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Abstract

Metric and kernel learning arise in several machine learning applications. However, most existing
metric learning algorithms are limited to learning metricsover low-dimensional data, while existing
kernel learning algorithms are often limited to the transductive setting and do not generalize to new
data points. In this paper, we study the connections betweenmetric learning and kernel learning that
arise when studying metric learning as a linear transformation learning problem. In particular, we
propose a general optimization framework for learning metrics via linear transformations, and an-
alyze in detail a special case of our framework—that of minimizing the LogDet divergence subject
to linear constraints. We then propose a general regularized framework for learning a kernel matrix,
and show it to beequivalentto our metric learning framework. Our theoretical connections between
metric and kernel learning have two main consequences: 1) the learned kernel matrix parameterizes
a linear transformation kernelfunctionand can be applied inductively to new data points, 2) our
result yields a constructive method for kernelizing most existing Mahalanobis metric learning for-
mulations. We demonstrate our learning approach by applying it to large-scale real world problems
in computer vision, text mining and semi-supervised kerneldimensionality reduction.

Keywords: metric learning, kernel learning, linear transformation,matrix divergences, logdet
divergence

1. Introduction

One of the basic requirements of many machine learning algorithms (e.g., semi-supervised cluster-
ing algorithms, nearest neighbor classification algorithms) is the ability to compare two objects to
compute a similarity or distance between them. In many cases, off-the-shelf distance or similarity
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functions such as the Euclidean distance or cosine similarity are used; for example, in text retrieval
applications, the cosine similarity is a standard function to compare two text documents. However,
such standard distance or similarity functions are not appropriate for all problems.

Recently, there has been significant effort focused on task-specificlearning for comparing data
objects. One prominent approach has been to learn a distance metric between objects given addi-
tional side information such as pairwise similarity and dissimilarity constraints overthe data. A
class of distance metrics that has shown excellent generalization properties is the learnedMaha-
lanobis distancefunction (Davis et al., 2007; Xing et al., 2002; Weinberger et al., 2005; Goldberger
et al., 2004; Shalev-Shwartz et al., 2004). The Mahalanobis distance can be viewed as a method
in which data is subject to alinear transformation, and the goal of such metric learning methods
is to learn the linear transformation for a given task. Despite their simplicity and generalization
ability, Mahalanobis distances suffer from two major drawbacks: 1) the number of parameters to
learn grows quadratically with the dimensionality of the data, making it difficult to learn distance
functions over high-dimensional data, 2) learning a linear transformation isinadequate for data sets
with non-linear decision boundaries.

To address the latter shortcoming,kernel learningalgorithms typically attempt to learn a ker-
nel matrix over the data. Limitations of linear methods can be overcome by employing a non-linear
input kernel, which implicitly maps the data non-linearly to a high-dimensional feature space. How-
ever, many existing kernel learning methods are still limited in that the learned kernels do not gener-
alize to new points (Kwok and Tsang, 2003; Kulis et al., 2006; Tsuda et al.,2005). These methods
are therefore restricted to learning in the transductive setting where all thedata (labeled and unla-
beled) is assumed to be given upfront. There has been some work on learning kernels that generalize
to new points, most notably work on hyperkernels (Ong et al., 2005), butthe resulting optimization
problems are expensive and cannot be scaled to large or even medium-sized data sets. Another ap-
proach is multiple kernel learning (Lanckriet et al., 2004), which learns amixture of base kernels;
this approach is inductive but the class of learnable kernels can be restrictive.

In this paper, we explore metric learning with linear transformations over arbitrarily high-
dimensional spaces; as we will see, this is equivalent to learning alinear transformation kernel
functionφ(x)TWφ(y) given an input kernel functionφ(x)Tφ(y). In the first part of the paper, we
formulate a metric learning problem that uses a particular loss function called the LogDet diver-
gence, for learning the positive definite matrixW. This loss function is advantageous for several
reasons: it is defined only over positive definite matrices, which makes the optimization simpler, as
we will be able to effectively ignore the positive definiteness constraint onW. Furthermore, the loss
function has precedence in optimization (Fletcher, 1991) and statistics (James and Stein, 1961).
An important advantage of our method is that the proposed optimization algorithmis scalable to
very large data sets of the order of millions of data objects. But perhaps most importantly, the
loss function permits efficient kernelization, allowing efficient learning of alinear transformation in
kernel space. As a result, unlike transductive kernel learning methods, our method easily handles
out-of-sample extensions, that is, it can be applied to unseen data.

We build upon our results of kernelization for the LogDet formulation to develop a general
framework for learning linear transformation kernel functions and showthat such kernels can be
efficiently learned over a wide class of convex constraints and loss functions. Our result can be
viewed as a representer theorem, where the optimal parameters can be expressed purely in terms
of the training data. In our case, even though the matrixW may be infinite-dimensional, it can be
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fully represented in terms of the constrained data points, making it possible to compute the learned
kernel function over arbitrary points.

We demonstrate the benefits of a generalized framework for inductive kernel learning by apply-
ing our techniques to the problem of inductive kernelized semi-superviseddimensionality reduction.
By choosing the trace-norm as a loss function, we obtain a novel kernellearning method that learns
low-rank linear transformations; unlike previous kernel dimensionality methods, whichare either
unsupervised or cannot easily be applied inductively to new data, our method intrinsically possesses
both desirable properties.

Finally, we apply our metric and kernel learning algorithms to a number of challenging learning
problems, including ones from the domains of computer vision and text mining. Unlike exist-
ing techniques, we can learn linear transformation-based distance or kernel functions over these
domains, and we show that the resulting functions lead to improvements over state-of-the-art tech-
niques for a variety of problems.

2. Related Work

Most of the existing work in metric learning has been done in the Mahalanobis distance (or metric)
learning paradigm, which has been found to be a sufficiently powerful class of metrics for a variety
of data. In one of the earliest papers on metric learning, Xing et al. (2002) propose a semidefinite
programming formulation under similarity and dissimilarity constraints for learning aMahalanobis
distance, but the resulting formulation is slow to optimize and has been outperformed by more
recent methods. Weinberger et al. (2005) formulate the metric learning problem in a large margin
setting, with a focus onk-NN classification. They also formulate the problem as a semidefinite
programming problem and consequently solve it using a method that combines sub-gradient descent
and alternating projections. Goldberger et al. (2004) proceed to learn alinear transformation in the
fully supervised setting. Their formulation seeks to ‘collapse classes’ by constraining within-class
distances to be zero while maximizing between-class distances. While each of these algorithms was
shown to yield improved classification performance over the baseline metrics,their constraints do
not generalize outside of their particular problem domains; in contrast, ourapproach allows arbitrary
linear constraints on the Mahalanobis matrix. Furthermore, these algorithms allrequire eigenvalue
decompositions or semi-definite programming, which is at least cubic in the dimensionality of the
data.

Other notable works for learning Mahalanobis metrics include Pseudo-metricOnline Learning
Algorithm (POLA) (Shalev-Shwartz et al., 2004), Relevant Components Analysis (RCA) (Schultz
and Joachims, 2003), Neighborhood Components Analysis (NCA) (Goldberger et al., 2004), and
locally-adaptive discriminative methods (Hastie and Tibshirani, 1996). In particular, Shalev-Shwartz
et al. (2004) provided the first demonstration of Mahalanobis distance learning in kernel space.
Their construction, however, is expensive to compute, requiring cubic timeper iteration to update
the parameters. As we will see, our LogDet-based algorithm can be implemented more efficiently.

Non-linear transformation based metric learning methods have also been proposed, though these
methods usually suffer from suboptimal performance, non-convexity, or computational complexity.
Examples include the convolutional neural net based method of Chopra etal. (2005); and a general
Riemannian metric learning method (Lebanon, 2006).

Most of the existing work on kernel learning can be classified into two broad categories. The first
category includes parametric approaches, where the learned kernel function is restricted to be of a
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specific form and then the relevant parameters are learned according tothe provided data. Prominent
methods include multiple kernel learning (Lanckriet et al., 2004), hyperkernels (Ong et al., 2005),
and hyper-parameter cross-validation (Seeger, 2006). Most of these methods either lack modeling
flexibility, require non-convex optimization, or are restricted to a supervised learning scenario. The
second category includes non-parametric methods, which explicitly model geometric structure in the
data. Examples include spectral kernel learning (Zhu et al., 2005), manifold-based kernel learning
(Bengio et al., 2004), and kernel target alignment (Cristianini et al., 2001). However, most of these
approaches are limited to the transductive setting and cannot be used to naturally generalize to
new points. In comparison, our kernel learning method combines both of theabove approaches.
We propose a general non-parametric kernelmatrix learning framework, similar to methods of the
second category. However, based on our choice of regularization and constraints, we show that our
learned kernel matrix corresponds to a linear transformation kernel function parameterized by a PSD
matrix. As a result, our method can be applied to inductive settings without sacrificing significant
modeling power. In addition, our kernel learning method naturally provideskernelization for many
existing metric learning methods. Recently, Chatpatanasiri et al. (2010) showed kernelization for
a class of metric learning algorithms including LMNN and NCA; as we will see, our result is
more general and we can prove kernelization over a larger class of problems and can also reduce
the number of parameters to be learned. Furthermore, our methods can be applied to a variety of
domains and with a variety of forms of side-information. Independent of our work, Argyriou et al.
(2010) recently proved a representer type of theorem for spectral regularization functions. However,
the framework they consider is different than ours in that they are interested in sensing an underlying
high-dimensional matrix using given measurements.

The research in this paper combines and extends work done in Davis et al.(2007), Kulis et al.
(2006), Davis and Dhillon (2008), and Jain et al. (2010). The focus inDavis et al. (2007) and Davis
and Dhillon (2008) was solely on the LogDet divergence, while the main goal in Kulis et al. (2006)
was to demonstrate the computational benefits of using the LogDet and von Neumann divergences
for learning low-rank kernel matrices. In Jain et al. (2010), we showed the equivalence between
a general class of kernel learning problems and metric learning problems.In this paper, we unify
and summarize the work in the existing conference papers and also providedetailed proofs of the
theorems in Jain et al. (2010).

3. LogDet Divergence Based Metric Learning

We begin by studying a particular method, based on the LogDet divergence, for learning metrics
via learning linear transformations given pairwise distance constraints. Wediscuss kernelization of
this formulation and present efficient optimization algorithms. Finally, we address limitations of the
method when the amount of training data is large, and propose a modified algorithm to efficiently
learn a kernel under such circumstances. In subsequent sections, we will take the ingredients devel-
oped in this section and show how to generalize them to adapt to a much larger class of loss functions
and constraints, which will encompass most of the previously-studied approaches for Mahalanobis
metric learning.

3.1 Mahalanobis Distances and Parameterized Kernels

First we introduce the framework for metric and kernel learning that is employed in this paper.
Given a data set of objectsX = [x1, . . . ,xn],xi ∈ R

d0 (when working in kernel space, the data
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matrix will be represented asΦ = [φ(x1), ...,φ(xn)], whereφ is the mapping to feature space, that
is, φ : Rd0 → R

d), we are interested in finding an appropriate distance function to compare two
objects. We consider the Mahalanobis distance, parameterized by a positive definite matrixW; the
squared distance betweenxi andx j is given by

dW(xi ,x j) = (xi−x j)
TW(xi−x j). (1)

This distance function can be viewed as learning a linear transformation of the data and measuring
the squared Euclidean distance in the transformed space. This is seen by factorizing the matrix
W = GTG and observing thatdW(xi ,x j) = ‖Gxi −Gx j‖

2
2. However, if the data is not linearly

separable in the input space, then the resulting distance function may not bepowerful enough for
the desired application. As a result, we are interested in working in kernel space; that is, we will
express the Mahalanobis distance in kernel space using an appropriatemappingφ from input to
feature space:

dW(φ(xi),φ(x j)) = (φ(xi)−φ(x j))
TW(φ(xi)−φ(x j)).

Note that when we chooseφ to be the identity, we obtain (1); we will use the more general form
throughout this paper. As is standard with kernel-based algorithms, we require that this distance
be computable given the ability to compute the kernel functionκ0(x,y) = φ(x)Tφ(y). We can
therefore equivalently pose the problem as learning a parameterized kernel function κ(x,y) =
φ(x)TWφ(y) given some input kernel functionκ0(x,y) = φ(x)Tφ(y).

To learn the resulting metric/kernel, we assume that we are given constraintson the desired
distance function. In this paper, we assume that pairwise similarity and dissimilarity constraints are
given over the data—that is, pairs of points that should be similar under the learned metric/kernel,
and pairs of points that should be dissimilar under the learned metric/kernel. Such constraints
are natural in many settings; for example, given class labels over the data,points in the same class
should be similar to one another and dissimilar to points in different classes. However, our approach
is general and can accommodate other potential constraints over the distance function, such as
relative distance constraints.

The main challenge is in finding an appropriate loss function for learning the matrix W so that 1)
the resulting algorithm is scalable and efficiently computable in kernel space,2) the resulting met-
ric/kernel yields improved performance on the underlying learning problem, such as classification,
semi-supervised clustering etc. We now move on to the details.

3.2 LogDet Metric Learning

The LogDet divergence between two positive definite matrices1 W, W0 ∈ R
d×d is defined to be

Dℓd(W,W0) = tr(WW−1
0 )− logdet(WW−1

0 )−d.

We are interested in findingW that is closest toW0 as measured by the LogDet divergence but that
satisfies our desired constraints. WhenW0 = I , we can interpret the learning problem as a maximum
entropy problem. Given a set of similarity constraintsS and dissimilarity constraintsD, we propose

1. The definition of LogDet divergence can be extended to the case when W0 andW are rank deficient by appropriate
use of the pseudo-inverse. The interested reader may refer to Kulis etal. (2008).
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the following problem:

min
W�0

Dℓd(W, I), s.t. dW(φ(xi),φ(x j))≤ u, (i, j) ∈ S ,

dW(φ(xi),φ(x j))≥ ℓ, (i, j) ∈D. (2)

We make a few remarks about this formulation. The above problem was proposed and studied
in Davis et al. (2007). LogDet has many important properties that make it useful for machine
learning and optimization, including scale-invariance and preservation of the range space; see Kulis
et al. (2008) for a detailed discussion on the properties of LogDet. Beyond this, we prefer LogDet
over other loss functions (including the squared Frobenius loss as usedin Shalev-Shwartz et al.,
2004 or a linear objective as in Weinberger et al., 2005) due to the fact that the resulting algorithm
turns out to be simple and efficiently kernelizable, as we will see. We note thatformulation (2)
minimizes the LogDet divergence to the identity matrixI . This can easily be generalized to arbitrary
positive definite matricesW0. Further, (2) considers simple similarity and dissimilarity constraints
over the learned Mahalanobis distance, but other linear constraints are possible. Finally, the above
formulation assumes that there exists a feasible solution to the proposed optimization problem;
extensions to the infeasible case involving slack variables are discussed later (see Section 3.5).

3.3 Kernelizing the LogDet Metric Learning Problem

We now consider the problem of kernelizing the metric learning problem. Subsequently, we will
present an efficient algorithm and discuss generalization to new points.

Given a set ofn constrained data points, letK0 denote the input kernel matrix for the data, that
is, K0(i, j) = κ0(xi ,x j) = φ(xi)

Tφ(x j). Note that the squared Euclidean distance in kernel space
may be written asK(i, i)+K( j, j)− 2K(i, j), whereK is the learned kernel matrix; equivalently,
we may write the distance as tr(K(ei −e j)(ei −e j)

T), whereei is the i-th canonical basis vector.
Consider the following problem to findK:

min
K�0

Dℓd(K,K0), s.t. tr(K(ei−e j)(ei−e j)
T)≤ u, (i, j) ∈ S ,

tr(K(ei−e j)(ei−e j)
T)≥ ℓ, (i, j) ∈D. (3)

This kernel learning problem was first proposed in the transductive setting in Kulis et al. (2008),
though no extensions to the inductive case were considered. Note that problem (2) optimizes over a
d×d matrixW, while the kernel learning problem (3) optimizes over ann×n matrix K. We now
present our key theorem connecting (2) and (3).

Theorem 1 Let K0 ≻ 0. Let W∗ be the optimal solution to problem(2) and let K∗ be the optimal
solution to problem(3). Then the optimal solutions are related by the following:

K∗ = ΦTW∗Φ, W∗ = I +ΦSΦT ,

where S= K−1
0 (K∗−K0)K

−1
0 , K0 = ΦTΦ, Φ = [φ(x1),φ(x2), . . . ,φ(xn)] .

The above theorem shows that the LogDet metric learning problem (2) canbe solved implicitly by
solving an equivalent kernel learning problem (3). In fact, in Section 4we show an equivalence be-
tween metric and kernel learning for a general class of regularization functions. The above theorem
follows as a corollary to our general theorem (see Theorem 4), which will be proven later.
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Next, we generalize the above theorem to regularize against arbitrary positive definite matrices
W0.

Corollary 2 Consider the following problem:

min
W�0

Dℓd(W,W0), s.t. dW(φ(xi),φ(x j))≤ u, (i, j) ∈ S ,

dW(φ(xi),φ(x j))≥ ℓ, (i, j) ∈D. (4)

Let W∗ be the optimal solution to problem(4) and let K∗ be the optimal solution to problem(3).
Then the optimal solutions are related by the following:

K∗ = ΦTW∗Φ, W∗ =W0+W0ΦSΦTW0,

where S= K−1
0 (K∗−K0)K

−1
0 , K0 = ΦTW0Φ, Φ = [φ(x1),φ(x2), . . . ,φ(xn)] .

Proof Note thatDℓd(W,W0) = Dℓd(W
−1/2
0 WW−1/2

0 , I). Let W̃ = W−1/2
0 WW−1/2

0 . Problem (4) is
now equivalent to:

min
W̃�0

Dℓd(W̃, I), s.t. dW̃(φ̃(xi), φ̃(x j))≤ u (i, j) ∈ S ,

dW̃(φ̃(xi), φ̃(x j))≥ ℓ (i, j) ∈D,
(5)

whereW̃ = W−1/2
0 WW−1/2

0 , Φ̃ = W1/2
0 Φ and Φ̃ = [φ̃(x1), φ̃(x2), . . . , φ̃(xn)]. Now using Theo-

rem 1, the optimal solutioñW∗ of problem (5) is related to the optimalK∗ of problem (3) by
K∗ = Φ̃TW̃∗Φ̃ = ΦTW1/2

0 W−1/2
0 W∗W−1/2

0 W1/2
0 Φ = ΦTW∗Φ. Similarly, W∗ = W1/2

0 W̃∗W1/2
0 =

W0+W0ΦSΦTW0 whereS= K−1
0 (K∗−K0)K

−1
0 .

Since the kernelized version of LogDet metric learning is also a linearly constrained optimization
problem with a LogDet objective, similar algorithms can be used to solve either problem. This
equivalence implies that we canimplicitly solve the metric learning problem by instead solving for
the optimal kernel matrixK∗. Note that using LogDet divergence as objective function has two sig-
nificant benefits over many other popular loss functions: 1) the metric and kernel learning problems
(2), (3) are both equivalent and therefore solving the kernel learning formulation directly provides
an out of sample extension (see Section 3.4 for details), 2) projection with respect to the LogDet
divergence onto a single distance constraint has a closed-form solution, thus making it amenable to
an efficient cyclic projection algorithm (refer to Section 3.5).

3.4 Generalizing to New Points

In this section, we see how to generalize to new points using the learned kernel matrixK∗.
Suppose that we have solved the kernel learning problem forK∗ (from now on, we will drop

the ∗ superscript and assume thatK andW are at optimality). The distance between two points
φ(xi) andφ(x j) that are in the training set can be computed directly from the learned kernelmatrix
as K(i, i) +K( j, j)− 2K(i, j). We now consider the problem of computing the learned distance
between two pointsφ(z1) andφ(z2) that may not be in the training set.

525



JAIN , KULIS, DAVIS AND DHILLON

In Theorem 1, we showed that the optimal solution to the metric learning problemcan be ex-
pressed asW = I +ΦSΦT . To compute the Mahalanobis distance in kernel space, we see that the
inner productφ(z1)

TWφ(z2) can be computed entirely via inner products between points:

φ(z1)
TWφ(z2) = φ(z1)

T(I +ΦSΦT)φ(z2) = φ(z1)
Tφ(z2)+φ(z1)

TΦSΦTφ(z2),

= κ0(z1,z2)+kT
1 Sk2,whereki = [κ0(zi ,x1), ...,κ0(zi ,xn)]

T . (6)

Thus, the expression above can be used to evaluate kernelized distances with respect to the learned
kernel function between arbitrary data objects.

In summary, the connection between kernel learning and metric learning allows us to generalize
our metrics to new points in kernel space. This is performed by first solvingthe kernel learning
problem forK, then using the learned kernel matrix and the input kernel function to compute learned
distances using (6).

3.5 Kernel Learning Algorithm

Given the connection between the Mahalanobis metric learning problem for thed×d matrixW and
the kernel learning problem for then×n kernel matrixK, we develop an algorithm for efficiently
performing metric learning in kernel space. Specifically, we provide an algorithm (see Algorithm 1)
for solving the kernelized LogDet metric learning problem (3).

First, to avoid problems with infeasibility, we incorporateslack variablesinto our formulation.
These provide a tradeoff between minimizing the divergence betweenK andK0 and satisfying the
constraints. Note that our earlier results (see Theorem 1) easily generalize to the slack case:

min
K,ξ

Dℓd(K,K0)+ γ ·Dℓd(diag(ξ),diag(ξ0))

s.t. tr(K(ei−e j)(ei−e j)
T)≤ ξi j (i, j) ∈ S ,

tr(K(ei−e j)(ei−e j)
T)≥ ξi j (i, j) ∈D.

(7)

The parameterγ above controls the tradeoff between satisfying the constraints and minimizing
Dℓd(K,K0), and the entries ofξ0 are set to beu for corresponding similarity constraints andℓ for
dissimilarity constraints.

To solve problem (7), we employ the technique ofBregman projections, as discussed in the
transductive setting (Kulis et al., 2008). At each iteration, we choose a constraint(i, j) from S orD.
We then apply a Bregman projection such thatK satisfies the constraint after projection; note that
the projection is not an orthogonal projection but is rather tailored to the particular function that we
are optimizing. Algorithm 1 details the steps for Bregman’s method on this optimizationproblem.
Each update is a rank-one update

K← K+βK(ei−e j)(ei−e j)
TK,

whereβ is a projection parameter that can be computed in closed form (see Algorithm 1).
Algorithm 1 has a number of key properties which make it useful for various kernel learning

tasks. First, the Bregman projections can be computed in closed form, assuring that the projection
updates are efficient (O(n2)). Note that, if the feature space dimensionalityd is less thann then
a similar algorithm can be used directly in the feature space (see Davis et al., 2007). Instead of
LogDet, if we use the von Neumann divergence, another potential loss function for this problem,
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Algorithm 1 Metric/Kernel Learning with the LogDet Divergence
Input: K0: inputn×n kernel matrix,S : set of similar pairs,D: set of dissimilar pairs,u, ℓ: distance

thresholds,γ: slack parameter
Output: K: output kernel matrix

1. K← K0, λi j ← 0 ∀ i j
2. ξi j ← u for (i, j) ∈ S ; otherwiseξi j ← ℓ
3. repeat

3.1. Pick a constraint(i, j) ∈ S orD
3.2. p← (ei−e j)

TK(ei−e j)

3.3. δ← 1 if (i, j) ∈ S ,−1 otherwise

3.4. α←min
(

λi j ,
δγ

γ+1

(
1
p−

1
ξi j

))

3.5. β← δα/(1−δαp)
3.6. ξi j ← γξi j /(γ+δαξi j )

3.7. λi j ← λi j −α
3.8. K← K+βK(ei−e j)(ei−e j)

TK
4. until convergence

return K

O(n2) updates are possible, but are much more complicated and require use of thefast multipole
method, which cannot be employed easily in practice. Secondly, the projections maintain positive
definiteness, which avoids any eigenvector computation or semidefinite programming. This is in
stark contrast with the Frobenius loss, which requires additional computation to maintain positive
definiteness, leading toO(n3) updates.

3.6 Metric/Kernel Learning with Large Data Sets

In Sections 3.1 and 3.3, we proposed a LogDet divergence-based Mahalanobis metric learning prob-
lem (2) and an equivalent kernel learning problem (3). The number ofparameters involved in these
problems isO(min(n,d)2), wheren is the number of training points andd is the dimensionality
of the data. The quadratic dependence affects not only the running time for training and testing,
but also requires estimating a large number of parameters. For example, a data set with 10,000
dimensions leads to a Mahalanobis matrix with 100 million entries. This represents afundamental
limitation of existing approaches, as many modern data mining problems possess relatively high
dimensionality.

In this section, we present a heuristic for learning structured Mahalanobis distance (kernel) func-
tions that scale linearly with the dimensionality (or training set size). Instead ofrepresenting the
Mahalanobis distance/kernel matrix as a fulld×d (or n×n) matrix withO(min(n,d)2) parameters,
our methods use compressed representations, admitting matrices parameterized by O(min(n,d))
values. This enables the Mahalanobis distance/kernel function to be learned, stored, and evaluated
efficiently in the context of high dimensionality and large training set size. In particular, we pro-
pose a method to efficiently learn an identity plus low-rank Mahalanobis distance matrix and its
equivalent kernel function.

Now, we formulate this approach, which we call the high-dimensional identity plus low-rank
(IPLR) metric learning problem. Consider a low-dimensional subspace inR

d and let the columns
of U form an orthogonal basis of this subspace. We will constrain the learnedMahalanobis distance
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matrix to be of the form:
W = Id +Wl = Id +ULUT ,

whereId is thed× d identity matrix,Wl denotes the low-rank part ofW andL ∈ S
k×k
+ with k≪

min(n,d). Analogous to (2), we propose the following problem to learn an identity pluslow-rank
Mahalanobis distance function:

min
W,L�0

Dℓd(W, Id) s.t. dW(φ(xi),φ(x j))≤ u (i, j) ∈ S ,

dW(φ(xi),φ(x j))≥ ℓ (i, j) ∈D, W = Id +ULUT . (8)

Note that the above problem is identical to (2) except for the added constraintW = Id+ULUT . Let
F = Ik+L. Now we have

Dℓd(W, Id) = tr(Id +ULUT)− logdet(Id +ULUT)−d,

= tr(Ik+L)+d−k− logdet(Ik+L)−d = Dℓd(F, I
k), (9)

where the second equality follows from the fact that tr(AB) = tr(BA) and Sylvester’s determinant
lemma. Also note that for allC∈ R

n×n,

tr(WΦCΦT) = tr((Id +ULUT)ΦCΦT) = tr(ΦCΦT)+ tr(LUTΦCΦTU),

= tr(ΦCΦT)− tr(Φ′CΦ′T)+ tr(FΦ′CΦ′T),

whereΦ′ =UTΦ is the reduced-dimensional representation ofΦ. Therefore,

dW(φ(xi),φ(x j)) = tr(WΦ(ei−e j)(ei−e j)
TΦT) (10)

= dI (φ(xi),φ(x j))−dI (φ′(xi),φ′(x j))+dF(φ′(xi),φ′(x j)).

Using (9) and (10), problem (8) is equivalent to the following:

min
F�0

Dℓd(F, I
k),

s.t. dF(φ′(xi),φ′(x j))≤ u−dI (φ(xi),φ(x j))+dI (φ′(xi),φ′(x j)), (i, j) ∈ S ,

dF(φ′(xi),φ′(x j))≥ ℓ−dI (φ(xi),φ(x j))+dI (φ′(xi),φ′(x j)), (i, j) ∈D. (11)

Note that the above formulation is an instance of problem (2) and can be solved using an algorithm
similar to Algorithm 1. Furthermore, the above problem solves for ak×k matrix rather than ad×d
matrix seemingly required by (8). The optimalW∗ is obtained asW∗ = Id +U(F∗− Ik)UT .

Next, we show that problem (11) and equivalently (8) can be solved efficiently in feature space
by selecting an appropriate basisR (U = R(RTR)−1/2). Let R= ΦJ, whereJ∈Rn×k. Note thatU =
ΦJ(JTK0J)−1/2 andΦ′ =UTΦ = (JTK0J)−1/2JTK0, that is,Φ′ ∈Rk×n can be computed efficiently
in the feature space (requiring inversion of only ak×k matrix). Hence, problem (11) can be solved
efficiently in feature space using Algorithm 1, and the optimal kernelK∗ is given by

K∗ = ΦTW∗Φ = K0+K0J(JTK0J)−1/2(F∗− Ik)(JTK0J)−1/2JTK0.

Note that (11) can be solved via Algorithm 1 usingO(k2) computational steps per iteration.
Additionally,O(min(n,d)k) steps are required to prepare the data. Also, the optimal solutionW∗ (or
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K∗) can be stored implicitly usingO(min(n,d)k) memory and similarly, the Mahalanobis distance
between any two points can be computed inO(min(n,d)k) time.

The metric learning problem presented here depends critically on the basis selected. For the case
whend is not significantly larger thann and feature space vectorsΦ are available explicitly, the basis
R can be selected by using one of the following heuristics (see Section 5, Davis and Dhillon, 2008
for more details):

• Using the topk singular vectors ofΦ.

• Clustering the columns ofΦ and using the mean vectors as the basisR.

• For the fully-supervised case, if the number of classes (c) is greater than the required dimen-
sionality (k) then cluster the class-mean vectors intok clusters and use the obtained cluster
centers for forming the basisR. If c< k then cluster each class intok/c clusters and use the
cluster centers to formR.

For learning the kernel function, the basisR= ΦJ can be selected by: 1) using a randomly sampled
coefficient matrixJ, 2) clusteringΦ using kernelk-means or a spectral clustering method, 3) choos-
ing a random subset ofΦ, that is, the columns ofJ are random indicator vectors. A more careful
selection of the basisR should further improve accuracy of our method and is left as a topic for
future research.

4. Kernel Learning with Other Convex Loss Functions

One of the key benefits of our kernel learning formulation using the LogDet divergence (3) is in
the ability to efficiently learn a linear transformation (LT) kernelfunction (a kernel of the form
φ(x)TWφ(y) for some matrixW � 0) which allows the learned kernel function to be computed
over new data points. A natural question is whether one can learn similar kernel functions with
other loss functions, such as those considered previously in the literaturefor Mahalanobis metric
learning.

In this section, we propose and analyze a general kernel matrix learningproblem similar to
(3) but using a more general class of loss functions. As in the LogDet loss function case, we
show that our kernel matrix learning problem is equivalent to learning a linear transformation (LT)
kernelfunctionwith a specific loss function. This implies that the learned LT kernel function can
be naturally applied to new data. Additionally, since a large class of metric learning methods can
be seen as learning a LT kernel function, our result provides a constructive method for kernelizing
these methods. Our analysis recovers some recent kernelization results for metric learning, but also
implies several new results.

4.1 A General Kernel Learning Framework

Recall thatκ0 : Rd0×R
d0 → R is the input kernel function. We assume that the data vectors inX

have been mapped viaφ, resulting inΦ = [φ(x1),φ(x2), . . . ,φ(xn)]. As before, denote the input
kernel matrix asK0 = ΦTΦ. The goal is to learn a kernel functionκ that is regularized against
κ0 but incorporates the provided side-information. As in the LogDet formulation, we will first
consider a transductive scenario, where we learn a kernel matrixK that is regularized againstK0

while satisfying the available side-information.
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Recall that the LogDet divergence based loss function in the kernel matrix learning problem (3)
is given by:

Dℓd(K,K0) = tr(KK−1
0 )− logdet(KK−1

0 )−n,

= tr(K−1/2
0 KK−1/2

0 )− logdet(K−1/2
0 KK−1/2

0 )−n.

The kernel matrix learning problem (3) can be rewritten as:

min
K�0

f (K−1/2
0 KK−1/2

0 ), s.t. tr(K(ei−e j)(ei−e j)
T)≤ u, (i, j) ∈ S,

tr(K(ei−e j)(ei−e j)
T)≥ ℓ, (i, j) ∈D,

where f (A) = tr(A)− logdet(A).
In this section, we will generalize our optimization problem to include more general loss func-

tions beyond the LogDet-based loss functionf specified above. We also generalize our constraints
to include arbitrary constraints over the kernel matrixK rather than just the pairwise distance con-
straints in the above problem. Using the above specified generalizations, theoptimization problem
that we obtain is given by:

min
K�0

f (K−1/2
0 KK−1/2

0 ), s.t. gi(K)≤ bi , 1≤ i ≤m, (12)

where f andgi are functions fromRn×n→R. We call f the loss function(or regularizer) andgi the
constraints. Note that if f and constraintsgi ’s are all convex, then the above problem can be solved
optimally (under mild conditions) using standard convex optimization algorithms (Groschel et al.,
1988). Note that our results also hold for unconstrained variants of the above problem, as well as
variants with slack variables.

In general, such formulations are limited in that the learned kernel cannot readily be applied to
new data points. However, we will show that the above proposed problemis equivalent to learning
linear transformation (LT) kernel functions. Formally, an LT kernel functionκW is a kernel function
of the formκ(x,y) = φ(x)TWφ(y), whereW is a positive semi-definite (PSD) matrix. A natural
way to learn an LT kernel function would be to learn the parameterization matrixW using the
provided side-information. To this end, we consider the following generalization of our LogDet
based learning problem (2):

min
W�0

f (W), s.t.gi(ΦTWΦ)≤ bi , 1≤ i ≤m, (13)

where, as before, the functionf is the loss function and the functionsgi are the constraints that
encode the side information. The constraintsgi are assumed to be a function of the matrixΦTWΦ
of learned kernel values over the training data. Note that most Mahalanobis metric learning methods
may be viewed as a special case of the above framework (see Section 5).Also, for data mapped
to high-dimensional spaces via kernel functions, this problem is seemingly impossible to optimize
since the size ofW grows quadratically with the dimensionality.

4.2 Analysis

We now analyze the connection between the problems (12) and (13). We willshow that the solutions
to the two problems are equivalent, that is, by optimally solving one of the problems, the solution
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to the other can be computed in closed form. Further, this result will yield insight into the type of
kernel that is learned by the kernel learning problem.

We begin by defining the class of loss functions considered in our analysis.

Definition 3 We say that f: Rn×n→ R is a spectral function if f (A) = ∑i fs(λi), whereλ1, ...,λn

are the eigenvalues of A and fs : R→ R is a real-valued scalar function. Note that if fs is a convex
scalar function, then f is also convex.

Note that the LogDet based loss function in (3) is a spectral function. Similarly, most of the existing
metric learning formulations have a spectral function as their objective function.

Now we state our main result that for a spectral functionf , problems (12) and (13) are equiva-
lent.

Theorem 4 Let K0 = ΦTΦ ≻ 0, f be a spectral function as in Definition 3 and assume that the
global minimum of the corresponding strictly convex scalar function fs is α > 0. Let W∗ be an
optimal solution to(13)and K∗ be an optimal solution to(12). Then,

W∗ = αId +ΦSΦT ,

where S= K−1
0 (K∗−αK0)K

−1
0 . Furthermore, K∗ = ΦTW∗Φ.

The first part of the theorem demonstrates that, given an optimal solutionK∗ to (12), one can con-
struct the corresponding solutionW∗ to (13), while the second part shows the reverse. Note the
similarities between this theorem and the earlier Theorem 1. We provide the proof of this theorem
below. The main idea behind the proof is to first show that the optimal solution to (13) is always
of the formW = αId +ΦSΦT , and then we obtain the closed form expression forS using simple
algebraic manipulations.

First we introduce and analyze an auxiliary optimization problem that will help inproving the
above theorem. Consider the following problem:

min
W�0,L

f (W), s.t. gi(ΦTWΦ)≤ bi , 1≤ i ≤m, W = αId +ULUT , (14)

whereL ∈ R
k×k, U ∈ R

d×k is a column orthogonal matrix, andId is thed×d identity matrix. In
general,k can be significantly smaller than min(n,d). Note that the above problem is identical to
(13) except for an added constraintW = αId +ULUT . We now show that (14) is equivalent to a
problem overk×k matrices. In particular, (14) is equivalent to (15) defined below.

Lemma 5 Let f be a spectral function as in Definition 3 and letα > 0 be any scalar. Then,(14) is
equivalent to:

min
L�−αIk

f (αIk+L), s.t. gi(αΦTΦ+ΦTULUTΦ)≤ bi , 1≤ i ≤m. (15)

Proof The last constraint in (14) asserts thatW = αId +ULUT , which implies that there is a one-
to-one mapping betweenW andL: givenW, L can be computed and vice-versa. As a result, we
can eliminate the variableW from (14) by substitutingαId+ULUT for W (via the last constraint in
(14)). The resulting optimization problem is:

min
L�−αIk

f (αId +ULUT), s.t. gi(αΦTΦ+ΦTULUTΦ)≤ bi , 1≤ i ≤m. (16)
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Note that (15) and (16) are the same except for their objective functions. Below, we show that both
the objective functions are equal up to a constant, so they are interchangeable in the optimization
problem. LetU ′ ∈ R

d×d be an orthonormal matrix obtained by completing the basis represented
by U , that is,U ′ = [U U⊥] for someU⊥ ∈ R

d×(d−k) s.t. UTU⊥ = 0 andUT
⊥U⊥ = Id−k. Now,

W = αId+ULUT =U ′
(

αId +

[
L 0
0 0

])
U ′T . It is straightforward to see that for a spectral function

f , f (VWVT) = f (W), whereV is an orthogonal matrix. Also,∀A,B ∈ R
d×d, f

([
A 0
0 B

])
=

f (A)+ f (B). Using the above observations, we get:

f (W) = f (αId +ULUT) = f

([
αIk+L 0

0 αId−k

])
= f (αIk+L)+(d−k) f (α). (17)

Therefore, the objective functions of (15) and (16) differ by only a constant, that is, they are equiv-
alent with respect to the optimization problem. The lemma follows.

We now show that for strictly convex spectral functions (see Definition 3)the optimal solutionW∗

to (13) is of the formW∗ = αId +ΦSΦT , for someS.

Lemma 6 Suppose f , K0 andα satisfy the conditions given in Theorem 4. Then, the optimal solu-
tion to (13) is of the form W∗ = αId +ΦSΦT , where S is a n×n matrix.

Proof Note thatK0≻ 0 implies thatd≥ n. Our results can be extended whend < n, that is,K0� 0,
by using the pseudo-inverse ofK0 instead of the inverse. However, for simplicity we only present
the full-rank case.

Now, letW=UΛUT =∑ j λ ju ju
T
j be the eigenvalue decomposition ofW. Consider a constraint

gi(ΦTWΦ) ≤ bi as specified in (13). Note that if thej-th eigenvectoru j of W is orthogonal to the
range space ofΦ, that is,ΦTu j = 0, then the corresponding eigenvalueλ j is not constrained (except
for the non-negativity constraint imposed by the positive semi-definitenessconstraint). Since the
range space ofΦ is at mostn-dimensional, we can assume thatλ j ≥ 0,∀ j > n are not constrained
by the linear inequality constraints in (13).

Since f satisfies the conditions of Theorem 4,f (W) = ∑ j fs(λ j). Also, fs(α) = minx fs(x).
Hence, to minimizef (W), we can selectλ∗j = α≥ 0,∀ j > n (note that the non-negativity constraint
is also satisfied here). Furthermore, the eigenvectorsu j , ∀ j ≤ n, lie in the range space ofΦ, that is,
∀ j ≤ n, u j = Φz j for somez j ∈ R

n. Therefore,

W∗ =
n

∑
j=1

λ∗ju
∗
ju
∗T
j +α

d

∑
j=n+1

u∗ju
∗T
j =

n

∑
j=1

(λ∗j −α)u∗ju
∗T
j +α

d

∑
j=1

u∗ju
∗T
j = ΦSΦT +αId,

whereS= ∑n
j=1(λ∗j −α)z∗j z∗Tj .

Now we use Lemmas 5 and 6 to prove Theorem 4.
Proof [Proof of Theorem 4] LetΦ = UΦΣVT

Φ be the singular value decomposition (SVD) ofΦ.

Note thatK0 = ΦTΦ =VΦΣ2VT
Φ , soΣVT

Φ =VT
Φ K1/2

0 . Also, assumingΦ ∈ R
d×n to be full-rank and

d > n, VΦVT
Φ = I .

Using Lemma 6, the optimal solution to (13) is restricted to be of the formW = αId+ΦSΦT =

αId+UΦΣVT
Φ SVΦΣUT

Φ =αId+UΦVT
Φ K1/2

0 SK1/2
0 VΦUT

Φ =αId+UΦVT
Φ LVΦUT

Φ , whereL=K1/2
0 SK1/2

0 .
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As a result, for spectral functionsf , (13) is equivalent to (14), so using Lemma 5, (13) is equivalent
to (15) withU =UΦVT

Φ andL = K1/2
0 SK1/2

0 . Also, note that the constraints in (15) can be simplified
to:

gi(αΦTΦ+ΦTULUTΦ)≤ bi ≡ gi(αK0+K1/2
0 LK1/2

0 )≤ bi .

Now, let K = αK0+K1/2
0 LK1/2

0 = αK0+K0SK0, that is,L = K−1/2
0 (K−αK0)K

−1/2
0 . Theorem 4

now follows by substituting forL in (15).

As a first consequence of this result, we can achieve induction over the learned kernels, analo-
gous to (6) for the LogDet case. Given thatK = ΦTWΦ, we can see that the learned kernel function
is a linear transformation kernel; that is,κ(xi ,x j) = φ(xi)

TWφ(x j). Given a pair of new data points
z1 andz2, we use the fact that the learned kernel is a linear transformation kernel,along with the
first result of the theorem (W = αId +ΦSΦT) to compute the learned kernel as:

φ(z1)
TWφ(z2) = α ·κ0(z1,z2)+kT

1 Sk2,whereki = [κ0(zi ,x1), ...,κ0(zi ,xn)]
T . (18)

Since LogDet divergence is also a spectral function, Theorem 4 is a generalization of Theorem 1
and implies kernelization for our metric learning formulation (2). Moreover, many Mahalanobis
metric learning methods can be viewed as a special case of (13), so a corollary of Theorem 4 is
that we can constructively apply these metric learning methods in kernel space by solving their cor-
responding kernel learning problem, and then compute the learned metrics via (18). Kernelization
of Mahalanobis metric learning has previously been established for some special cases; our results
generalize and extend previous methods, as well as provide simpler techniques in some cases. We
will further elaborate in Section 5 with several special cases.

4.3 Parameter Reduction

As noted in Section 3.6 that the size of the kernel matricesK and the parameter matricesSaren×n,
and thus grow quadratically with the number of data points. Similar to the special case of the LogDet
divergence (see Section 3.6), we would like to have a way to restrict our general optimization prob-
lem (12) over a smaller number of parameters. So, we now discuss a generalization of (13) by
introducing an additional constraint to make it possible to reduce the number of parameters to learn,
permitting scalability to data sets with many training pointsandwith very high dimensionality.

Theorem 4 shows that the optimalK∗ is of the formΦTW∗Φ = αK0 +K0SK0. In order to
accommodate fewer parameters to learn, a natural option is to replace the unknownSmatrix with
a low-rankmatrix JLJT , whereJ ∈ R

n×k is a pre-specified matrix,L ∈ R
k×k is unknown (we useL

instead ofS to emphasize thatS is of sizen×n whereasL is k×k), and the rankk is a parameter of
the algorithm. Then, we will explicitly enforce that the learned kernel is of thisform.

By plugging inK =αK0+K0SK0 into (12) and replacingSwith JLJT , the resulting optimization
problem is given by:

min
L�0

f (αIn+K1/2
0 JLJTK1/2

0 ), s.t. gi(αK0+K0JLJTK0)≤ bi , 1≤ i ≤m. (19)

Note that the above problem is a strict generalization of our LogDet function based parameter re-
duction approach (see Section 3.6).

While the above problem involves onlyk× k variables, the functionsf andgi ’s are applied to
n×n matrices and therefore the problem may still be computationally expensive to optimize. Below,
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we show that for any spectral functionf and linear constraintsgi(K) = tr(CiK), (19) reduces to a
problem that appliesf andgi ’s to k×k matrices only, which provides significant scalability.

Theorem 7 Let K0 = ΦTΦ and J be some matrix inRn×k. Also, let the loss function f be a spectral
function (see Definition 3) such that the corresponding strictly convex scalar function fs has the
global minimum atα > 0. Then problem(19) with gi(K) = tr(CiK) is equivalent to the following
alternative optimization problem:

min
L�−α(KJ)−1

f ((KJ)−1/2(αKJ +KJLKJ)(KJ)−1/2),

s.t. tr(LJTK0CiK0J)≤ bi− tr(αK0Ci), 1≤ i ≤m, (20)

where KJ = JTK0J.

Proof Let U = K1/2
0 J(JTK0J)−1/2 and letJ be a full rank matrix, thenU is an orthogonal matrix.

Using (17) we get,

f (αIn+U(JTK0J)1/2L(JTK0J)1/2UT) = f (αIk+(JTK0J)1/2L(JTK0J)1/2).

Now consider a linear constraint tr(Ci(αK0 +K0JLJTK0)) ≤ bi . This can be easily simplified to
tr(LJTK0CiK0J) ≤ bi − tr(αK0Ci). Similar simple algebraic manipulations to the PSD constraint
completes the proof.

Note that (20) is overk×k matrices (after initial pre-processing) and is in fact similar to the kernel
learning problem (12), but with a kernelKJ of smaller sizek×k, k≪ n.

Similar to (12), we can show that (19) is also equivalent to LT kernel function learning. This
enables us to naturally apply the above kernel learning problem in the inductive setting.

Theorem 8 Consider(19) with gi(K) = tr(CiK) and a spectral function f whose corresponding
scalar function fs has a global minimum atα > 0. Let J∈ R

n×k. Then,(19) and (20) with gi(K) =
tr(CiK) are equivalent to the following linear transformation kernel learning problem(analogous
to the connection between(12)and (13)):

min
W�0,L

f (W), s.t. tr(ΦTWΦ)≤ bi , 1≤ i ≤m, W = αId +ΦJLJTΦT . (21)

Proof Consider the last constraint in (21):W = αId+ΦJLJTΦT . Let Φ =UΣVT be the SVD ofΦ.
Hence,W = αId +UVTVΣVTJLJTVΣVTVUT = αId +UVTK1/2

0 JLJTK1/2
0 VUT , where we used

K1/2
0 = VΣVT . For dis-ambiguity, renameL asL′ andU asU ′. The result now follows by using

Lemma 5 whereU =U ′VT andL = K1/2
0 JL′JTK1/2

0 .

Note that, in contrast to (13), where the last constraint overW is achieved automatically, (21) re-
quires this constraint onW to be satisfied during the optimization process, which leads to a reduced
number of parameters for our kernel learning problem. The above theorem shows that our reduced-
parameter kernel learning method (19) also implicitly learns a linear transformation kernel function,
hence we can generalize the learned kernel to unseen data points using an expression similar to (18).
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5. Special Cases

In the previous section, we proved a general result showing the connections between metric and
kernel learning using a wide class of loss functions and constraints. In this section, we consider a
few special cases of interest: the von Neumann divergence, the squared Frobenius norm and semi-
definite programming. For each of the cases, we derive the required optimization problem and
mention the relevant optimization algorithms that can be used.

5.1 Von Neumann Divergence

The von Neumann divergence is a generalization of the well known KL-divergence to matrices. It
is used extensively in quantum computing to compare density matrices of two different systems
(Nielsen and Chuang, 2000). It is also used in the exponentiated matrix gradient method by Tsuda
et al. (2005), online-PCA method by Warmuth and Kuzmin (2008) and fast SVD solver by Arora
and Kale (2007). The von Neumann divergence betweenA andA0 is defined to be,DvN(A,A0) =
tr(AlogA−AlogA0−A+A0), where bothA andA0 are positive definite. Computing the von Neu-
mann divergence with respect to the identity matrix, we get:fvN(A) = tr(AlogA−A+ I). Note that
fvN is a spectral function with corresponding scalar functionfvN(λ) = λ logλ− λ and minima at
λ = 1. Now, the kernel learning problem (12) with loss functionfvN and linear constraints is:

min
K�0

fvN(K
−1/2
0 KK−1/2

0 ), s.t. tr(KCi)≤ bi , ∀1≤ i ≤m. (22)

As fvN is an spectral function, using Theorem 4, the above kernel learning problem is equivalent to
the following metric learning problem:

min
W�0

DvN(W, I), s.t. tr(WΦCiΦT)≤ bi , ∀1≤ i ≤m.

Using elementary linear algebra, we obtain the following simplified version:

min
λ1,λ2,...,λm≥0

F(λ) = tr(exp(−C(λ)K0))+b(λ),

whereC(λ) = ∑i λiCi andb(λ) = ∑i λibi . Further, ∂F
∂λi

= tr(exp(−C(λ)K0)CiK0)+bi , so any first-
order smooth optimization method can be used to solve the above dual problem. Alternatively,
similar to the method of Kulis et al. (2008), Bregman’s projection method can be used to solve the
primal problem (22).

5.2 Pseudo Online Metric Learning (POLA)

Shalev-Shwartz et al. (2004) proposed the following batch metric learningformulation:

min
W�0
‖W‖2F , s.t. yi j (b−dW(xi ,x j))≥ 1, ∀(i, j) ∈ P ,

whereyi j = 1 if xi andx j are similar, andyi j =−1 if xi andx j are dissimilar.P is a set of pairs of
points with known distance constraints. POLA is an instantiation of (13) withf (A) = 1

2‖A‖
2
F and

side-information available in the form of pair-wise distance constraints. Notethat the regularizer
f (A) = 1

2‖A‖
2 was also employed in Schultz and Joachims (2003) and Kwok and Tsang (2003), and
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these methods also fall under our general formulation. In this case,f is once again a strictly convex
spectral function, and its global minimum isα= 0, so we can use (12) to solve for the learned kernel
K as

min
K�0

‖KK−1
0 ‖

2
F , s.t. gi(K)≤ bi , 1≤ i ≤m,

The constraintsgi for this problem can be easily constructed by re-writing each of POLA’s con-
straints as a function ofΦTWΦ. Note that the above approach for kernelization is much simpler than
the method suggested in Shalev-Shwartz et al. (2004), which involves a kernelized Gram-Schmidt
procedure at each step of the algorithm.

5.3 SDPs

Weinberger et al. (2005) and Globerson and Roweis (2005) proposed metric learning formulations
that can be rewritten as semi-definite programs (SDP), which is a special case of (13) with the loss
function being a linear function. Consider the following general semidefiniteprogram (SDP) to
learn a linear transformationW:

min
W�0

tr(WΦC0ΦT), s.t. tr(WΦCiΦT)≤ bi , ∀1≤ i ≤m. (23)

Here we show that this problem can be efficiently solved for high dimensional data in its kernel
space, hence kernelizing the metric learning methods introduced by Weinberger et al. (2005) and
Globerson and Roweis (2005).

Theorem 9 Problem(23) is kernelizable.

Proof (23) has a linear objective, that is, it is a non-strict convex problem thatmay have multiple
solutions. A variety of regularizations can be considered that lead to slightlydifferent solutions.
Here, we consider the LogDet regularization, which seeks the solution withmaximum determinant.
To this effect, we add a log-determinant regularization:

min
W�0

tr(WΦC0ΦT)− γ logdetW, s.t. tr(WΦCiΦT)≤ bi , ∀1≤ i ≤m. (24)

The above regularization was also considered by Kulis et al. (2009b), who provided a fast projection
algorithm for the case when eachCi is a one-rank matrix and discussed conditions for which the
optimal solution to the regularized problem is an optimal solution to the original SDP. The above
formulation also generalizes the metric learning formulation of RCA (Bar-Hillel et al., 2005).

Consider the following variational formulation of (24):

min
t

min
W�0

t− γ logdetW, s.t. tr(WΦCiΦT)≤ bi , ∀1≤ i ≤m,

tr(WΦC0ΦT)≤ t. (25)

Note that the objective function of the inner optimization problem of (25) is a spectral function and
hence using Theorem 4, (25), or equivalently (24), is kernelizable.
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5.4 Trace-norm Based Inductive Semi-supervised Kernel Dimensionality Reduction
(Trace-SSIKDR)

Finally, we apply our framework to semi-supervised kernel dimensionality reduction, which pro-
vides a novel and practical application of our framework. While there exists a variety of methods for
kernel dimensionality reduction, most of these methods are unsupervised (e.g., kernel-PCA) or are
restricted to the transductive setting. In contrast, we can use our kernellearning framework to learn
a low-rank transformation of the feature vectors implicitly that in turn providesa low-dimensional
embedding of the data set. Furthermore, our framework permits a variety of side-information such
as pair-wise or relative distance constraints, beyond the class label information allowed by existing
transductive methods.

We describe our method starting from the linear transformation problem. Our goal is to learn
a low-rank linear transformationW whose corresponding low-dimensional mapped embedding of
xi is W1/2φ(xi). Even when the dimensionality ofφ(xi) is very large, if the rank ofW is low
enough, then the mapped embedding will have small dimensionality. With that in mind,a possible
regularizer could be the rank, that is,r(A) = rank(A); one can easily show that this satisfies the
definition of a spectral function. Unfortunately, optimization is intractable in general with the non-
convex rank function, so we use the trace-norm relaxation for the matrix rank function, that is, we
set f (A) = tr(A). This function has been extensively studied as a relaxation for the rank function
in Recht et al. (2010), and it satisfies the definition of a spectral function(with α = 0). We also
add a small Frobenius norm regularization for ease of optimization (this doesnot affect the spectral
property of the regularization function). Then using Theorem 4, the resulting relaxed kernel learning
problem is:

min
K�0

τ tr(K−1/2
0 KK−1/2

0 )+‖K−1/2
0 KK−1/2

0 ‖2F , s.t. tr(CiK)≤ bi , 1≤ i ≤m, (26)

whereτ > 0 is a parameter. The above problem can be solved using a method based onUzawa’s
inexact algorithm, similar to Cai et al. (2008).

We briefly describe the steps taken by our method at each iteration. For simplicity, denote
K̃ = K−1/2

0 KK−1/2
0 ; we will optimize with respect toK̃ instead ofK. Let K̃t be thet-th iterate.

Associate variablezt
i ,1≤ i ≤m with each constraint at each iterationt, and letz0

i = 0,∀i. Let δt be
the step size at iterationt. The algorithm performs the following updates:

UΣUT ← K1/2
0 CK1/2

0 ,

K̃t ←U max(Σ− τI ,0)UT , (27)

zt
i ← zt−1

i −δmax(tr(CiK
1/2K̃tK1/2)−bi ,0), ∀i, (28)

whereC = ∑i z
t−1
i Ci . The above updates require computation ofK1/2

0 which is expensive for
large high-rank matrices. However, using elementary linear algebra we can show thatK̃ and
the learned kernel function can be computed efficiently without computingK1/2

0 by maintaining

S= K−1/2
0 K̃K−1/2

0 from step to step.

We first prove a technical lemma to relate eigenvectorsU of K1/2
0 CK1/2

0 andV of the matrix
CK0.

Lemma 10 Let K1/2
0 CK1/2

0 =UkΣkUT
k , where Uk contains the top-k eigenvectors of K1/2

0 CK1/2
0 and

Σk contains the top-k eigenvalues of K1/2
0 CK1/2

0 . Similarly, let CK0 =VkΛkV
−1
k , where Vk contains
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Algorithm 2 Trace-SSIKDR
Input: K0, (Ci ,bi),1≤ i ≤m, τ, δ

1: Initialize: z0
i = 0, t = 0

2: repeat
3: t = t +1
4: ComputeVk and Σk, the topk eigenvectors and eigenvalues of

(
∑i z

t−1
i Ci

)
K0, wherek =

argmaxj σ j > τ
5: Dk(i, i)← 1/vT

i K0vi , 1≤ i ≤ k
6: zt

i ← zt−1
i −δmax(tr(CiK0VkDkΣkDkVT

k K0)−bi ,0),∀i.
7: until Convergence
8: Return Σk,Dk,Vk

the top-k right eigenvectors of CK0 andΛk contains the top-k eigenvalues of CK0. Then,

Uk = K1/2
0 VkDk, Σk = Λk,

where Dk is a diagonal matrix with i-th diagonal element Dk(i, i) = 1/vT
i K0vi . Note that eigenvalue

decomposition is unique up to sign, so we assume that the sign has been setcorrectly.

Proof Let vi bei-th eigenvector ofCK0. Then,CK0vi = λivi . Multiplying both sides withK1/2
0 , we

getK1/2
0 CK1/2

0 K1/2
0 vi = λiK

1/2
0 vi . After normalization we get:

(K1/2
0 CK1/2

0 )
K1/2

0 vi

vT
i K0vi

= λi
K1/2

0 vi

vT
i K0vi

.

Hence, K1/2
0 vi

vT
i K0vi

= K1/2
0 viDk(i, i) is thei-th eigenvectorui of K1/2

0 CK1/2
0 . Also, Σk(i, i) = λi .

Using the above lemma and (27), we get:K̃ = K1/2
0 VkDkλDkV

−1
k K1/2

0 . Therefore, the update for the
z variables (see (28)) reduces to:

zt
i ← zt−1

i −δmax(tr(CiK0VkDkλDkV
−1
k K0)−bi ,0),∀i.

Lemma 10 also implies that ifk eigenvalues ofCK0 are larger thanτ then we only need the topk
eigenvalues ofCK0. Sincek is typically significantly smaller thann, the update should be signifi-
cantly more efficient than computing the whole eigenvalue decomposition.

Algorithm 2 details an efficient method for optimizing (26) and returns matricesΣk, Dk and
Vk, all of which contain onlyO(nk) parameters, wherek is the rank ofK̃t , which changes from
iteration to iteration. Note that step 4 of the algorithm computesk singular vectors and requires
only O(nk2) computation. Note also that the learned embeddingxi → K̃1/2K−1/2

0 ki , whereki is a
vector of input kernel function values betweenxi and the training data, can be computed efficiently
asxi → Σ1/2

k DkVkki , which does not requireK1/2
0 explicitly.

6. Experimental Results

In Section 3, we presented metric learning as a constrained LogDet optimization problem to learn
a linear transformation, and we showed that the problem can be efficiently kernelized to learn
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linear transformation kernels. Kernel learning yields two fundamental advantages over standard
non-kernelized metric learning. First, a non-linear kernel can be used tolearn non-linear decision
boundaries common in applications such as image analysis. Second, in Section3.6, we showed that
the kernelized problem can be learned with respect to a reduced basis ofsizek, admitting a learned
kernel parameterized byO(k2) values. When the number of training examplesn is large, this rep-
resents a substantial improvement over optimizing over the entireO(n2) matrix, both in terms of
computational efficiency as well as statistical robustness. In Section 4, wegeneralized kernel func-
tion learning to other loss functions. A special case of our approach is thetrace-norm based kernel
function learning problem, which can be applied to the task of semi-supervised inductive kernel
dimensionality reduction.

In this section, we present experiments from several domains: benchmark UCI data, automated
software debugging, text analysis, and object recognition for computervision. We evaluate perfor-
mance of our learned distance metrics or kernel functions in the context ofa) classification accuracy
for thek-nearest neighbor algorithm, b) kernel dimensionality reduction. For the classification task,
our k-nearest neighbor classifier usesk = 10 nearest neighbors (except for Section 6.3 where we
usek = 1), breaking ties arbitrarily. We select the value ofk arbitrarily and expect to get slightly
better accuracies using cross-validation. Accuracy is defined as the number of correctly classified
examples divided by the total number of classified examples. For the dimensionality reduction task,
we visualize the two dimensional embedding of the data using our trace-norm based method with
pairwise similarity/dissimilarity constraints.

For our proposed algorithms, pairwise constraints are inferred from true class labels. For each
classi, 100 pairs of points are randomly chosen from within classi and are constrained to be similar,
and 100 pairs of points are drawn from classes other thani to form dissimilarity constraints. Given
c classes, this results in 100c similarity constraints, and 100c dissimilarity constraints, for a total
of 200c constraints. The upper and lower bounds for the similarity and dissimilarity constraints
are determined empirically as the 1st and 99th percentiles of the distribution of distances computed
using a baseline Mahalanobis distance parameterized byW0. Finally, the slack penalty parameterγ
used by our algorithms is cross-validated using values{.01, .1,1,10,100,1000}.

All metrics/kernels are trained using data only in the training set. Test instances are drawn from
the test set and are compared to examples in the training set using the learneddistance/kernel func-
tion. The test and training sets are established using a standard two-fold cross validation approach.
For experiments in which a baseline distance metric/kernel is evaluated (for example, the squared
Euclidean distance), nearest neighbor searches are again computed from test instances to only those
instances in the training set.

For additional large-scale results, see Kulis et al. (2009a), which usesour parameter-reduction
strategy to learn kernels over a data set containing nearly half a million images in24,000 dimen-
sional space for the problem of human-body pose estimation; we also applied our algorithms on the
MNIST data set of 60,000 digits in Kulis et al. (2008).

6.1 Low-Dimensional Data Sets

First we evaluate our LogDet divergence based metric learning method (see Algorithm 1) on the
standard UCI data sets in the low-dimensional (non-kernelized) setting, to directly compare with
several existing metric learning methods. In Figure 1 (a), we compare LogDet Linear (K0 equals
the linear kernel) and the LogDet Gaussian (K0 equals Gaussian kernel in kernel space) algorithms
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Figure 1: (a): Results over benchmark UCI data sets. LogDet metric learning was run within
input space (LogDet Linear) as well as in kernel space with a Gaussiankernel (LogDet
Gaussian).(b), (c): Classification error rates fork-nearest neighbor software support via
different learned metrics. We see in figure (b) that LogDet Linear is the only algorithm to
be optimal (within the 95% confidence intervals) across all data sets. In (c), we see that
the error rate for the Latex data set stays relatively constant for LogDet Linear.

against existing metric learning methods fork-NN classification. We also show results of a recently-
proposed online metric learning algorithm based on the LogDet divergence over this data (Jain et al.,
2008), called LogDet Online. We use the squared Euclidean distance,d(x,y) = (x−y)T(x−y) as
a baseline method (i.e.,W0 = I ). We also use a Mahalanobis distance parameterized by the inverse of
the sample covariance matrix (i.e.,W0 = Σ−1, whereΣ is the sample covariance matrix of the data).
This method is equivalent to first performing a standard PCA whitening transform over the feature
space and then computing distances using the squared Euclidean distance.We compare our method
to two recently proposed algorithms: Maximally Collapsing Metric Learning by Globerson and
Roweis (2005) (MCML), and metric learning via Large Margin Nearest Neighbor by Weinberger
et al. (2005) (LMNN). Consistent with existing work such as Globerson and Roweis (2005), we
found the method of Xing et al. (2002) to be very slow and inaccurate, so the latter was not included
in our experiments. As seen in Figure 1 (a), LogDet Linear and LogDet Gaussian algorithms obtain
somewhat higher accuracy for most of the data sets. In addition to our evaluations on standard
UCI data sets, we also apply our algorithm to the recently proposed problemof nearest neighbor
software support for the Clarify system (Ha et al., 2007). The basis ofthe Clarify system lies in the
fact that modern software design promotes modularity and abstraction. When a program terminates
abnormally, it is often unclear which component should be responsible or capable of providing an
error report. The system works by monitoring a set of predefined program features (the data sets
presented use function counts) during program runtime which are then used by a classifier in the
event of abnormal program termination. Nearest neighbor searches are particularly relevant to this
problem. Ideally, the neighbors returned should not only have the correct class label, but should also
represent similar program configurations or program inputs. Such a matching can be a powerful tool
to help users diagnose the root cause of their problem. The four data setswe use correspond to the
following software: Latex (the document compiler, 9 classes), Mpg321 (an mp3 player, 4 classes),
Foxpro (a database manager, 4 classes), and Iptables (a Linux kernel application, 5 classes).
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Data Set n d Unsupervised LogDet Linear HMRF-KMeans

Ionosphere 351 34 0.314 0.113 0.256
Digits-389 317 16 0.226 0.175 0.286

Table 1: Unsupervisedk-means clustering error using the baseline squared Euclidean distance,
along with semi-supervised clustering error with 50 constraints.

Our experiments on the Clarify system, like the UCI data, are over fairly low-dimensional data.
Ha et al. (2007) showed that high classification accuracy can be obtained by using a relatively small
subset of available features. Thus, for each data set, we use a standard information gain feature
selection test to obtain a reduced feature set of size 20. From this, we learn metrics fork-NN clas-
sification using the methods developed in this paper. Results are given in Figure 1(b). The LogDet
Linear algorithm yields significant gains for the Latex benchmark. Note thatfor data sets where
Euclidean distance performs better than the inverse covariance metric, the LogDet Linear algorithm
that normalizes to the standard Euclidean distance yields higher accuracy than that regularized to
inverse covariance (LogDet-Inverse Covariance). In general, for the Mpg321, Foxpro, and Iptables
data sets, learned metrics yield only marginal gains over the baseline Euclidean distance measure.

Figure 1(c) shows the error rate for the Latex data sets with a varying number of features (the
feature sets are again chosen using the information gain criteria). We see here that LogDet Linear
is surprisingly robust. Euclidean distance, MCML, and LMNN all achieve their best error rates for
five dimensions. LogDet Linear, however, attains its lowest error rate of.15 atd = 20 dimensions.

We also briefly present some semi-supervised clustering results for two ofthe UCI data sets.
Note that both MCML and LMNN are not amenable to optimization subject to pairwise distance
constraints. Instead, we compare our method to the semi-supervised clustering algorithm HMRF-
KMeans (Basu et al., 2004). We use a standard 2-fold cross validation approach for evaluating semi-
supervised clustering results. Distances are constrained to be either similaror dissimilar, based on
class values, and are drawn only from the training set. The entire data setis then clustered intoc
clusters usingk-means (wherec is the number of classes) and error is computed using only the test
set. Table 1 provides results for the baselinek-means error, as well as semi-supervised clustering
results with 50 constraints.

6.2 Metric Learning for Text Classification

Next we present results in the text domain. Our text data sets are created by standard bag-of-
words Tf-Idf representations. Words are stemmed using a standard Porter stemmer and common
stop words are removed, and the text models are limited to the 5,000 words with thelargest docu-
ment frequency counts. We provide experiments for two data sets: CMU 20-Newsgroups Data Set
(2008), and Classic3 Data Set (2008). Classic3 is a relatively small 3 class problem with 3,891 in-
stances. The newsgroup data set is much larger, having 20 different classes from various newsgroup
categories and 20,000 instances.

Our text experiments employ a linear kernel, and we use a set of basis vectors that is constructed
from the class labels via the following procedure. Letc be the number of distinct classes and let
k be the size of the desired basis. Ifk = c, then each class meanr i is computed to form the basis
R= [r1 . . .rc]. If k < c a similar process is used but restricted to a randomly selected subset of
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Figure 2: (a), (b): Classification accuracy for our Mahalanobis metrics learned over basisof dif-
ferent dimensionality. Overall, our method (LogDet Linear) significantly outperforms
existing methods.(c): Two-dimensional embedding of 2000 USPS digits obtained using
our method Trace-SSIKDR for a training set of just 100 USPS digits. Note that we use
the inductive setting here and the embedding is color coded according to the underlying
digit. (d): Embedding of the USPS digits data set obtained using kernel-PCA.

k classes. Ifk > c, instances within each class are clustered into approximatelyk
c clusters. Each

cluster’s mean vector is then computed to form the set of low-rank basis vectorsR. Figure 2 shows
classification accuracy across bases of varying sizes for the Classic3data set, along with the news-
group data set. As baseline measures, the standard squared Euclidean distance is shown, along with
Latent Semantic Analysis (LSA) (Deerwester et al., 1990), which works by projecting the data via
principal components analysis (PCA), and computing distances in this projected space. Comparing
our algorithm to the baseline Euclidean measure, we can see that for smaller bases, the accuracy of
our algorithm is similar to the Euclidean measure. As the size of the basis increases, our method
obtains significantly higher accuracy compared to the baseline Euclidean measure.

6.3 Kernel Learning for Visual Object Recognition

Next we evaluate our method over high-dimensional data applied to the object-recognition task
using Caltech-101 Data Set (2004), a common benchmark for this task. Thegoal is to predict the
category of the object in the given image using ak-NN classifier.

We compute distances between images using learning kernels with three different base image
kernels: 1) PMK: Grauman and Darrell’s pyramid match kernel (Grauman and Darrell, 2007) ap-
plied to SIFT features, 2) CORR: the kernel designed by Zhang et al. (2006) applied to geometric
blur features , and 3) SUM: the average of four image kernels, namely, PMK (Grauman and Dar-
rell, 2007), Spatial PMK (Lazebnik et al., 2006), and two kernels obtained via geometric blur (Berg
and Malik, 2001). Note that the underlying dimensionality of these embeddingsis typically in the
millions of dimensions.

We evaluate the effectiveness of metric/kernel learning on this data set. Wepose ak-NN classifi-
cation task, and evaluate both the original (SUM, PMK or CORR) and learned kernels. We setk= 1
for our experiments; this value was chosen arbitrarily. We vary the numberof training examplesT
per class for the database, using the remainder as test examples, and measure accuracy in terms of
the mean recognition rate per class, as is standard practice for this data set.

Figure 3 (a) shows our results relative to several other existing techniques that have been applied
to this data set. Our approach outperforms all existing single-kernel classifier methods when using
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Figure 3: Results on Caltech-101. LogDet+SUM refers to our learned kernel when the base kernel
is the average of four kernels (PMK, SPMK, Geoblur-1, Geoblur-2),LogDet+PMK refers
to the learned kernel when the base kernel is pyramid match kernel, and LogDet+CORR
refers to the learned kernel when the base kernel is correspondence kernel of Zhang et al.
(2006).(a): Comparison of LogDet based metric learning method with other state-of-the-
art object recognition methods. Our method outperforms all other single metric/kernel
approaches.(b): Our learned kernels significantly improve NN recognition accuracy
relative to their non-learned counterparts, the SUM (average of four kernels), the CORR
and PMK kernels.

the learned CORR kernel: we achieve 61.0% accuracy forT = 15 and 69.6% accuracy forT = 30.
Our learned PMK achieves 52.2% accuracy forT = 15 and 62.1% accuracy forT = 30. Similarly,
our learned SUM kernel achieves 73.7% accuracy forT = 15. Figure 3 (b) specifically shows the
comparison of the original baseline kernels for NN classification. The plotreveals gains in 1-NN
classification accuracy; notably, our learned kernels with simple NN classification also outperform
the baseline kernels when used with SVMs (Zhang et al., 2006; Grauman and Darrell, 2007).

6.4 USPS Digits

Finally, we qualitatively evaluate our dimensionality reduction method (see Section 5.4) on the
USPS digits data set. Here, we train our method using 100 examples to learn a mapping to two
dimensions, that is, a rank-2 matrixW. For the baseline kernel, we use the data-dependent kernel
function proposed by Sindhwani et al. (2005) that also accounts for the manifold structure of the data
within the kernel function. We then embed 2000 (unseen) test examples into two dimensions using
our learned low-rank transformation. Figure 2 (c) shows the embedding obtained by our Trace-
SSIKDR method, while Figure 2 (d) shows the embedding obtained by the kernel-PCA algorithm.
Each point is color coded according to the underlying digit. Note that our method is able to separate
out seven of the digits reasonably well, while kernel-PCA is able to separateout only three of the
digits.
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7. Conclusions

In this paper, we considered the general problem of learning a linear transformation of the input data
and applied it to the problems of metric and kernel learning, with a focus on establishing connec-
tions between the two problems. We showed that the LogDet divergence is auseful loss for learning
a linear transformation over very high-dimensional data, as the algorithm can easily be generalized
to work in kernel space, and proposed an algorithm based on Bregman projections to learn a kernel
function over the data points efficiently under this loss. We also showed thatour learned metric can
be restricted to a small dimensional basis efficiently, thereby permitting scalabilityof our method
to large data sets with high-dimensional feature spaces. Then we considered how to generalize this
result to a larger class of convex loss functions for learning the metric/kernel using a linear transfor-
mation of the data. We proved that many loss functions can lead to efficient kernel functionlearning,
though the resulting optimizations may be more expensive to solve than the simpler LogDet formu-
lation. A key consequence of our analysis is that a number of existing approaches for Mahalanobis
metric learning may be applied in kernel space using our kernel learning formulation. Finally, we
presented several experiments on benchmark data, high-dimensional vision, and text classification
problems as well as a semi-supervised kernel dimensionality reduction problem, demonstrating our
method compared to several existing state-of-the-art techniques.

There are several potential directions for future work. To facilitate even larger data sets than
the ones considered in this paper, online learning methods are one promisingresearch direction;
in Jain et al. (2008), an online learning algorithm was proposed based onLogDet regularization,
and this remains a part of our ongoing efforts. Recently, there has beensome interest in learning
multiple local metrics over the data; Weinberger and Saul (2008) considered this problem. We plan
to explore this setting with the LogDet divergence, with a focus on scalability tovery large data sets.
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