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ABSTRACT
The automated analysis of social networks has become an
important problem due to the proliferation of social net-
works, such as LiveJournal, Flickr and Facebook. The scale
of these social networks is massive and continues to grow
rapidly. An important problem in social network analysis
is proximity estimation that infers the closeness of differ-
ent users. Link prediction, in turn, is an important ap-
plication of proximity estimation. However, many meth-
ods for computing proximity measures have high compu-
tational complexity and are thus prohibitive for large-scale
link prediction problems. One way to address this problem
is to estimate proximity measures via low-rank approxima-
tion. However, a single low-rank approximation may not
be sufficient to represent the behavior of the entire net-
work. In this paper, we propose Multi-Scale Link Prediction
(MSLP), a framework for link prediction, which can handle
massive networks. The basic idea of MSLP is to construct
low-rank approximations of the network at multiple scales
in an efficient manner. To achieve this, we propose a fast
tree-structured approximation algorithm. Based on this ap-
proach, MSLP combines predictions at multiple scales to
make robust and accurate predictions. Experimental results
on real-life datasets with more than a million nodes show
the superior performance and scalability of our method.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data mining ; J.4 [Computer Applications]: Social and
Behavioral Sciences—Sociology

General Terms
Algorithms, Experimentation

Keywords
Low Rank Approximation, Hierarchical Clustering, Link Pre-
diction, Social Network Analysis
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1. INTRODUCTION
Social network analysis has become essential due to the

proliferation of social networks, such as LiveJournal, MyS-
pace, Flickr and Facebook. The scale of these social net-
works is massive and continues to grow rapidly. For exam-
ple, Facebook now has more than 900 million active users
with over 700,000 new users joining everyday. This has sig-
nificantly changed the way people interact and share infor-
mation with others and has led to unprecedented research
opportunities.

An important problem for social network analysis is prox-
imity estimation that infers the“closeness”of different users.
Proximity measures quantify the interaction between users
based on the structural properties of a graph, such as the
number of common friends. An important application of
proximity estimation in social networks is link prediction,
which is a key problem in social network analysis [15, 23].
Using proximity estimation for link prediction is based on
the assumption that a pair of users with a high proximity
score indicates they are close in terms of social relatedness
and hence this pair of users will have a good chance to be-
come friends in the future.

Simple proximity measures, such as neighborhood-based
measures, e.g., Adamic-Adar score [1] and common neigh-
bors [18], can be computed efficiently. However, they de-
scribe a very localized view of interaction. There are more
comprehensive proximity measures that capture a broader
perspective of social relationships by considering all paths
between users. These path based methods, such as Katz [12]
or rooted PageRank [15], are often more effective. Nonethe-
less, they are also well known for their high computational
complexity and memory usage, which limits their applica-
bility to massive graphs with more than a million users.

To solve this problem, a great deal of work has been done
on scalable proximity estimation [4, 22]. One basic idea is
to perform dimensionality reduction on the original graph
and then compute the proximity based on its low-rank ap-
proximation. Recently, clustered low rank approximation
(CLRA) has been proposed which develops a fast and mem-
ory efficient method [20, 23].

However, a single low-rank approximation may not be suf-
ficient to represent the whole network. Furthermore, the
approach in [20] only uses a single clustering structure mak-
ing it sensitive to a particular clustering and biased against
links that happen to be between clusters. More notably, a
recent study has shown that large social networks tend to
lack large well-defined clusters which suggests that a single
clustering structure can be problematic [14].



To address the above problems, we propose a multi-scale
approximation of the graph to obtain multiple granular views
of the network in order to perform link prediction in a scal-
able and accurate manner. This is achieved by taking a hi-
erarchical clustering approach and generating low-rank ap-
proximations at each level in the hierarchy. Although we use
a single hierarchical representation of the graph, we do not
require it to be the optimal structure. The main purpose of
using hierarchical clustering is not to detect the underlying
community structure of the graph, but to use it as a tool
for efficient multi-scale approximation. In the experimental
section, we show that under clustering structures of vary-
ing quality, our proposed algorithm can still achieve better
results compared to other link prediction algorithms (for ex-
ample, in the Epinions network [19] which was also used in
[14]).

Specifically, in this paper we propose a robust, flexible,
and scalable framework for link prediction on social networks
that we call, multi-scale link prediction (MSLP). MSLP ex-
ploits different scales of low-rank approximation of social
networks by combining information from multiple levels in
the hierarchy in an efficient manner. Higher levels in the hi-
erarchy present a more global view, while lower levels focus
on more localized information. MSLP works by first per-
forming hierarchical clustering on the graph by utilizing a
fast graph clustering algorithm, and then performing multi-
scale approximation based on the produced hierarchy. Since
different levels have different approximation, each level will
give different approximated proximity scores. MSLP com-
bines approximated proximity scores from each level and
makes the final prediction based on the combined scores. As
a result, MSLP captures both local and global information
of the network.

We list the benefits of our framework as follows:
• MSLP makes predictions based on information from

multiple scales and thus can make more accurate and
robust predictions.
• MSLP is fast and memory-efficient as it uses a sim-

ple and fast tree-structured subspace approximation
method, which speeds up the computation of our multi-
scale approximation while re-using memory across dif-
ferent levels. As a result, it can be applied to social
networks with millions of users.
• MSLP is flexible in two aspects: (1) it can be used

with any other reasonably good clustering algorithm to
generate a multi-scale view of the graph as it does not
depend on a particular hierarchical structure, (2) as a
dimensionality reduction method, it is not tied down
to a particular proximity measure, e.g., Katz and CN,
and others can be used.

The rest of the paper is organized as follows. In Section
2, we survey some related work on link prediction. Next,
some background material is introduced in Section 3. In
Section 4, we propose our proposed MSLP algorithm. Ex-
perimental results on real-world large-scale social networks
are presented in Section 5. Finally, we present our conclu-
sions in Section 6.

2. RELATED WORK
Link prediction refers to the problem of inferring new in-

teractions among members in a network. The first system-
atic treatment of the problem appeared in [15], where a vari-
ety of proximity measures, such as Common Neighbors [18]

and the Katz measure [12] were used as effective methods
for link prediction. In addition to unsupervised approaches,
there is also rising interest in supervised approaches for link
prediction [3, 10, 16]. In supervised link prediction, node
and/or edge features are extracted from the network and
link prediction is treated as a classification problem. How-
ever, engineering good features and handling the class im-
balance problem are still challenging tasks. Recently, link
prediction has been shown to benefit from exploring addi-
tional information external to the network, such as node or
edge attributes [11, 21]. However, these approaches require
additional information, which may be difficult to obtain due
to privacy and security issues.

Many popular proximity measures that are used for link
prediction have high computational complexity and do not
scale well to large-scale networks. A great deal of recent
work has been devoted to speed up the computation. For
example, [24] truncates the series expansion of Katz and only
considers paths of limited length. In [8, 15, 22], dimensional-
ity reduction methods, such as the eigen-decomposition, are
used to construct low-rank approximations of a graph, which
are then used to compute approximated proximity measures.
The more recent work in [4] applies the Lanczos/Stieltjes
procedure to iteratively compute upper and lower bounds of
a single Katz value and shows that these eventually converge
to the real Katz value.

Efficient proximity estimation is essential for scalable link
prediction. However, one should be able to make accurate
and robust predictions with the estimated measures. For
example, [22] explores the low-rank approximation of social
networks to speed up large-scale link prediction. Another
way to improve the link prediction performance is to ex-
plore the community structure of a network. For example,
LinkBoost [6] explores the community structure by a novel
degree dependent cost function and shows that minimiza-
tion of the associated risk can lead to more links predicted
within communities than between communities. However,
considering a single community structure may not lead to
robust predictions, because even detecting the ‘best’ com-
munity structure itself is still an open question.

Very little work has been done using hierarchical struc-
tures for link prediction. One exception is the method pro-
posed by [5], which works by sampling a number of compet-
itive hierarchical random graphs from a large pool of such
graphs. Each sampled graph is associated with a proba-
bility indicating the strength of community structure over
the original network. The probability of a link appearing
between any two nodes is averaged over the corresponding
connecting probability on the sampled graphs. However, to
predict potential links, this algorithm needs to enumerate
and average over almost all possible hierarchical partitions of
a given network and thus is very costly to compute even for
small networks. Compared with [5], our algorithm is much
more efficient in terms of speed and thus can be scaled up to
large-scale link prediction problems with millions of users.

3. BACKGROUND
Assume we are given a graph G = (V, E), where V =
{1, · · · , n} is the set of vertices representing the users in a
social network and E = {eij |i, j ∈ V} is the set of weighted
edges quantifying the connection between user i and user j.
Let A = [aij ] be the corresponding n×n adjacency matrix of
G such that aij = eij , if there is an edge between i and j and



0 otherwise. For simplicity, we assume G is an undirected
graph, i.e., A is symmetric.

As shown in [15], proximity measures can be computed
from A. Many of these measures can be represented as a
matrix function f(A), where the (i, j)-th element represents
the value of a proximity measure between user i and user j
[9]. One popular measure is the number of common neigh-
bors, which can be captured by fcn(A) = A2, describing a
very localized view of interactions between vertices by con-
sidering only paths of length 2. A more extensive measure is
the popular Katz measure [12]. Such path-based proximity
measures often achieve better accuracy at the cost of higher
computational complexity. The Katz measure is defined as
follows

fkz(A) =

∞∑
k=1

βkAk = (I − βA)−1 − I,

where I is the identity matrix and β ≤ 1/‖A‖2 is a damping
parameter. As we can see, the Katz measure takes O(n3)
time, which is computationally infeasible for large-scale net-
works with millions of nodes.

Here, dimensionality reduction methods, such as the sin-
gular value decomposition (SVD), play an important role.
These methods are particularly useful, since it suffices to
have a reasonably good estimation of a given proximity mea-
sure for most applications. Furthermore, low-rank approxi-
mation of the adjacency matrix serves as a useful conceptual
and computational tool for the graph.

Assume that we are given a rank-r approximation of the
n× n matrix A as follows

A ≈ Ã = USUT ,

where U is an n × r orthonormal matrix (i.e. UTU = Ir is
an identity matrix), and S is an r × r matrix. Using this

low-rank approximation Ã, the CN measure can be approx-
imated as fcn(A) ≈ US2UT . Similarly, the Katz measure is
approximated by

fkz(A) ≈
∞∑

k=1

βkÃk =

∞∑
k=1

βk(USUT )k

=U(

∞∑
k=1

βkSk)UT = U((I − βS)−1 − I)UT .

In general, f(A) ≈ Uf(S)UT , which requires less computa-
tional resources as the matrix function is only evaluated on
the much smaller S matrix.

However, computing the low-rank approximation of a mas-
sive graph via SVD or other popular dimensionality reduc-
tion methods can still be a computational bottleneck. Re-
cently, the technique of clustered low rank approximation
(CLRA) was proposed in [20] as a scalable and accurate
low-rank approximation method. The basic idea of CLRA
is to preserve important structural information by cluster-
ing the graph G into c disjoint clusters. Then it computes
a low-rank approximation of each cluster, which is finally
extended to approximate the entire graph.

Assume that the graph has been clustered into c clusters
and the vertices are ordered as follows

A =

A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

 ,

where the diagonal blocks Aii, i = 1, . . . , c, correspond to
the local adjacency matrix of each cluster i. For every clus-
ter, the best rank-r approximation is computed as Aii ≈
UiΛiU

T
i , where Λi is a diagonal matrix with the r largest

eigenvalues of Aii, and Ui is an orthonormal matrix with
the corresponding eigenvectors. Finally, CLRA aligns the
low-rank approximation of each cluster together to obtain
the clustered low-rank approximation of the entire adjacency
matrix A. Mathematically,

A ≈

U1 . . . 0
...

. . .
...

0 . . . Uc


S11 . . . S1c

...
. . .

...
Sc1 . . . Scc


U1 . . . 0

...
. . .

...
0 . . . Uc


T

,

where Sij = UT
i AijUi, for i, j = 1, . . . , c, which is the op-

timal S in the least squares sense. Note that the block-
diagonal matrix U = diag(U1, . . . , Uc) is also orthonormal
and Sii = Λi are diagonal. It is shown in [20] that CLRA
achieves accurate approximations while being efficient in
both computational speed and memory usage. However,
the drawback of CLRA is that it only uses one clustering
structure, whereas it has been shown that many large social
networks lack such structure [14]. In this paper, we over-
come this limitation by taking a multi-scale approach.

Based on the estimated proximity measures, we can per-
form link prediction on social networks. Link prediction
deals with networks that evolve over time Specifically, given
a snapshot of a network at time t1, the task is to predict
links that would form at a future time step t2. A high prox-
imity score between two users captures the high correlation
between them and thus a high chance to form a new link in
the future.

4. PROPOSED ALGORITHM
In this section we present our multi-scale link prediction

(MSLP) framework for social networks. Our method mainly
consists of three phases: hierarchical clustering, subspace
approximation and multi-scale prediction. Specifically, we
first construct a hierarchy tree with a fast top-down hierar-
chical clustering approach. Then, a multi-scale low-rank ap-
proximation to the original graph is computed when travers-
ing the hierarchy in a bottom-up fashion. An important
technical contribution of our paper is a fast tree-structured
approximation algorithm that enables us to compute the
subspace of a parent cluster quickly by using subspaces of
its child clusters. This allows us to compute each level’s low-
rank approximation efficiently. Finally, we combine prox-
imity measures, which are computed using the multi-scale
low-rank approximation of the graph, and make our final
predictions.

4.1 Hierarchical Clustering
The first step of our method is to hierarchically cluster

or partition a given graph. The purpose of this is to effi-
ciently generate a multi-scale approximation of the graph
using the constructed hierarchical structure. This, in turn,
makes predictions more accurate and robust as we combine
predictions at each level of the hierarchy in the final step.

Generally, there are two main approaches for hierarchical
clustering: agglomerative (or bottom-up) approach and divi-
sive (or top-down) approach. The agglomerative approach
initially treats each vertex as one cluster and continually
merges pairs of clusters as it moves up the hierarchy. The



Table 1: Percentage of within-cluster edges using
Graclus. Numbers in brackets represent random
clustering. It can be seen that Graclus is quite ef-
fective in finding good clustering structure. (these
networks contain about 2 million nodes – details are
given in Table 3.)

Hierarchy Flickr LiveJournal MySpace

Level 1 96.2 (68.1) 99.3 (60.1) 98.6 (61.6)
Level 2 95.1 (61.7) 98.8 (51.7) 88.0 (35.2)
Level 3 88.1 (54.3) 85.0 (28.6) 69.5 (18.0)
Level 4 85.2 (51.4) 79.4 (15.2) 64.3 (13.0)
Level 5 66.7 (27.2) 70.0 (9.4) 56.3 (8.4)

divisive approach takes the opposite direction, that is, all
vertices are placed in a single cluster and recursively parti-
tioned into smaller clusters. Due to the large scale of the
problem and the availability of efficient clustering software,
such as Graclus [7], we employ the divisive approach in our
work.

Given a graph G = (V, E), our goal is to construct a level
` hierarchy, so as to generate a multi-scale view of the graph.
We form c nodes (clusters) at the first level of the hierar-

chy by clustering V into c disjoint sets V(1)
1 ,V(1)

2 , . . . ,V(1)
c ,

where the superscript denotes the level of the hierarchy.
Then, we proceed to the second level of the hierarchy tree

by further clustering each node in the first level V(1)
i , i =

1, . . . , c, and generate c child nodes from each of them as

V(2)
i1 ,V

(2)
i2 , . . . ,V

(2)
ic , such that V(1)

i =
⋃c

j=1 V
(2)
ij . As a con-

sequence, we will have c2 nodes on the second level of the
hierarchy. This process repeats until the desired number of
levels ` is reached. Many classic clustering methods can be
used as a base clustering method. In this paper, we use
the Graclus algorithm [7] to cluster each node because of
its ability to scale up to very large graphs. However, our
algorithm can utilize any other graph clustering method.

The hierarchy of A at level p, after sorting the vertices,
can be written as

A =


A

(p)
11 . . . A

(p)
1ĉ

...
. . .

...

A
(p)
ĉ1 . . . A

(p)
ĉĉ

 ,
where ĉ = cp is the number of nodes in level p and each

diagonal block A
(p)
ii , i = 1, . . . , ĉ, is an mi ×mi matrix that

can be viewed as a local adjacency matrix of cluster i at

level p. The off-diagonal mi ×mj blocks, A
(p)
ij , where i 6= j,

contains the set of edges between clusters i and j.
As it is desirable to capture most of the links within clus-

ters, we compare with random clustering in terms of the
percentage of within-cluster links on three large-scale social
networks in Table 1. For each level of the hierarchy tree,
the within-cluster links are those that connect two vertices
in the same cluster. As shown in Table 1, the percentage
of within-cluster edges of random clustering is much smaller
than the hierarchical clustering scheme used in this paper,
and the gap becomes much larger when going down the hi-
erarchy. Even at the deepest level, the clustering scheme we
use can still capture more than half of the edges compared
with less than 10% in the LiveJournal and MySpace graphs
when using random clustering.

As a final remark, we note that the hierarchical clustering

A(0) U (0)

A
(1)
11 U

(1)
1

A
(2)
11 U

(2)
1 A

(2)
22 U

(2)
2

A
(1)
22 U

(1)
2

A
(2)
33 U

(2)
3 A

(2)
44 U

(2)
4 level 2

level 1

level 0

Figure 1: Hierarchical structure example.

scheme is also very fast. Clustering the three networks of
Table 1 into 5 levels with 2 clusters at each level can be
completed in just 5 minutes on a 8-core 3.40GHz machine. In
the next section, we show how to use the hierarchy structure
to efficiently construct a multi-scale approximation of large-
scale graphs.

4.2 Subspace Approximation
After constructing the hierarchy for a given graph, we can

compute low-rank approximations of A at each level of the
hierarchy to obtain a multi-scale approximation. Specifi-
cally, we employ CLRA to obtain the approximation. Fig-
ure 1 gives an example of a simple three level hierarchy to
better illustrate our method. By applying CLRA on each
of the 3 levels in the example, we have 3 clustered low-rank
approximations of A as follows
• Level 0:

A ≈ Ã(0) = U (0)S(0)U (0)T ,

• Level 1:

A ≈ Ã(1) =

[
U

(1)
1 0

0 U
(1)
2

][
S

(1)
11 S

(1)
12

S
(1)
21 S

(1)
22

][
U

(1)
1 0

0 U
(1)
2

]T

,

• Level 2:

A ≈ Ã(2) = U (2)S(2)U (2)T

=


U

(2)
1 . . . 0
...

. . .
...

0 . . . U
(2)
4



S

(2)
11 . . . S

(2)
14

...
. . .

...

S
(2)
41 . . . S

(2)
44



U

(2)
1 . . . 0
...

. . .
...

0 . . . U
(2)
4


T

,

where the columns of U
(p)
i are the set of orthonormal basis

vectors forming the subspace for cluster i at level p and

S
(p)
ij = U

(p)T

i A
(p)
ij U

(p)
j , 1 ≤ i, j ≤ 2p. Level 0 can be viewed

as a special case of CLRA, where the entire graph is treated
as a single cluster, which yields a global view of the entire
matrix A. Lower levels in the hierarchy will preserve more
local information within each cluster. Thus, each level of
approximation concentrates on different levels of granularity,
resulting in a multi-scale approximation of A.

An important issue here is how to compute each level’s
approximation of A efficiently. A straightforward solution
would be use standard dimensionality reduction methods,

A(P ) U (P )

A
(C)
11 U

(C)
1 A

(C)
22 U

(C)
2

Figure 2: Approximating parent cluster’s subspace.
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Figure 3: Principal angles between parent cluster’s
subspace and two other subspaces: child cluster’s

subspace diag(U
(C)
1 , U

(C)
2 ) and parent cluster’s sub-

space U
(P )
tree computed using Algorithm 1.

such as SVD. This can be computed efficiently for clusters
at the deepest level of the hierarchy tree, since the size of
each cluster is relatively small. However, the computational
cost becomes prohibitive as the size of the cluster increases,
which is the case for upper levels in the hierarchy tree. We
propose a more scalable and effective method to address this
issue. For clarity and brevity, we focus on a local view of
the hierarchy as shown in Figure 2, where A(P ) is a parent

cluster and A
(C)
11 and A

(C)
22 are its two child clusters.

A key observation we make is that the subspaces be-
tween any two adjacent levels in the hierarchy tree should
be close to each other. That is, U (P ) should be close to

diag(U
(C)
1 , U

(C)
2 ). This is because many of the links that

are in A(P ) should be captured by its child clusters A
(C)
11

and A
(C)
22 . Consequently, if we are given diag(U

(C)
1 , U

(C)
2 ),

one should be able to compute U (P ) faster than computing
it from scratch. Thus, we propose an algorithm that uses
the child cluster’s subspace to compute the parent cluster’s
subspace.

Our proposed method, tree-structured approximation of
subspace, is listed in Algorithm 1. The main idea is to con-
struct a matrix Y = A(P )Ω that covers as much of the range
space of A(P ) as possible. This can be done efficiently using

Ω = diag(U
(C)
1 , U

(C)
2 , . . . , U

(C)
c ). Note that both A(P ) and

Ω are sparse. Then, an orthonormal matrix Q is computed
from Y as a basis for the range of Y (e.g. using the QR-

decomposition). Finally, Q is further used to compute U (P )

via the eigen-decomposition of the matrix B = QTAQ. This
last step is also fast since B is a small cr× cr matrix, where
r is the rank of the approximation of each child node.

The subspace approximation scheme in Algorithm 1 is
more efficient than the truncated eigen-decomposition (EIG),
since the latter needs to be computed from scratch and is
time consuming when dealing with large-scale matrices. We
note that Y = (AAT )AΩ can be used for higher accuracy,
though we did not find any significant improvement in the
results.

Figure 3 shows principal angles between the parent clus-

ter’s subspace U
(P )
eig computed via eigen-decomposition and

the child cluster’s subspace diag(U
(C)
1 , U

(C)
2 ) for the Flickr

dataset. The cosine of principal angles are close to 1, sup-
porting our observation that the subspaces of two adjacent

Algorithm 1: Tree-structured approximation of domi-
nant subspace of parent cluster from child clusters

Input: n× n adjacency matrix of parent cluster
A = A(P ), child cluster’s subspaces

U
(C)
1 , . . . , U

(C)
c , target rank r.

Output: dominant subspace for parent cluster A(P ),
i.e. U (P ).

Ω← diag(U
(C)
1 , U

(C)
2 , . . . , U

(C)
c ).

Compute n× cr matrix Y = AΩ.
Compute Q as an orthonormal basis for the range of Y .
Compute B = QTAQ. // A ≈ Q(QTAQ)QT

Compute rank-r eigen-decomposition of B ≈ V ΛV T .
Compute U (P ) = QV .

Algorithm 2: Multi-Scale Link Prediction (MSLP)

Input: adjacency matrix A, number of levels `, number
of clusters c at each node, target rank r,
weights w0, w1, . . . , w`.

Output: top-k predictions.

/* Hierarchical clustering */

A
(0)
11 ← A.

for i = 0 to ` do
for j = 1 to ci do

Cluster A
(i)
jj into c clusters. // e.g. Graclus

end

end
/* Subspace approximation */

// approximation for deepest level.

Compute U (`), S(`) using CLRA.
// approximation for intermediate levels.

for i = `− 1 to 0 do

Compute U (i) using Algorithm 1.

S(i) = U (i)TAU (i).
end
/* Multi-scale prediction */

for i = ` to 0 do

Ki = f(A(i)) = U (i)f(S(i))U (i)T . // e.g. Katz

end
P = w0K0 + w1K1 + . . .+ w`K`.
return top-k predictions according to P .

levels are close to each other. We also show principal angles

between U
(P )
eig and the parent cluster’s subspace U

(P )
tree com-

puted using Algorithm 1. We see that these subspaces are
even closer to each other, showing that our algorithm can
accurately approximate the parent cluster’s subspace.

4.3 Multi-Scale Link Prediction
As mentioned in Section 2, many proximity measures for

link prediction f(A) are expensive to compute on large-scale
networks because of their high complexity. One solution
is to approximate A by a low-rank approximation Ã and
then compute approximated proximity measures with f(Ã)
to make predictions. This stems from the idea that most
of the action in A can be captured by a few latent factors,
which can be extracted with low-rank approximations of A.

It has been shown that CLRA provides an accurate and
scalable low-rank approximation, and can be used for effi-



Table 2: Computational time (in minutes) for sub-
space approximation by MSLP (Algorithm 1) and
EIG on three large-scale social networks.

Network LiveJournal Flickr MySpace

EIG 157.10 146.28 211.29

MSLP

Level 0 30.74 29.98 38.27
Level 1 20.18 21.95 35.86
Level 2 18.93 17.25 29.17
Level 3 14.01 15.33 26.36
Level 4 13.74 15.79 26.36
Level 5 121.26 132.93 188.26

MSLP Total 218.88 233.33 344.02

cient proximity estimation [23]. However, CLRA just uses
one clustering structure making it sensitive to a particular
clustering and biased against links that appear between clus-
ters. Our proposed method alleviates such problem with a
multi-scale approach.

The main idea is that, under a hierarchical clustering, all
links will eventually belong to at least one cluster. That is,
even if we miss a between-cluster link at a certain level, it
still has a good chance of getting corrected by upper levels
as it will eventually become a within-cluster link. Moreover,
links that lie within clusters at multiple levels, such as from
the deepest level, get emphasized multiple times. Those
links will have the propensity of being included in the final
prediction, which aligns with the intuition that links are
more likely to form within tight clusters.

Once the multi-scale low-rank approximation of A is ob-
tained, we now perform multi-scale link prediction. From
each low-rank approximation of the hierarchy, Ã(i), i =
0, 1, . . . , `, the approximated proximity measure can be com-
puted with f(Ã(i)). This gives a total of ` + 1 proximity
measures for each link, which are combined to make final
predictions. Formally, our multi-scale predictions are given
by

g(w0f(Ã(0)) + w1f(Ã(1)) + . . .+ w`f(Ã(`))),

where wi’s are the weights for different levels and g(·) is the
predictor, e.g. top-k scoring links. For simplicity, we use the
same weight for all levels in this work, i.e. wi = 1/(`+ 1).

The entire flow of our proposed method, Multi-Scale Link
Prediction (MSLP), is listed in Algorithm 2. Next, we ana-
lyze the computation time and memory usage of MSLP.

Computation time: As mentioned earlier, the hierarchi-
cal clustering is fast and linear in the number of edges in
the network and can be finished in a few hundred seconds
on networks with 2 million nodes. Computing the approxi-
mated proximity scores as a final step for a given user is sim-
ply a matrix multiplication of low-rank matrices and time
complexity is O(`nr2). In general, we set the number of
clusters c and the rank in each cluster r to be fairly small.
Among the three phases of MSLP, the subspace approxima-
tion phase is the dominant part of the computation time.
In Table 2, we compare the CPU time for subspace approx-
imation by Algorithm 1 and EIG on three large-scale social
networks with about 2 million users. We can see in Table
2 that for each intermediate level from 4 to 0, the subspace
approximation in MSLP is up to 10 times faster than that of
EIG, demonstrating the effectiveness of Algorithm 1. Fur-
thermore, since we operate on each cluster independently,
MSLP can be easily parallelized to gain greater speedups.

Memory usage: For a rank-r approximation, EIG needs to
store r eigenvectors and eigenvalues which takes O(nr + r)
memory. Compared with EIG, CLRA is memory efficient
as it only takes O(nr + c2`r2) memory for a larger rank-c`r
approximation [20]. MSLP basically has the same memory
usage as CLRA. While MSLP achieves a multi-scale approx-
imation, it is not necessary to store the subspaces for all
levels simultaneously. We can reuse the memory allocated
for the child cluster’s subspace to store the parent cluster’s
subspace using Algorithm 1.

5. EXPERIMENTAL EVALUATION
In this section we present experimental results that eval-

uate both accuracy and scalability of our method, Multi-
Scale Link Prediction (MSLP), for link prediction. First we
present a detailed analysis of our method using the Karate
club network as a case study. This will give a better under-
standing of our algorithm and illustrate where it succeeds.
Next we provide results under different parameter settings
on a large social network. Lastly, we compare MSLP to other
popular methods on massive real-world social networks with
millions of users and demonstrate its superior performance.

5.1 Case study: Karate club
We first start our performance analysis on a well-known

small social network, Zachary’s Karate club network [25].
The Karate club network represents a friendship network
among 34 members of the club with 78 links. The clustering
structure of the Karate club network is a standard example
for testing clustering algorithms. We adopt the clustering
results from [2], where the clustering is found via modular-
ity optimization. Figure 4 shows the hierarchy of the Karate
club network. The first level has 2 clusters (circle and trian-
gle) with 68 within-cluster links and the second level has 4
clusters (red, yellow, green and blue) with 50 within-cluster
links.

As the Karate club network is a small network, we apply
the leave-one-out method to compare different methods. We
first remove a single link from the network, treat the held out
edge as 0 in A, and perform link prediction on the resulting
network. For each leave-one-out experiment, we compute
the rank of the removed link based on its proximity measure.
If the rank of the removed link appears in the top-k list, we
count it as a hit. The number of top-k hits is the number of
hits out of all leave-one-out experiments.

We compare MSLP to four other methods: RandCluster,
common neighbors (CN), Katz and CLRA. In RandCluster,
we randomly partition the graph into 4 clusters and compute
the Katz measure using CLRA with these clusters. Figure 5
shows the number of top-k hits for each method. Clearly, our
method significantly outperforms other methods by achiev-
ing a much higher number of hits. This implies that MSLP
makes more accurate predictions by considering the hierar-
chical structure of the network. RandCluster performs the
worst, while CLRA has comparable performance with Katz
indicating that the network’s property can be captured by
a few latent factors.

For a better illustration of the advantage of our method,
we annotate Figure 4 with the results of top-3 hits. The
solid blue links correspond to hits made by MSLP and the
dashed red links are hits made by both CLRA and MSLP,
i.e. the set of links successfully predicted by CLRA is a
subset of that of MSLP. We can see that all hits made by



Figure 4: Hierarchy of the Karate club network with
2 levels, two clusters on the first level and four clus-
ters on the second level.

CLRA are within-cluster links (green cluster), showing that
CLRA favors within-cluster links. In contrast, MSLP can
predict not only more within-cluster links, but also links
between clusters (red and yellow). The ability to correctly
predict both within and between-cluster links is one of the
main advantages of our multi-scale approach.

5.2 Experiments on Large Datasets
In this section we present the results of link prediction on

large real-world datasets. We start by examining how the
parameters of MSLP affect performance. Particularly, we
investigate how different hierarchical clustering structures
impact the performance of MSLP. For this, we use a large
real-world network: Epinions, which is an online social net-
work from Epinions.com with 32,223 users and 684,026 links
[19].

Next we use three real-world massive online social net-
works with millions of nodes: Flickr [17], LiveJournal and
MySpace [22], and compare MSLP to other methods. These
datasets have timestamps associated with them and we sum-
marize each snapshot in Table 3. The adjacency matrix at
the first timestamp, At1 , is used to compute proximity mea-
sures, and the adjacency matrix at the next timestamp, At2 ,
is used for testing and evaluation. Since these networks are
very large, we randomly select 5,000 users and evaluate on
these users. Performance measures are averaged over 30 it-
erations of such sampling.

As pointed out in [13], most of all newly formed links
in social networks close a path of length two and form a
triangle, i.e., appear in a user’s 2-hop neighborhood. All
three datasets show that this is the case for at least 90% of
test links in the second timestamp. For similar reasons as
in [3], we focus on predicting links to users that are within
its 2-hop neighborhood.

Table 3: Summary of networks with timestamps.
Network Date # of nodes # of links

Flickr
5/6/2007 1,994,422 42,890,114

5/17/2007 1,994,422 43,681,874

LiveJournal
3/4/2009 1,757,326 84,366,676
4/3/2009 1,757,326 85,666,494

MySpace
1/11/2009 2,086,141 90,918,158
2/14/2009 2,086,141 91,587,516
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Figure 5: Number of top-k hits for different methods
on the Karate club network.

5.2.1 Evaluation methodology
We evaluate the accuracy of different methods by comput-

ing the true positive rate (TPR) and the false positive rate
(FPR), defined by

TPR =
# of correctly predicted links

# of actual links
,

FPR =
# of incorrectly predicted links

# of non-friend pairs
,

for all links in a sampled test set. Our evaluation is based
on receiver operating characteristic (ROC) curve and its area
under the ROC curve (AUC) that present achievable TPR
with respect to FPR. Predicting links with proximity mea-
sures involves some thresholding on the measures to pro-
duce top-k predictions. The ROC curves captures the full
spectrum of prediction performance by varying the decision
threshold.

However, in a practical sense, a user is recommended only
a small number of top-k predictions and the hope is that
most of them are correct. Thus, we focus on the region
of low FPR by plotting FPR along the x-axis in log-scale,
since it reflects the quality of these top-k links. In the same
spirit, we also use the Precision at Top-k, i.e., the number
of correct predictions out of top-k recommendations, as our
evaluation metric.

Other methods for comparison: We have carefully cho-
sen a variety of proximity measures to compare with: Pref-
erential Attachment (PA), Adamic-Adar score (AA), Ran-
dom Walk with Restarts (RWR), common neighbors (CN)
and Katz [15]. The actual values of Katz quickly becomes
difficult to compute as scale increases due to its high compu-
tational cost. Therefore, we employ the Lanczos method [4]
for its speed and good approximation of the real Katz val-
ues. We also consider a supervised machine learning method
(LR) [3, 10]. For the latter, we extracted five network-based
features: paths of lengths 3, 4 and 5, CN, and AA. Using
these features, a logistic regression model is trained over a
sampled set of positive and negative links from 10,000 users
as in [3].

5.2.2 Varying parameters
Next we evaluate on different parameter settings by vary-

ing the three main parameters of MSLP: number of levels
in the hierarchy `, number of clusters at each node in the



Table 4: Varying rank of approximation on Epin-

ions dataset. MSLP consistently outperforms EIG
and CLRA for different ranks in terms of AUC and
precision at top-20.

r
EIG-Katz CLRA-Katz MSLP-Katz
AUC Prec AUC Prec AUC Prec

10 0.8247 4.52 0.8075 5.07 0.8533 5.42
20 0.8303 4.91 0.7928 4.93 0.8550 5.62
50 0.8168 5.09 0.7527 4.31 0.8287 5.54
100 0.7903 4.98 0.7037 3.72 0.7985 5.21
200 0.7605 4.62 0.6539 3.11 0.7663 4.77
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Figure 6: Robustness results for MSLP and CLRA
on Epinions dataset. Numbers in brackets are the %
of vertices shuffled.

hierarchy c, and rank r. We fix ` = 3, c = 2, and r = 20
while changing one parameter at a time and measure AUC
and precision at top-20. The Epinions network does not
have time information, thus we randomly sample a number
of links and treat them as test links in At2 . The sampling
is performed such that about 90% of test links appear in a
user’s 2-hop neighborhood.

We compare the performance of our method to two other
low-rank approximation methods: eigen-decomposition (EIG),
clustered low rank approximation at the deepest level in the
hierarchy tree (CLRA).

Rank: Table 4 shows performance of the three low-rank
approximation methods with different ranks. MSLP consis-
tently performs better in terms of both AUC and Precision
at Top-20 than the other two methods. The accuracy of
CLRA deteriorates as the rank increases. This implies that
the low-rank approximation of each cluster starts to accumu-
late noise at larger ranks. It is shown that low-rank approx-
imation methods tend to perform best at an intermediate
rank [15], which is also the case here with r = 20.

Hierarchical clustering structure: Next we experiment
with various hierarchical clustering structures. Table 5 shows
how the performance changes as the hierarchical clustering
structure changes. For a complete comparison, results of
other methods are also given in Table 5(c). The second col-
umn in Tables 5(a) and 5(b) represents the percentage of
within-cluster edges. It is clear that as the number of clus-
ters at the bottom level increases the percentage decreases.
While the accuracy of CLRA degrades as the percentage
decreases, MSLP is still able to perform better than other

Table 5: Varying hierarchical clustering structure
by changing (a) the number of clusters per node at
each level and (b) the number of levels on Epinions

dataset. Results show that MSLP is not only more
robust than CLRA to different clustering struc-
tures, but also outperforms other methods in most
cases. Percentage is the percentage of within-cluster
edges (Numbers in brackets represent percentage of
within-cluster edges of random clustering).

(a) Changing the number of clusters per node at each
level.

c Percentage
CLRA-Katz MSLP-Katz
AUC Prec AUC Prec

2 53.41 (13.42) 0.7928 4.93 0.8550 5.62
3 41.91 (6.41) 0.7649 4.32 0.8520 5.48
4 37.33 (5.47) 0.7426 3.80 0.8463 5.27
5 34.03 (3.12) 0.7293 3.74 0.8276 4.80

(b) Changing the number of levels.

` Percentage
CLRA-Katz MSLP-Katz
AUC Prec AUC Prec

2 67.54 (26.51) 0.7970 5.02 0.8459 5.33
3 53.31 (13.42) 0.7928 4.93 0.8550 5.62
4 47.77 (8.59) 0.7825 4.60 0.8508 5.55
5 43.54 (5.39) 0.7633 4.15 0.8498 5.37

(c) Results of other methods.

Method AUC Prec

PA(Preferential Attachment) 0.7717 2.09
AA(Adamic-Adar) 0.8378 5.16
RWR(Random Walk /w Restarts) 0.8468 2.68
LR(Logistic Regression) 0.8227 4.60
CN(Common Neighbors) 0.8163 4.78
Katz(Katz) 0.8352 4.77

methods in all cases with the only exception of Table 5(a)
at c = 5. The results clearly show that MSLP is robust to
different hierarchical structures.

Furthermore, to see that MSLP is robust to cluster struc-
tures, we randomly perturb clusters at the deepest level of
the hierarchy by moving vertices from their original cluster
to another random cluster. Figure 6 shows the result of mov-
ing 0%, 10% and 20% of vertices. Even with 10% of vertices
shuffled, MSLP still outperforms CLRA with no shuffling. It
is clear that, while CLRA’s performance decreases rapidly,
MSLP still performs well in low FPR regions.

5.2.3 Results on Large-scale social networks
In this section, we present results on real-world networks

with millions of nodes presented in Table 3. We construct
a hierarchical structure with ` = 5 and c = 2 for all three
networks, and use r = 100 for EIG, CLRA and MSLP. We
set β = 0.0005 for the Katz measure, which yields the best
results.

Tables 6 and 7 give AUC and precision at top-100 results
for the various methods, respectively. MSLP-Katz gives a
significant improvement over the Katz measure and outper-
forms all other methods. Specifically, it gains a relative im-
provement of up to 4% in AUC and 15% in precision over the
next best performing method. We emphasize the superior



Table 6: AUC results for Flickr, LiveJournal and
MySpace datasets.

Method Flickr LiveJournal MySpace

PA 0.6981 0.6075 0.8325
AA 0.8758 0.7709 0.8767
RWR 0.7872 0.7113 0.8357
LR 0.7115 0.7055 0.7487
CN 0.8649 0.7630 0.8801
EIG-CN 0.8583 0.7317 0.8732
CLRA-CN 0.8506 0.7390 0.8587
MSLP-CN 0.8621 0.7538 0.8743
Katz 0.8429 0.7651 0.8492
EIG-Katz 0.8887 0.7547 0.8638
CLRA-Katz 0.8611 0.7531 0.8646
MSLP-Katz 0.8924 0.7890 0.8850

Table 7: Precision at top-100 results for Flickr, Live-
Journal and MySpace datasets.

Method Flickr LiveJournal MySpace

PA 1.02 1.32 4.57
AA 7.29 5.93 7.44
RWR 5.49 3.46 1.30
LR 2.54 2.23 4.95
CN 7.08 5.94 7.18
EIG-CN 6.88 5.34 6.99
CLRA-CN 6.91 5.21 6.88
MSLP-CN 7.03 5.59 7.05
Katz 7.17 5.86 6.18
EIG-Katz 11.26 5.62 7.55
CLRA-Katz 12.13 6.11 7.64
MSLP-Katz 13.34 6.72 8.38

performance in terms of precision at top-100 of MSLP-Katz
as shown in Table 7. This is a very appealing aspect of
MSLP as it reflects the quality of top recommendations. In
contrast, MSLP-CN remains comparable to CN, but per-
forms better than EIG and CLRA. Surprisingly, the super-
vised method LR does not perform well, which is consistent
with results found in [3]. Note that we only use network-
based features and no additional features for training. How-
ever, engineering for more features is a difficult task and
constructing good features itself can be computationally ex-
pensive.

Figure 7 gives ROC curves focused on the low FPR region
for the three large-scale networks. We note that only one
representative method from methods that have similar per-
formance is plotted for the sake of clarity. We observe that
MSLP-Katz performs the best in all three datasets with sig-
nificant improvements over Katz. For a given TPR, MSLP
reduces FPR by 10% on average and at most 20% compared
to others in all datasets. For completeness, we present the
full range of the ROC curve for LiveJournal in Figure 8.
Note that much of the performance boost comes from the
left side of the curve, which corresponds to the area of in-
terest. That is, MSLP achieves good prediction quality for
the highest predicted scores.

While dimensionality reduction methods, such as EIG and
CLRA, tend to perform well in all three datasets, they are
limited to a single low-rank representation of the network.
Furthermore, CLRA has the largest drop in relative per-
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Figure 8: Full ROC curve for LiveJournal.

formance in terms of precision compared to MSLP in the
MySpace dataset, where only 56% of the edges are within
clusters, whereas MSLP achieves the best result. Overall,
the superior performance of MSLP illustrates the effective-
ness of our multi-scale approach.

We note that the majority of time is taken by computing
CLRA at the deepest level and thereafter low-rank approx-
imations of upper levels can be obtained efficiently due to
Algorithm 1. However, CLRA can be easily parallelized as
computing the subspace of each cluster is independent to
other clusters. Thus, MSLP can achieve much more speedup
by using a parallel implementation and serve as a highly
scalable method for link prediction.

6. CONCLUSIONS
In this paper, we have presented a general framework for

multi-scale link prediction by combining predictions from
multiple scales using hierarchical clustering. A novel tree-
structured approximation method is proposed to achieve fast
and scalable multi-scale approximations. Extensive exper-
imental results on large real-world datasets have been pre-
sented to demonstrate the effectiveness of our method. This
significantly widens the accessibility of state-of-the-art prox-
imity measures for large-scale applications.

For future work, we plan to investigate methods to learn
the weights for various levels of the hierarchy, since some
levels may have better predictions and deserve larger weights
in the final prediction. In this work, we use a balanced
hierarchical structure mainly for its simplicity in combining
predictions. However, a more realistic setting would be to
use an unbalanced hierarchical clustering structure. The
issue here is how to combine predictions from different levels
as some links may not receive predictions at certain levels.
We also plan to develop a parallelized version of MSLP as
each level of the hierarchy can be easily parallelized.
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