several other existing techaigaehave been applied
to this data set. Our approach outperforms all existing single-kernelfdassethods when using
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Figure 3: Results on Caltech-101. LogDet+SUM refers to our learnettkeshen the base kernel
is the average of four kernels (PMK, SPMK, Geoblur-1, Geoblut-@yDet+PMK refers
to the learned kernel when the base kernel is pyramid match kernel, gizkl-eCORR
refers to the learned kernel when the base kernel is correspakene| of Zhang et al.
(2006).(a): Comparison of LogDet based metric learning method with other state-of-the-
art object recognition methods. Our method outperforms all other single fketrnel
approaches.(b): Our learned kernels significantly improve NN recognition accuracy
relative to their non-learned counterparts, the SUM (average of femeks), the CORR
and PMK kernels.

lur)

the learned CORR kernel: we achieve 61.0% accuracy ferl5 and 69.6% accuracy far = 30.
Our learned PMK achieves 52.2% accuracyTor 15 and 62.1% accuracy fdr= 30. Similarly,
our learned SUM kernel achieves.7% accuracy foll = 15. Figure 3 (b) specifically shows the
comparison of the original baseline kernels for NN classification. Therpl@als gains in 1-NN
classification accuracy; notably, our learned kernels with simple NN cleet$ifin also outperform
the baseline kernels when used with SVMs (Zhang et al., 2006; Graurdddaarell, 2007).

6.4 USPS Digits

Finally, we qualitatively evaluate our dimensionality reduction method (see &egi#) on the
USPS digits data set. Here, we train our method using 100 examples to learmpagntptwo
dimensions, that is, a rank-2 mathkiX. For the baseline kernel, we use the data-dependent kernel
function proposed by Sindhwani et al. (2005) that also accountsdan#nifold structure of the data
within the kernel function. We then embed 2000 (unseen) test examples mttirtvensions using

our learned low-rank transformation. Figure 2 (c) shows the embedditained by our Trace-
SSIKDR method, while Figure 2 (d) shows the embedding obtained by thelke@A algorithm.
Each point is color coded according to the underlying digit. Note that ouradesable to separate
out seven of the digits reasonably well, while kernel-PCA is able to sepawatenly three of the
digits.
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7. Conclusions

In this paper, we considered the general problem of learning a lineasfdranation of the input data
and applied it to the problems of metric and kernel learning, with a focustablehing connec-
tions between the two problems. We showed that the LogDet divergencsédid loss for learning
a linear transformation over very high-dimensional data, as the algorithreasily be generalized
to work in kernel space, and proposed an algorithm based on Bregimactmns to learn a kernel
function over the data points efficiently under this loss. We also showeduh#&tarned metric can
be restricted to a small dimensional basis efficiently, thereby permitting scaladjilityr method
to large data sets with high-dimensional feature spaces. Then we ceausider to generalize this
result to a larger class of convex loss functions for learning the metn@kasing a linear transfor-
mation of the data. We proved that many loss functions can lead to efficierd kenctionlearning,
though the resulting optimizations may be more expensive to solve than the siragl@etformu-
lation. A key consequence of our analysis is that a number of existingagipes for Mahalanobis
metric learning may be applied in kernel space using our kernel learningifation. Finally, we
presented several experiments on benchmark data, high-dimensidoa] gisd text classification
problems as well as a semi-supervised kernel dimensionality reductioleprotbemonstrating our
method compared to several existing state-of-the-art techniques.

There are several potential directions for future work. To facilitatendéagger data sets than
the ones considered in this paper, online learning methods are one proneisgagch direction;
in Jain et al. (2008), an online learning algorithm was proposed bas¢ogidet regularization,
and this remains a part of our ongoing efforts. Recently, there hasdosea interest in learning
multiple local metrics over the data; Weinberger and Saul (2008) conditlésgproblem. We plan
to explore this setting with the LogDet divergence, with a focus on scalabilitgriplarge data sets.
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