A Fast Kernel-based Multilevel Algorithm for Graph
Clustering

Inderjit Dhillon
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712

inderjit@cs.utexas.edu

ABSTRACT

Graph clustering (also called graph partitioning) — clus-
tering the nodes of a graph — is an important problem in
diverse data mining applications. Traditional approaches
involve optimization of graph clustering objectives such as
normalized cut or ratio association; spectral methods are
widely used for these objectives, but they require eigen-
vector computation which can be slow. Recently, graph
clustering with a general cut objective has been shown to
be mathematically equivalent to an appropriate weighted
kernel k-means objective function. In this paper, we ex-
ploit this equivalence to develop a very fast multilevel al-
gorithm for graph clustering. Multilevel approaches involve
coarsening, initial partitioning and refinement phases, all of
which may be specialized to different graph clustering ob-
jectives. Unlike existing multilevel clustering approaches,
such as METIS, our algorithm does not constrain the clus-
ter sizes to be nearly equal. Our approach gives a theoretical
guarantee that the refinement step decreases the graph cut
objective under consideration. Experiments show that we
achieve better final objective function values as compared to
a state-of-the-art spectral clustering algorithm: on a series
of benchmark test graphs with up to thirty thousand nodes
and one million edges, our algorithm achieves lower normal-
ized cut values in 67% of our experiments and higher ra-
tio association values in 100% of our experiments. Further-
more, on large graphs, our algorithm is significantly faster
than spectral methods. Finally, our algorithm requires far
less memory than spectral methods; we cluster a 1.2 mil-
lion node movie network into 5000 clusters, which due to
memory requirements cannot be done directly with spectral
methods.

Categories and Subject Descriptors

G.1.8.1 [Numerical Analysis]: Spectral Methods; H.3.3.a
[Information Search and Retrieval]: Clustering; 1.5.3.a
[Pattern Recognition|: Clustering Algorithms

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

KDD’ 05, August 21-24, 2005, Chicago, lllinois, USA.

Copyright 2005 ACM 1-59593-135-X/05/000855.00.

Yugiang Guan
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712

yguan@cs.utexas.edu

Brian Kulis
Dept. of Computer Sciences
University of Texas at Austin
Austin, TX 78712

kulis@cs.utexas.edu

General Terms

Algorithms, Experimentation

Keywords

Graph Clustering, Kernel Methods, Multilevel Methods, Spec-
tral Clustering

1. INTRODUCTION

Graph clustering (also called graph partitioning) is an im-
portant problem in many domains. Circuit partitioning,
VLSI design, task scheduling, bioinformatics, social network
analysis and a host of other problems all rely on efficient and
effective graph clustering algorithms. In many data mining
applications, pairwise similarities between data objects can
be modeled as a graph, and the subsequent problem of data
clustering can be viewed as a graph clustering problem.

The problem of graph clustering has been studied for
decades, and a number of different approaches have been
proposed. Spectral methods have been widely used for graph
clustering [2, 6, 9]. These algorithms use the eigenvectors of
a graph affinity matrix, or a matrix derived from the affin-
ity matrix, to partition the graph. Various spectral algo-
rithms have been developed for a number of different objec-
tive functions, such as normalized cut [9] and ratio cut [2].
Furthermore, extensive research has been done on spectral
postprocessing: going from the eigenvector matrix to a dis-
crete clustering [4, 10].

It was recently shown that a wide class of graph clus-
tering objectives, including ratio cut, ratio association, the
Kernighan-Lin objective and normalized cut, can all be viewed
as special cases of the weighted kernel k-means objective
function [3, 4]. In addition to unifying several different graph
clustering objectives, including a number of spectral clus-
tering objectives, this result implies that a simple weighted
kernel k-means algorithm can be used to optimize graph
clustering objectives. The basic kernel k-means algorithm,
however, relies heavily on effective cluster initialization to
achieve good results, and can often yield poor results.

In this paper, we develop a multilevel algorithm for graph
clustering that uses weighted kernel k-means as the refine-
ment algorithm. Multilevel methods have been used exten-
sively for graph clustering with the Kernighan-Lin objec-
tive, which attempts to minimize the cut in the graph while
maintaining equal-sized clusters [1, 7, 8]. In multilevel al-
gorithms, the graph is repeatedly coarsened level by level
until only a small number of nodes are left. Then, an ini-

Objective Function

maximize s~k IDKS(Ve,Ve)
Vi,eeny Vi c=1 [Ve|

Name

Ratio Association

Vi,..,Vg c=1

i minimize -k 1Ks(ve,v\ve) ‘
‘ Ratio Cut DIZE S et A
‘ Normalized Cut ‘ minimize y~F ks, v\ve) ‘

degree(v.)

Table 1: Examples of graph clustering objectives.
Note that Normalized Association = k— Normalized
Cut.

tial clustering on this small graph is performed. Finally, the
graph is uncoarsened level by level, and at each level, the
clustering from the previous level is refined using the refine-
ment algorithm. This multilevel strategy results in a very
fast and effective graph clustering algorithm. METIS [8] is
perhaps the most popular multilevel algorithm, and is sig-
nificantly faster than spectral methods on very large graphs
when equally sized clusters are desired.

However, all previous multilevel algorithms, such as METIS,

suffer from the serious drawback of restricting clusters to be
of equal size. The algorithm presented in this paper removes
this restriction: instead of a Kernighan-Lin algorithm for the
refinement phase, our algorithm employs weighted kernel k-
means.

We present experimental results on a number of test graphs
to illustrate the advantage of our approach. We show that
our algorithm is significantly faster than eigenvector com-
putation, a necessary step for spectral clustering methods,
on large graphs. We also demonstrate that our algorithm
outperforms a state-of-the-art spectral clustering algorithm
in terms of quality, as measured by the graph objective func-
tion values. On our benchmark test graphs of varying sizes,
the final objective function values of the multilevel algorithm
are better than the spectral algorithm in 100% of runs for
ratio association, and 67% of runs for normalized cut. We
also present results on data arising from real-life data min-
ing applications. We cluster the 1.2 million node IMDB
movie network into 5000 clusters. Running a spectral algo-
rithm directly on this data set would require storage of 5000
eigenvectors, which is prohibitive.

2. GRAPH CLUSTERING

We first introduce a number different graph clustering ob-
jectives. As we will see later, each of the following objectives
may be expressed as special cases of the weighted kernel k-
means objective function, which will motivate our use of
weighted kernel k-means as the algorithm used in the re-
finement phase.

For data given as a graph, a number of different objectives
have been proposed for the graph clustering problem. We
are given a graph G = (V, £, A), consisting of a set of vertices
V and a set of edges € such that an edge between two vertices
represents their similarity. The affinity matrix A is |V| x |V
whose entries represent the weights of the edges (an entry of
A is 0 if there is no edge between the corresponding vertices).

We denote links(A, B) = 37, 4 ;5 Aij; that is, the sum
of the weights of edges from one cluster to the other. Let
degree(A) = links(\A, V), the links to all vertices from nodes
in A.

A list of some of the most common graph clustering objec-

=— Input Graph

Final Clustering—

Q8

Initial Clustering

Coarsening Refining

Figure 1: Overview of the multilevel algorithm (for
k=2).

tives is presented in Table 1. The Kernighan-Lin objective,
another common objective function, is the same as ratio cut
except that clusters are additionally constrained to be of
equal size.

For ratio association, ratio cut and normalized cut, the
most common approach for optimization has been to use a
spectral algorithm. Such an algorithm is derived by relaxing
the above objectives so that a global solution to the relaxed
objective may be found by computing eigenvectors of an ap-
propriate matrix. Once these eigenvectors are computed,
a postprocessing step derives a discrete clustering from the
eigenvectors. See the references [2, 9, 10] for further details
on the spectral algorithms associated with each of these ob-
jectives.

For the Kernighan-Lin objective, the most successful ap-
proach for optimizing the objective has been to use a mul-
tilevel algorithm.

3. THE MULTILEVEL APPROACH

In this section, we develop a new, general algorithm for
graph clustering based on multilevel methods. The multi-
level approach has been made popular by METIS [8], though
a number of multilevel clustering algorithms have been stud-
ied, dating back to [1, 7]. Our algorithm will differ from pre-
vious approaches in that it works for a wide class of graph
clustering objectives, and that all three phases of the algo-
rithm can be specialized for each graph clustering objective.
Below, we describe each phase of the algorithm.

We assume that we are given an input graph, denoted
by Go = (Vo,&o, Ao), as well as the number of partitions
requested, k. See Figure 1 for a graphical overview of the
multilevel approach.

3.1 Coarsening Phase

Given the initial graph Go, the graph is repeatedly trans-
formed into smaller and smaller graphs G1, G2, ..., Gy, such
that |Vo| > |V1| > ... > |Vim|. To coarsen a graph from G; to
Gi+1, a number of different techniques may be used. In gen-
eral, sets of nodes in G; are combined to form supernodes
in Gi+1. When combining a set of nodes into supernodes,
the edge weights between two supernodes in G;+1 are taken
to be the sum of the edge weights between the nodes in G;
comprising the supernodes.

Our coarsening approach works as follows: given a graph,
start with all nodes unmarked. Visit each vertex in a random
order. For each unmarked vertex z, if all neighbors of = have
been marked, mark x and proceed to the next unmarked
vertex. On the other hand, if has an unmarked neighbor,
then merge x with the unmarked vertex y that maximizes

e(z,y)

w(z) — w(y)

I

where e(z,y) corresponds to the edge weight between ver-
tices x and y and w(z) is the weight of vertex z. Then mark
both z and y. Once all vertices are marked, the coarsening
for this level is completed.

As we will see when discussing the connection between
graph clustering and weighted kernel k-means, different graph
clustering objectives induce different vertex weights. For ex-
ample, in normalized cut, the weight of a vertex is its degree,
and (1) reduces to the normalized cut between x and y. For
ratio association, (1) simplifies to the heaviest edge criterion
of METIS, since all vertices have unit weight.

3.2 Initial Clustering Phase

Eventually, the graph is coarsened to the point where very
few nodes remain in the graph. We specify a parameter in-
dicating how small we want the coarsest graph to be; in our
experiments, we stop coarsening when the graph has less
than 20k nodes, where k is the number of desired clusters.
At this point, we perform an initial partitioning by cluster-
ing the coarsest graph.

One way to obtain an initial partitioning is to use the
region growing algorithm of METIS [8]. However, this ap-
proach is inadequate for our purposes since it generates clus-
ters of equal size. We have found the best method for ini-
tialization to be a spectral algorithm. We use the spec-
tral algorithm of Yu and Shi [10], which we generalize to
work with arbitrary weights [4]. Thus our initial cluster-
ing is “customized” for different graph clustering objectives.
Since the coarsest graph is significantly smaller than the in-
put graph, spectral methods are adequate in terms of speed.
We find the spectral methods to yield the best quality of re-
sults, though they are somewhat less efficient than the region
growing algorithm. Hence, when efficiency is a concern, the
region growing algorithm may be used instead.

3.3 Refinement Phase

The final phase of the algorithm is the refinement phase.
Given a graph G;, we form the graph G;—1 (G;—1 is the
same graph used in level 7 — 1 in the coarsening phase).
We extend the clustering from G; to G;—1 as follows: if
a supernode is in a cluster ¢, then all nodes in G; formed
from that supernode are in cluster ¢. This yields an initial
clustering for the graph, which is then improved using a
refinement algorithm. Note that we also run the refinement
algorithm on the coarsest graph.

The algorithm terminates after the refinement algorithm
is run on the original graph Go. Since we have a good ini-
tial clustering at each level, the refinement algorithm often
converges very quickly. Thus, this approach is extremely
efficient.

At each refinement step, our algorithm uses an approach
inspired by the recently-shown theoretical connection be-
tween kernel k-means and spectral clustering [4]. In [4], we
proved that each of the graph clustering objectives given

ALGORITHM 1: Refinement Algorithm.

WEIGHTED_KERNEL_KMEANS(K, k, w,

{r Yoo, {metio)
Input: K: kernel matrix, k: number of clusters,
w: weights for each point, t,4: optional maxi-

tma17

mum number of iterations, {Wﬁo)}lez optional ini-
tial clustering

Output: {m.}*_,: final clustering of the points
1. If no initial clustering is given, initialize the k
clusters 7T§0>, s 7r,(€0) randomly. Set ¢t = 0.

2. For each row ¢ of K and every cluster ¢, compute

2 Ejewﬁt) ijl- j
D ienlt) W)
2 ien wiwiK

..

Jje™

d(i, mc) = K“‘

(o wj)?

3. Find ¢"(i) = argmin d(¢, m.), resolving ties

arbitrarily. Compute the updated clusters as
D = i () = ¢}

4. If not converged or tmae > ¢, set t = ¢t +1
and go to Step 3; Otherwise, stop and output final

clusters {w{" TP}k

Objective Node Weights | Kernel Matrix

Ratio Association | 1 V nodes K=o0cl+A

Ratio Cut 1 V nodes K=0cl—-D+ A

K-L Objective 1 V nodes K=0ol-D+A
Normalized Cut Deg. of node K=ocD 14+ D 1AD!

Table 2: Popular graph clustering objectives with
corresponding weights and kernels given the affinity
matrix A

earlier may be expressed as special cases of the weighted
kernel k-means objective with the correct choice of weights
and kernel matrix. Hence, the weighted kernel k-means al-
gorithm can be directly used to locally optimize these graph
clustering objectives. Each iteration of this algorithm costs
O(nz) time, where nz is the number of nonzero entries in
the kernel matrix.

Algorithm 1 describes the weighted kernel k-means algo-
rithm. The input is the kernel matrix K, the number of
clusters k, weights for the points w, an optional maximum
number of iterations, and an optional initial clustering, de-
noted by {wgo)}lc“:l.

For the Kernighan-Lin (K-L) objective, which requires
equally sized clusters, an incremental kernel k-means algo-
rithm (in which points are swapped to improve the objective
function value) can be used to locally optimize the objective.

In Table 2, we display each of the earlier graph cluster-
ing objectives, along with the choice of weights and kernel
required for the weighted kernel k-means algorithm to mono-
tonically optimize the given graph clustering objective. The
matrix D is a diagonal matrix whose entries correspond to
the sum of the rows of A, the graph affinity matrix. Fi-
nally, o is a real number chosen to be large enough that K
is positive definite. As long as K is positive definite, we

Graph name | #nodes | #edges | Description

DATA 2851 15093 finite element mesh
3ELT 4720 13722 finite element mesh
UK 4824 6837 finite element mesh
ADD32 4960 9462 32-bit adder
WHITAKER3 | 9800 28989 finite element mesh
CRACK 10240 30380 finite element mesh
FE_4ELT?2 11143 32818 finite element mesh
MEMPLUS 17758 54196 memory circuit
BCSSTK30 28294 1007284 | stiffness matrix

Table 3: Test graphs

can theoretically guarantee that the algorithm monotoni-
cally optimizes the corresponding graph clustering objective.
Initialization can be done randomly, or by using another
clustering algorithm, such as METIS or spectral clustering.
In the case of our multilevel algorithm, initialization is ob-
tained from the clustering from the previous level, or the
initial clustering in the case of the coarsest graph.

An extension to the basic batch algorithm presented in [4]
uses local search to avoid local optima. To avoid this prob-
lem, it has been shown [5] that local search can significantly
improve results by allowing the algorithm to escape such
poor optima. The local search algorithm considers the effect
on the objective function of moving a point from one clus-
ter to another. It chooses a chain of moves that causes the
greatest improvement in the objective function value. We
incorporate this local search procedure to improve the qual-
ity of our weighted kernel k-means batch refinement scheme.

4. EXPERIMENTS

In this section, we present a number of experiments to
show that our multilevel weighted kernel k-means algorithm
outperforms spectral methods in terms of quality (normal-
ized cut and ratio association values) as well as computation
time. We also present results of clustering the 1.2 million
node IMDB movie data set graph. In our experiments, we
use the spectral algorithm from [10], generalized to work
for both normalized cut and ratio association. This algo-
rithm is used as the benchmark spectral algorithm in our
experiments, as well as the method for clustering the coars-
est graph in our multilevel implementation. To speed up
computation, we considered only “boundary points” when
running weighted kernel k-means; further discussion is omit-
ted due to lack of space. All the experiments are performed
on a Linux machine with 2.4 GHz Pentium IV processor and
1 GB main memory.

Additionally, we use the following acronyms: mlkkm(0)
stands for our multilevel kernel k-means algorithm with no
local search, mlkkm(20) is our multilevel algorithm with a
local search chain length of 20, kkm stands for kernel k-
means with random initialization, NCV is short for normal-
ized cut value, and RAV is short for ratio association value.

4.1 Clustering of Benchmark Graphs

Table 3 lists 9 test graphs® from various sources and dif-
ferent application domains. Some of them are benchmark

"Downloaded from http://staffweb.cms.gre.ac.uk/c.walshaw/

partition/

mlkkm(0) | kkm | METIS
NCV 2308 | 4788 2643
RAV 18526 | 1349 12744

Table 4: Normalized cut values (NCV) and ratio
association values (RAV) for obtaining 5000 clusters
of the IMDB movie data set using our multilevel
algorithm (mlkkm(0)), kernel k-means (kkm) and
METIS

matrices used to test METIS.

On each of the benchmark graphs, we compared our mul-
tilevel algorithms, mlkkm(0) and mlkkm(20), with the spec-
tral algorithm in terms of objective function values and com-
putation time. We report results for both ratio association
and normalized cut, and when 64 clusters are computed. We
do not report comparisons between our multilevel algorithm
and METIS; in [4], we showed that the spectral algorithm is
superior to METIS in terms of better ratio association and
normalized cut values.

Figure 2 shows the relative performance of the spectral
algorithm compared with our multilevel algorithm in terms
of RAV and computation time. In the left panel, for each
graph we plot the ratio of the RAV of all methods to that
of mlkkm(20) — ratios less than 1 indicate that mlkkm(20)
produces higher RAVs (and thus performs better). We can
see that 100% of the RAVs produced using mlkkm(20) are
higher than those obtained by the spectral algorithm. Also,
we see that mlkkm(20) performs consistently better than
mlkkm(0), which implies that local search improves the RAV
in all cases (maximally by 3%).

In the right panel of Figure 2, we plot the computation
time for the three methods. It is clear that our multilevel
algorithm is much faster than the spectral algorithm. For
example, in the case of ADD32, the spectral algorithm is
48 times slower than mlkkm(20) and 55 times slower than
mlkkm(0).

Results for the normalized cut objective appear in Fig-
ure 3. For each graph, we plot the ratio of NCV of other
methods to that of mlkkm(20). As opposed to ratio as-
sociation, values that are larger than 1 in Figure 3 indi-
cate that mlkkm(20) produces lower NCVs (and thus per-
forms better). We see that 67% of the NCVs produced using
mlkkm(20) are lower than those produced using the spectral
algorithm. We also see that mlkkm(20), which utilizes the
local search technique, performs much better than mlkkm(0)
in many cases.

In terms of computation time, our multilevel methods
again outperform the spectral algorithm in all cases. For
ADD32, spectral is 58 times slower than mlkkm(20) and 60
times slower than mlkkm(0).

4.2 TheIMDB Movie Data Set— A Case Study

The IMDB data set® contains information about movies,
music bands, actors, movie festivals and events. By connect-
ing actors and movies or events in which they participate,
we form a sparse undirected graph with approximately 1.2
million nodes and 7.6 million edges.

It is impractical to run a spectral algorithm directly on
this data set to produce 5000 clusters not only because com-

2Downloaded from http://www.imdb.com/interfaces

1.05 T

64 clusters

[Jspectral
I mikkm(0)
I mikkm(20)

64 clusters

[Ispectral
[Imikkm(0)

[[M mikkm(20)

095 b

Ratio association value (scaled by values of mikkm(20))
Computation time in seconds
£
T
.

0.9 0

data elt uk add32 whitaker3 crack fe_4elt2 memplus besstk30 data 3elt uk add32 whitaker3 crack fe_delt2 rrTempIus lsts‘kSO

Figure 2: Quality and computation time of our multilevel methods compared with the benchmark spectral
algorithm. The left panel plots the ratio of the ratio association value of every algorithm to that of mlkkm/(20)
for 64 clusters. Note that bars below the baseline correspond to cases where mlkkm(20) performs better.
The right panel compares computation times for generating 64 clusters using different algorithms. As an
example, on the ADD32 graph, the spectral algorithm is 48 times slower than mlkkm(20) and 58 times slower
than mlkkm(0).

64 clusters 64 clusters
13 T T T T

_Jspectral [spectral
I mlkkm(0) I mikkm(0)
125 | [mikkm(20) M 7 | | N mikkm(20)

o
&
I

12r b

8
T
I

1151 b

11F b

Computation time in seconds
15 &
T T
. .

Normalized cut value (scaled by values of mikkm(20))

data 3elt uk add32 whitaker3 crack fe_4elt2 memplus besstk30 data 3elt uk add32 whitaker3 crack fe_delt2 memplus besstk30

Figure 3: Quality and computation time of our multilevel methods compared with the benchmark spectral
algorithm. The left panel plots the ratio of the normalized cut value of every algorithm to that of mlkkm(20)
for 64 clusters. Note that bars above the baseline correspond to the cases where mlkkm(20) performs better.
The right panel compares computation times for generating 64 clusters. As an example, on the ADD32
graph, the spectral algorithm is 58 times slower than mlkkm(20) and 60 times slower than mlkkm/(0).

Movies Actors

Harry Potter and the Sorcerer’s Stone (2001)
Harry Potter and the Chamber of Secrets (2002)
Harry Potter and the Prisoner of Azkaban (2004)
Harry Potter and the Goblet of Fire (2005)
Harry Potter: Behind the Magic (2001 TV)
Harry Potter und die Kammer des Schreckens:
Das grobe RTL Special zum Film (2002 TV)

Daniel Radcliffe, Rupert Grint, Emma Watson, Tom Felton

Peter Best, Sean Biggerstaff, Scott Fern, Alfred Enoch, Joshua Herdman
Harry Melling, Matthew Lewis, Devon Murray, Robert Pattinson

James Phelps, Oliver Phelps, Edward Randell, Jamie Waylett

Shefali Chowdhury, Katie Leung, Bonnie Wright, Stanislav Tanevski
Jamie Yeates, Chris Rankin

Table 5: A Selection of Movies and Actors in Cluster 633

1633
1eaaf M
1635
1636
1637

1638

i

1633 1634 1635 1.636 1.637 1638 1639 164
s

x10

161 162 163 164 165 166
nz = 7606432 5 nz = 7606432

Figure 4: Graphical Plots of Cluster 633 of IMDB
(Harry Potter). The right plot shows a closer view
of the cluster circled in the left plot.

puting 5000 eigenvectors of a graph of this size would be
extremely slow but also because storing 5000 eigenvectors
in main memory requires 24 GB, which is prohibitive. Thus
our multilevel algorithm is also considerably more efficient
in terms of memory usage in addition to computation time.
Since we cannot run spectral methods on this data set, we
compare our multilevel algorithm (mlkkm(0)) to METIS and
weighted kernel k-means with random initialization (kkm).
It takes our multilevel algorithm approximately twenty-five
minutes to cluster this graph into 5000 clusters, and the
cluster sizes range from 13 to 7616 (for the normalized cut
objective). Table 4 shows the normalized cut values and
ratio association values for 5000 clusters generated using
these three methods. We see that our multilevel algorithm
is markedly superior to kkm: its NCV is twice as high as
the NCV of mlkkm(0) and the RAV of kkm is less than
one tenth of the RAV of mlkkm(0). Comparing METIS and
mlkkm(0), the latter is superior and achieves a RAV that is
50% higher and a NCV that is 10% lower.

To demonstrate the quality of results, we discuss a sam-
pling of the produced clusters. After clustering, we rear-
range the rows and columns such that rows (columns) in
the same cluster are adjacent to one another. Cluster 633,
circled in the right plot of Figure 4, is of size 121 and
mainly contains “Harry Potter” movies and the actors in
these movies. The left column of Table 5 lists movies in the
cluster, where we see 3 Harry Potter movies that were re-
leased in the past and 1 to be released in November, 2005.
There are also 2 other documentary TV programs. The
right column of Table 5 lists a selection of some of the ac-
tors in the cluster, where we see the major cast members of
the Harry Potter movies, such as Daniel Radcliffe, Rupert
Grint, Emma Watson, etc.

Cluster 3537 contains the short series “Festival nimero”
(No. 1-12), shot in year 1965; cluster 4400 contains the Ko-
rean movie “Chunhyang” and 19 of its cast members who
acted only in this movie in the database. Other small clus-
ters follow this pattern, i.e., most of them are about one
movie or movie series and contain cast members that acted
only in this movie or movie series. Popular actors, direc-
tors or well-known movie festivals are associated with more
people, so generally they belong to much larger clusters.

5. CONCLUSIONS

We have presented a new multilevel algorithm for graph
clustering. This algorithm has key benefits over existing
graph clustering algorithms. Unlike previous multilevel al-
gorithms such as METIS, our algorithm is general and cap-
tures a number of graph clustering objectives. This frees
us from the restriction of equal-size clusters. It has advan-
tages over spectral methods in that the multilevel approach
is considerably faster and gives better final objective func-
tion values.

Using a number of benchmark test graphs, we demon-
strated that, in general, our algorithm produces better ra-
tio association values and normalized cut values when using
spectral initialization at the coarsest level. As the coarsest
graph is significantly smaller than the input graph, spectral
methods are feasible in this case, and the running time of
the algorithm is still much faster than spectral clustering on
the input graph. Spectral methods have attracted intense
study over the last several years as a powerful method for
graph clustering; our results indicate that this may not be
the most powerful technique for partitioning graphs. Fur-
thermore, given an input pairwise similarity matrix between
data vectors, our approach can be viewed as a fast multilevel
algorithm for optimizing the kernel k-means objective.

Our approach also consumes far less memory than spectral
methods. Spectral clustering of a 1.2 million node movie
network into 5000 clusters would require several gigabytes
of storage. On the other hand, we were able to cluster this
network in approximately twenty-five minutes without any
significant memory overhead.

Acknowledgments. This research was supported by
NSF grant CCF-0431257, NSF Career Award ACI-0093404,
and NSF-ITR award 11S-0325116.

6. REFERENCES

[1] T. Bui and C. Jones. A heuristic for reducing fill-in in
sparse matrix factorization. In 6th SIAM Conference on
Parallel Processing for Scientific Computing, pages
445-452, 1993.

(2] P. Chan, M. Schlag, and J. Zien. Spectral k-way ratio cut

partitioning. IEEE Trans. CAD-Integrated Circuits and

Systems, 13:1088—1096, 1994.

I. Dhillon, Y. Guan, and B. Kulis. Kernel k-means,

spectral clustering and normalized cuts. In Proc. 10th

ACM KDD Conference, 2004.

I. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel

k-means, spectral clustering and graph cuts. Technical

Report TR-04-25, University of Texas at Austin, 2004.

I. S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering

of high dimensional text data augmented by local search.

In Proceedings of The 2002 IEEE International Conference

on Data Mining, pages 131-138, 2002.

[6] W. E. Donath and A. J. Hoffman. Lower bounds for the

partitioning of graphs. IBM J. Res. Development,

17:422-425, 1973.

B. Hendrickson and R. Leland. A multilevel algorithm for

partitioning graphs. Technical Report SAND93-1301,

Sandia National Laboratories, 1993.

G. Karypis and V. Kumar. A fast and high quality

multilevel scheme for partitioning irregular graphs. SIAM

J. Sci. Comput., 20(1):359-392, 1999.

J. Shi and J. Malik. Normalized cuts and image

segmentation. IEEE Trans. Pattern Analysis and Machine

Intelligence, 22(8):888-905, August 2000.

[10] S. X. Yu and J. Shi. Multiclass spectral clustering. In

International Conference on Computer Vision, 2003.

3

(4

5

[7

8

[9

