
Fast Coordinate Descent Methods with Variable Selection
for Non-negative Matrix Factorization

Cho-Jui Hsieh
Dept. of Computer Science
University of Texas at Austin
Austin, TX 78712-1188, USA
cjhsieh@cs.utexas.edu

Inderjit S. Dhillon
Dept. of Computer Science
University of Texas at Austin
Austin, TX 78712-1188, USA
inderjit@cs.utexas.edu

ABSTRACT
Nonnegative Matrix Factorization (NMF) is an effective di-
mension reduction method for non-negative dyadic data, and
has proven to be useful in many areas, such as text mining,
bioinformatics and image processing. NMF is usually for-
mulated as a constrained non-convex optimization problem,
and many algorithms have been developed for solving it. Re-
cently, a coordinate descent method, called FastHals [3], has
been proposed to solve least squares NMF and is regarded
as one of the state-of-the-art techniques for the problem. In
this paper, we first show that FastHals has an inefficiency
in that it uses a cyclic coordinate descent scheme and thus,
performs unneeded descent steps on unimportant variables.
We then present a variable selection scheme that uses the
gradient of the objective function to arrive at a new coor-
dinate descent method. Our new method is considerably
faster in practice and we show that it has theoretical con-
vergence guarantees. Moreover when the solution is sparse,
as is often the case in real applications, our new method
benefits by selecting important variables to update more of-
ten, thus resulting in higher speed. As an example, on a text
dataset RCV1, our method is 7 times faster than FastHals,
and more than 15 times faster when the sparsity is increased
by adding an L1 penalty. We also develop new coordinate
descent methods when error in NMF is measured by KL-
divergence by applying the Newton method to solve the
one-variable sub-problems. Experiments indicate that our
algorithm for minimizing the KL-divergence is faster than
the Lee & Seung multiplicative rule by a factor of 10 on the
CBCL image dataset.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; G.1.6 [Numerical
Analysis]: Optimization

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
Non-negative matrix factorization (NMF) ([20, 14]) is a

popular matrix decomposition method for finding non-negative
representations of data. NMF has proved useful in dimen-
sion reduction of image, text, and signal data. Given a ma-
trix V ∈ R

m×n, V ≥ 0, and a specified positive integer k,
NMF seeks to approximate V by the product of two non-
negative matrices W ∈ R

m×k and H ∈ R
k×n. Suppose each

column of V is an input data vector, the main idea behind
NMF is to approximate these input vectors by nonnegative
linear combinations of nonnegative “basis” vectors (columns
of W ) with the coefficients stored in columns of H.

The distance between V and WH can be measured by var-
ious distortion functions — the most commonly used is the
Frobenius norm, which leads to the following minimization
problem:

min
W,H≥0

f(W, H)≡
1

2
‖V −WH‖2

F =
1

2

X

i,j

(Vij−(WH)ij)
2 (1)

To achieve better sparsity, researchers ([7, 22]) have pro-
posed adding regularization terms, on W and H, to (1). For
example, an L1-norm penalty on W and H can achieve a
more sparse solution:

min
W,H≥0

1

2
‖V − WH‖2

F + ρ1

X

i,r

Wir + ρ2

X

r,j

Hrj . (2)

One can also replace
P

i,r Wir and
P

r,j Hrj by Frobenius
norm of W and H. Note that usually m ≫ k and n ≫ k.
Since f is non-convex, we can only hope to find a sta-
tionary point of f . Many algorithms ([15, 5, 1, 23]) have
been proposed for this purpose. Among them, Lee & Se-
ung’s multiplicative-update algorithm [15] has been the most
common method. Recent methods follow the Alternating
Nonnegative Least Squares (ANLS) framework suggested by
[20]. This framework has been proved to converge to station-
ary points by [6] as long as one can solve each nonnegative
least square sub-problem exactly. Among existing methods,
[18] proposes a projected gradient method, [11] uses an ac-
tive set method, [10] applies a projected Newton method,
and [12] suggests a modified active set method called Block-

Pivot for solving the non-negative least squares sub-problem.
Very recently, [19] developed a parallel NMF solver for large-
scale web data. This shows a practical need for further scal-
ing up NMF solvers, especially when the matrix V is sparse,
as is the case for text data or web recommendation data.

Coordinate descent methods, which update one variable
at a time, are efficient at finding a reasonable solution effi-
ciently, a property that has made these methods successful
in large scale classification/regression problems. Recently,



a coordinate descent method, called FastHals [3], has been
proposed to solve the least squares NMF problem (1). Com-
pared to methods using the ANLS framework which spend
significant time in finding an exact solution for each sub-
problem, a coordinate descent method can efficiently give a
reasonably good solution for each sub-problem and switch
to the next round. Despite being a state-of-the-art method,
FastHals has an inefficiency in that it uses a cyclic coordi-
nate descent scheme and thus, may perform unneeded de-
scent steps on unimportant variables. In this paper, we
present a variable selection scheme that uses the gradient
of the objective function to arrive at a new coordinate de-
scent method. Our method is considerably faster in practice
and we show that it has theoretical convergence guarantees,
which was not addressed in [3]. We conduct experiments on
large sparse datasets, and show that our method generally
performs 2-3 times faster than FastHals. Moreover when the
solution is sparse, as is often the case in real applications,
our new method benefits by selecting important variables to
update more often, thus resulting in higher speed. As an
example, on a text dataset RCV1, our method is 7 times
faster than FastHals, and more than 15 times faster when
the sparsity is increased by adding an L1 penalty.

Another popular distortion measure to minimize is the
KL-divergence between V and WH:

min
W,H≥0

L(W, H) =
X

i,j

Vij log(
Vij

(WH)ij
)−Vij +(WH)ij (3)

The above problem has been shown to be connected to Prob-
abilistic Latent Semantic Analysis (PLSA) [4]. As we will
point out in Section 3, problem (3) is more complicated than
(1) and algorithms in the ANLS framework cannot be easily
extended to solve (3). For this problem, [3] proposes to solve
by a sequence of local loss functions — however, a drawback
of the method in [3] is that it will not converge to a station-
ary point of (3). In this paper we propose a cyclic coordinate
descent method for solving (3). Our new algorithm applies
the Newton method to get a better solution for each vari-
able, which is better compared to working on the auxiliary
function as used in the multiplicative algorithm of [15]. As a
result, our cyclic coordinate descent method converges much
faster than the multiplicative algorithm. We further provide
theoretical convergence guarantees for cyclic coordinate de-
scent methods under certain conditions.

The paper is organized as follows. In Section 2, we de-
scribe our coordinate descent method for least squares NMF
(1). The modification for the coordinate descent method for
solving KL-NMF (3) is proposed in Section 3. Section 4
discusses the relationship between our methods and other
optimization techniques for NMF, and Section 5 points out
some important implementation issues. The experiment re-
sults are given in Section 6. The results show that our meth-
ods are more efficient than other state-of-art methods.

2. COORDINATE DESCENT METHOD FOR
LEAST SQUARES NMF

2.1 Basic update rule for one element
The coordinate descent method updates one variable at

a time until convergence. We first show that a closed form
update can be performed in O(1) time for least squares NMF
if certain quantities have been pre-computed. Note that in
this section we focus on the update rule for variables in W —
the update rule for variables in H can be derived similarly.

Coordinate descent methods aim to conduct the following
one variable updates:

(W, H) ← (W + sEir, H)

where Eir is a m×k matrix with all elements zero except the
(i, r) element which equals one. Coordinate descent solves
the following one-variable subproblem of (1) to get s:

min
s:Wir+s≥0

gW
ir (s) ≡ f(W + sEir, H). (4)

We can rewrite gW
ir (s) as

gW
ir (s) =

1

2

X

j

(Vij − (WH)ij − sHrj)
2

= gW
ir (0) + (gW

ir )′(0)s +
1

2
(gW

ir )′′(0)s2. (5)

For convenience we define

GW ≡ ∇W f(W, H) = WHHT − V HT . (6)

and GH ≡ ∇Hf(W, H) = W T WH − W T V. (7)

Then we have

(gW
ir )′(0) = (GW )ir = (WHHT − V HT )ir

and (gW
ir )′′(0) = (HHT )rr.

Since (5) is a one-variable quadratic function with the con-
straint Wir + s ≥ 0, we can solve it in closed form:

s∗=max
“

0, Wir−(WHHT −V HT )ir/(HHT )rr

”

−Wir. (8)

Coordinate descent algorithms then update Wir to

Wir ← Wir + s∗. (9)

The above one variable update rule can be easily extended to
NMF problems with regularization as long as the gradient
and second order derivative of sub-problems can be easily
computed. For instance, with the L1 penalty on both W
and H as in (2), the one variable sub-problem is

ḡW
ir (s) =

„

(WHHT−V HT )ir+ρ1

«

s+
1

2
(HHT )rrs

2+ḡW
ir (0),

and thus the one variable update becomes

Wir ←max
“

0, Wir − ((WHHT − V HT )ir + ρ1)/(HHT )rr

”

.

Compared to (8), the new Wir is shifted left to zero by
the factor ρ1

(HHT )rr
, so the resulting Wir generally has more

zeros.
A state-of-the-art cyclic coordinate descent method called

FastHals is proposed in [3], which uses the above one variable
update rules.

2.2 Variable selection strategy
With the one variable update rule, FastHals [3] conducts a

cyclic coordinate descent. It first updates all variables in W
in cyclic order, and then updates variables in H, and so on.
Thus the number of updates performed for each variable is
exactly the same. However, an efficient coordinate descent
method should update variables with frequency proportional
to their “importance”. In this paper, we exhibit a carefully
chosen variable selection scheme (with not too much over-
head) to obtain a new coordinate descent algorithm that
has the ability to select variables according to their “impor-
tance”, thus leading to significant speedups. Similar strate-
gies has been employed in Lasso or feature selection prob-
lems [17, 21]. To illustrate the idea, we take a text dataset
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Figure 1: Illustration of our variable selection scheme. Figure 1(a) shows that our method GCD reduces the objective value
more quickly than FastHals. With the same number of coordinate updates (as specified by the vertical dotted line in Figure
1(a)), we further compare the distribution of their coordinate updates. In Figure 1(b) and 1(c), the X-axis is the variables
of H listed by descending order of their final values. The solid line gives their final values, and the light blue bars indicate
the number of times they are chosen. The figures indicate that FastHals updates all variables uniformly, while the number of
updates for GCD is proportional to their final values, which helps GCD to converge faster.

RCV1 with L1 penalty as an example. In Figures 1(b) and
1(c) the variables of the final solution H are listed on the
X-axis — note that the solution is sparse as most of the
variables are 0. Figure 1(b) shows the behavior of FastHals,
which clearly shows that each variable is chosen uniformly.
In contrast, as shown in Figure 1(c), by applying our new
coordinate descent method, the number of updates for the
variable is roughly proportional to their final values. For
most variables with final value 0, our algorithm will never
pick them to update. Therefore our new method focuses
on nonzero variables and reduces the objective value more
efficiently. Figure 1(a) shows that we can attain a 10-fold
speedup by applying our variable selection scheme.

We now show that with an appropriate data structure,
we can select variables that lead to maximum decrease of
objective function in O(k+log m) time with a pre-computed
gradient. However, O(log m) can be expensive in practice, so
we further provide an alternate efficient row-based variable
selection scheme that needs O(k) time per update.

Before presenting our variable selection method, we first
introduce our framework. Similar to FastHals, our algorithm
switches between W and H in the outer iterations:

(W 0, H0) → (W 1, H0) → (W 1, H1) → · · · (10)

Between each outer iteration are the following inner updates:

(W i, Hi) → (W i,1, Hi) → (W i,2, Hi) · · · . (11)

Later we will discuss the reason why we have to focus on W
or H for a sequence of updates.

Suppose we want to choose variables to update in W . If
Wir is selected, as discussed in Section 2.1, the optimal up-
date will be (8), and the function value will be decreased by

DW
ir ≡ gW

ir (0)− gW
ir (s∗) = −GW

ir s∗ −
1

2
(HHT )rr(s

∗)2. (12)

DW
ir measures how much we can reduce the objective value

by choosing the coordinate Wir. Therefore, if DW can be
maintained, we can greedily choose variables according to
it. If we have GW , we can compute s∗ by (8) and compute
DW by (12), and so an element of DW can be computed in
O(1) time. At the beginning of a sequence of W ’s updates,
we can precompute GW . The details will be provided in
Section 2.3. Now assume we already have GW , and Wir is
updated to Wir +s∗. Then GW will remain the same except
for the ith row, which will be replaced by

GW
ij ← GW

ij + s∗(HHT )rj ∀j = 1, . . . , k. (13)

Using (13), we can maintain GW in O(k) time after each
variable update of W . Thus DW can also be maintained in
O(k) time.

However, maintaining GH at each inner update of W is
more expensive. From (7), when each element of W is
changed, the whole matrix GH will be changed, thus ev-
ery element of DH may also change. So the time cost for
maintaining DH is at least O(kn), which is too much com-
pared to O(k) for maintaining DW . This is the reason that
we follow the alternative minimization scheme and restrict
ourselves to either W or H for a sequence of inner updates.

After the i-th row of GW is updated, we can immediately
maintain the i-th row of DW by (12). To select the next
variable-to-update, we want to select the index (i∗, r∗) that
satisfies (i∗, r∗) = arg maxi,r DW

ir . However, a brute force
search through the whole matrix DW will require O(mk)
time. To overcome this, we can store the largest value vi

and index qi for each row of DW , i.e.,

qi = arg max
j

DW
ij , vi = DW

i,qi
. (14)

As in (13), when Wir is updated, only the ith row of GW

and DW will change. Therefore the vector q will remain
the same except for one component qi. Since the ith row of
DW contains k elements and each element can be computed
in constant time, we can recalculate qi in O(k) time. Each
time we only change the largest value in {qi | i = 1, . . . , m},
therefore we can store these values using a heap data struc-
ture so that each retrieval and re-calculation of the largest
value can be done in O(log m) time. This way the total cost
for one update will be O(k + log m).

A stopping condition is needed for a sequence of updates.
At the beginning of updates to W , we can store

pinit = max
i,j

DW
ij . (15)

Our algorithm then iteratively chooses variables to update
until the following stopping condition is met:

max
i,j

DW
ij < ǫpinit, (16)

where ǫ is a small positive constant. Note that (16) will be
satisfied in a finite number of iterations as f(W, H) is lower
bounded, and so the minimum for f(W, H) with fixed H is
achievable. A small ǫ value indicates each sub-problem is



solved to high accuracy, while a larger ǫ value means our al-
gorithm switches more often between W and H. We choose
ǫ = 0.001 in our experiments.

In practice, this method can work when k is large. How-
ever, when k ≪ m, the log m term in the update cost will
dominate. Moreover, each heap operation costs more time
than a simple floating point operation. Thus we further de-
sign a more efficient row-based variable selection strategy.

First, we have an observation that when one Wir is up-
dated, only the ith row of DW will be changed. Therefore
if we update variables in the ith row and there is a variable
in the jth row with larger potential decrease DW

jr , we will

not change DW
jr . Choosing the largest DW value in one row

costs O(k), which is cheaper than O(log m) when k small.
Therefore we can iteratively update variables in the ith row
(that lead to maximum decrease in objective function) until
the inner stopping condition is met:

max
j

DW
ij < ǫpinit. (17)

Our algorithm then update variables in the (i+1)-st row, and
so on. Since changes in other rows will not affect the DW

values in the ith row, after our algorithm sweeps through
row 1 to row m, (17) will be met for each row, thus the
stopping condition (16) will also be met for the whole W .

2.3 Time complexity analysis

Algorithm 1 GCD for least squares NMF

• Given: V, k, ǫ (typically, ǫ = 0.001)
• Output: W, H
• Compute P V H = V HT , P HH = HHT , P WV =

W T V , P WW = W T W
• Initialize Hnew ← 0
• While (not converged)

1. Compute P V H ← P V H +V (Hnew)T according to
the sparsity of Hnew

2. W new ← 0
3. GW ← WP HH − P V H

4. SW
ir ← max(Wir −

GW
ir

P HH
rr

, 0) − Wir for all i, r.

5. DW
ir ← −GW

ir SW
ir − 1

2
P HH

rr (SW
ir )2 for all i, r.

6. qi ← arg maxj DW
ij for all i = 1, . . . , m, and

pinit ← maxi DW
i,qi

7. For i = 1, 2, . . . , m
– While DW

i,qi
< ǫpinit

7.1. s∗ ← SW
i,qi

7.2. P WW
qi,: ← P WW

qi,: +s∗Wqi,: (Also do a sym-

metric update for P WW
:,qi

)
7.3. W new

i,qi
← W new

i,qi
+ s∗

7.4. GW
i,: ← GW

i,: + s∗P HH
qi,:

7.5. SW
ir ← max(Wir −

GW
ir

P HH
rr

, 0)−Wir for all

r = 1, . . . , k.
7.6. DW

ir ← −GW
ir SW

ir − 1
2
P HH

rr (SW
ir )2 for all

r = 1, . . . , k.
7.7. qi ← arg maxj DW

ij .
8. W ← W + W new

9. For updates to H, repeats analogues steps to Step
1 through Step 8.

Our coordinate descent method with variable selection
strategy can be summarized in Algorithm 1. We call our
new coordinate descent algorithm GCD– Greedy Coordinate

Table 1: Time complexity analysis for Algorithm 1. We
focus on time cost for one complete update of W . Here
t is average number of inner updates, and s is number of
nonzeros in V .

dense V sparse V

Compute matrix V HT (Step 1) min(O(mt)
, O(nmk))

min(O( st
n

)
, O(sk))

Initialize gradient/decreasing
matrix (Steps 3 to 6)

O(mk2) O(mk2)

Update inner product (Steps 7.2) O(tk) O(tk)
Update gradient and decreasing
matrix (Step 7.4 to 7.7)

O(tk) O(tk)

Descent since we take a greedy step of maximum decrease in
objective function. The one-variable update and variable se-
lection strategy are in the inner loop (step 7) of Algorithm 1.
Before the inner loop, we have to initialize the gradient GW

and objective function decrease matrix DW . GW in (6) has
two terms WHHT and V HT (in Algorithm 1, we use P V H ,
P HH , P WV and P WW to store matrices V HT , HHT , W T V
and W T W ). For the first term, since HHT is maintained in
an analogous way to step 7.2), computing W (HHT ) costs
O(mk2) time. For the second term V HT , we can also store
the updates in Hnew so that Hnew = Hi+1 − Hi, and then
updates V HT by step 1. Assume that, on average, step
7 has t coordinate updates, then the number of nonzeros in
Hnew is at most t. With sparse matrix multiplication, step 1
costs O(mt). However, when Hnew is dense, we should use a
dense matrix multiplication for step 1, which costs O(nmk)
and is independent of t.

Table 1 summarizes the cost of one outer iteration (step 1
to 9). To get the amortized cost per coordinate update, we
can divide the numbers by t. We first consider when V is
dense. When t < k2, O(mk2) will dominate the complexity.
When k2 ≤ t ≤ nk, computational time for computing V HT

dominates the complexity and the time cost per coordinate
update is O(m). In this case, time cost per update is the
same as FastHals. When t is larger than nk, the time cost
per update will decrease. We summarize the amortized cost
per update as below:

8

>

>

>

<

>

>

>

:

O(mk2

t
) if k2 > t

O(m) if nk > t ≥ k2

O(nmk
t

) if nm > t ≥ nk

O(k) if t > nm

When V is sparse, assume there are s nonzero elements in
V , the complexity for the computing V HT is modified while
others remain the same.

3. COORDINATE DESCENT METHOD FOR
NMF WITH KL-DIVERGENCE

To apply coordinate descent for solving NMF with KL-
divergence (3), we consider the one-variable sub-problem:

hir(s) = L(W + sEir, H) (18)

=
n

X

j=1

−Vij log

„

(WH)ij + sHrj

«

+ sHrj + constant.

Here we discuss the updates to W , the update rules for
H can be derived similarly. Unlike the one-variable sub-
problem of least squares NMF (5), minimizing hir(s) has no
closed form solution. Thus FastHals fails to derive a coordi-



nate descent method for KL-divergence. Instead of solving
the one-variable sub-problem hir(s), FastHals in [3] mini-
mizes the following one-variable problem for each update:

h̄ir(s) =
X

j

−(Vij −
X

t 6=r

WitHtj) log(sHrj) + sHrj .

The above problem has a closed form solution, but the solu-
tion is different from the one-variable sub-problem (18), thus
FastHals solves a different problem and may converge to a
different final solution. Therefore we can say that applica-
tion of coordinate descent to solve NMF with KL-divergence
has not been studied before.

In this section, we propose the use of Newton’s method to
solve the sub-problems. Since hir is twice differentiable, we
can iteratively update s by Newton direction:

s ← max(−Wir, s − h′
ir(s)/h′′

ir(s)), (19)

where the first term comes from the non-negativity con-
straint. The first derivative h′

ir(s) and the second derivative
h′′

ir(s) can be written as

h′
ir(s) =

n
X

j=1

Hrj

„

1 −
Vij

(WH)ij + sHrj

«

. (20)

h′′
ir(s) =

n
X

j=1

VijH
2
rj

((WH)ij + sHrj)2
. (21)

For KL-divergence, we need to take care of the behavior
when Vij = 0 or (WH)ij = 0. For Vij = 0, by analysing the
asymptotic behavior, Vij log((WH)ij) = 0 for all positive
values of (WH)ij , thus we can ignore those entries. Also,
we do not consider the case that one row of V is entirely zero,
which can be removed by preprocessing. When (WH)ij +
sHrj = 0 for some j, the Newton direction −h′

ir(s)/h′′
ir(s)

should be infinity. In this situation we reset s so that Wir +s
is a small positive value and restart the Newton method.
When Hrj = 0 for all j = 1, . . . , n, the second derivative
(21) is zero. In this case hir(s) is constant, thus we do not
need to change Wir.

To execute Newton updates, each evaluation of h′
ir(s) and

h′′
ir(s) takes O(n) time for the summation. For general func-

tions, we often need a line search procedure to check suffi-
cient decrease from each Newton iteration. However, as we
now deal with the special function (18), we prove the fol-
lowing theorem to show that Newton method without line
search converges to the optimum of each sub-problem:

Theorem 1
If a function f(x) with domain x ≥ 0 can be written in the
following form

f(x) = −ci

l
X

i=1

log(ai + bix) +
X

j

bix,

where ai > 0, bi, ci ≥ 0 ∀i, then the Newton method without
line search converges to the global minimum of f(x).

The proof based on the strict convexity of log function is
in the Appendix of our technical report [9]. By the above
Theorem, we can iteratively apply (19) until convergence.
In practice, we design the following stopping condition for
Newton method:

|st+1 − st| < ǫ|Wir + st| for some ǫ > 0,

where st is the current solution and st+1 is obtained by (19).
As discussed earlier, variable selection is an important is-

sue for coordinate descent methods. After each inner update

Algorithm 2 CCD for NMF with KL-divergence

1. Given: V, k, W, H, ǫ (typically, ǫ = 0.5)
2. Output: W, H
3. P WH ← WH.
4. While (not converged)

4.0.1. For i = 1, . . . , m (updates in W )
• For r = 1, . . . , k

– While 1
∗ Compute s by (19).
∗ wold = Wir.
∗ Wir ← Wir + s.
∗ Maintain (WH)i,: by (22).
∗ If |s| < ǫwold, Break

4.0.2. For updates to H, repeats steps analogous
to Step 4.0.1

Wir ← Wir + s∗, the gradient for hit(s) will change for all
t = 1, . . . , k. As mentioned in Section 2, for NMF with
square loss we can update the gradient for one row of W in
O(k) time. However, there is no easy way to update the val-
ues together for KL-divergence. To maintain the gradient,
we need to update (WH)ij for all j = 1, . . . , n by

(WH)ij = (WH)ij + s∗Hrj ∀j, (22)

and then recompute h′
it(0) for all t = 1, . . . , k by (20).

Therefore maintaining h′
it(0) will take O(kn) time. This

is expensive compared to the time cost O(n) for updating
one variable, so we just update variables in a cyclic order.
Thus our method for KL-divergence is a Cyclic Coordinate
Descent (CCD). Notice that to distinguish our method for
KL-divergence with FastHals (cyclic coordinate descent for
least squares NMF), through this paper CCD indicates our
method for KL-divergence.

In summary, our algorithm chooses each variable in W
once in a cyclic order, minimizing the corresponding one-
variable sub-problem, and then switches to H. Each New-
ton update takes O(n) time, so each coordinate update costs
O(nd̄) time where d̄ is the average number of Newton itera-
tions. Algorithm 2 summarizes the details.

4. CONVERGENCE PROPERTIES AND RE-
LATIONS WITH OTHER METHODS

4.1 Methods for Least Squares NMF
For NMF, f(W, H) is convex in W or H but not simulta-

neously convex in both W and H, so it is natural to apply
alternating minimization, which iteratively minimizes the
following two problems

min
W≥0

f(W, H) and min
H≥0

f(W, H) (23)

until convergence. As mentioned in [10], we can categorize
NMF solvers into two groups: exact methods and inexact
methods. Exact methods are guaranteed to achieve opti-
mum for each sub-problem (23), while inexact methods only
guarantee decrease in function value. Each sub-problem for
least squares NMF can be decomposed into a sequence of
non-negative least square (NNLS) problems. For example,
minimization with respect to H can be decomposed into
minhi≥0 ‖V −Whi‖

2, where hi is the ith column of H. Since
the convergence property for exact methods has been proved
in [6], any NNLS solver can be applied to solve NMF in an
alternating fashion. However, as mentioned before, very re-



cently an inexact method FastHals has been proposed pro-
posed [3]. The success of FastHals shows that exactly solving
sub-problems may slow down convergence. This makes sense
because when (W, H) is still far from optimum, there is no
reason in paying too much effort for solving sub-problems ex-
actly. Since GCD does not solve sub-problems exactly, it can
avoid paying too much effort for each sub-problem. On the
other hand, unlike most inexact methods, GCD guarantees
the quality of each updates by setting a stopping condition
and, thus converges faster than inexact methods.

Moreover, most inexact methods do not have a theoreti-
cally convergence proof, thus the performance may not be
stable. In contrast, we prove that GCD converges to a sta-
tionary point by the following theorem:

Theorem 2
For least squares NMF, if a sequence {(Wi, Hi)} is gener-
ated by GCD, then every limit point of this sequence is a
stationary point.

The proof can be found in the appendix of our technical
report [9]. This convergence result holds for any inner stop-
ping condition ǫ < 1, thus it is different from the proof
for exact methods, which assumes that each sub-problem is
solved exactly. It is easy to extend the convergence result
for GCD to regularized least squares NMF.

4.2 Methods for NMF with KL divergence
NMF with KL divergence is harder to solve compared

to square loss. Assume an algorithm applies an iterative
method to solve minW≥0 f(W, H), and needs to compute the
gradient at each iteration. After computing the gradient (6)
at the beginning, least squares NMF solvers can maintain
the gradient in O(mk2) time when W is updated. So it can
do many inner updates for W with comparatively less effort
O(mk2) ≪ O(nmk). Almost all least squares NMF solvers
take advantage of this fact. However, for KL-divergence, the
gradient (20) cannot be maintained within O(nmk) time af-
ter each update of W , so the cost for each sub-problem is
O(nmkt) where t is the number of inner iterations, which is
large compared to O(nmk) for square loss.

Our algorithm (CCD) spends O(nmkd̄) time where d̄ is
the average number of Newton iterations, while the multi-
plicative algorithm spends O(nmk) time. However, CCD has
a better solution for each variable because we use a second
order approximation of the actual function, which is better
compared to working on the auxiliary function as used in
multiplicative algorithm proposed by [15]. Experiments in
Section 6 show CCD is much faster.

In addition to the practical comparison, the following the-
orem proves CCD converges to a stationary point under cer-
tain condition. FastHals for least squares NMF can also be
covered by this theorem because it is also a cyclic coordinate
descent method.

Theorem 3
For any limit points (W ∗, H∗) of CCD (or FastHals), assume
w∗

r is the rth column of W ∗ and h∗
r is the rth row of H∗, if

‖w∗
r‖ > 0, ‖h∗

r‖ > 0 ∀r = 1, . . . , k, (24)

then (W ∗, H∗) is a stationary point of (3) (or (1)).

With the condition (24), the one-variable sub-problems for
the convergence subsequence are strictly convex. Then the
proof follows the proof of Proposition 3.3.9 in [2]. For KL-
NMF, (24) is violated only when corresponding row/columns

of V are all zero (otherwise the objective value will be infin-
ity). Therefore, zero row/columns of V can be removed by
preprocessing to ensure the convergence of CCD. For least
squares NMF, usually (24) holds in practice so that FastHals

also converges to a stationary point.
For CCD with regularization on both W and H, each one-

variable sub-problem becomes strictly quasiconvex, thus we
can apply Proposition 5 in [6] to prove the following theorem:

Theorem 4
Any limit point (W ∗, H∗) of CCD (or FastHals) is a station-
ary point of (3) (or (1)) with L1 or L2 regularization on
both W and H.

5. IMPLEMENTATION ISSUES

5.1 Implementation with MATLAB and C
It is well known that MATLAB is very slow in loop opera-

tions and thus, to implement GCD, the“for loop” in Step 7 of
Algorithm 1 is slow in MATLAB. To have an efficient imple-
mentation, we transfer three matrices W, GW , HHT to C by
MATLAB-C interface in Step 7. At the end of the loop, our
C code returns W new back to the main MATLAB program.
Although this implementation gives an overhead to transfer
O(nk + mk) size matrices, our algorithm still outperforms
other methods in experiments. In the future, it is possible to
directly use BLAS3 library to have a faster implementation
in C.

5.2 Stopping Condition
The stopping condition is important for NMF solvers.

Here, we adopt projected gradient as stopping condition as
in [18]. The projected gradient for f(W, H), i.e., ∇P f(W, H)
has two parts including ∇P

W f(W, H) and ∇P
Hf(W, H), where

∇P
W f(W, H)ir ≡

(

∂
∂Wir

f(W, H) if Wir > 0,

min(0, ∂
∂Wir

f(W, H)) if Wir = 0.
(25)

∇P
W f(W, H) can be defined in a similar way. According to

the KKT condition, (W ∗, H∗) is a stationary point if and
only if ∇P f(W ∗, H∗) = 0, thus we can use ∇P f(W ∗, H∗)
to measure how close we are to a stationary point. We stop
the algorithm after the norm of projected gradient satisfies
the following stopping condition:

‖∇P f(W, H)‖2
F ≤ ǫ‖∇P f(W 0, H0)‖2

F ,

where W 0 and H0 are initial points.

6. EXPERIMENTS
In this section, we compare the performance of our algo-

rithms with other NMF solvers. All sources used for our
comparisons are available at http://www.cs.utexas.edu/

~cjhsieh/nmf. All the experiments were executed on 2.83
GHz Xeon X5440 machines with 32G RAM and Linux OS.

6.1 Comparison on dense datasets
For least squares NMF, we compare GCD with three other

state-of-the-art solvers:
1. ProjGrad: the projected gradient method in [18]. We

use the MATLAB source code at http://www.csie.

ntu.edu.tw/~cjlin/nmf/.
2. BlockPivot: the block-pivot method in [12]. We use

the MATLAB source code at http://www.cc.gatech.
edu/~hpark/nmfsoftware.php.

http://www.cs.utexas.edu/~cjhsieh/nmf
http://www.cs.utexas.edu/~cjhsieh/nmf
http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.cc.gatech.edu/~hpark/nmfsoftware.php
http://www.cc.gatech.edu/~hpark/nmfsoftware.php


Table 2: The comparisons for least squares NMF solvers on dense datasets. For each method we present time/FLOPs
(number of floating point operations) cost to achieve the specified relative error. The method with the shortest running time
is boldfaced. The results indicate that GCD is most efficient both in time and FLOPs.

dataset m n k relative error
Time (in seconds)/FLOPs

GCD FastHals ProjGrad BlockPivot

Synth03 500 1,000
10 10−4 0.6/0.7G 2.3/2.9G 2.1/1.4G 1.7/1.1G
30 10−4 4.0/5.0G 9.3/16.1G 26.6/23.5G 12.4/8.7G

Synth08 500 1,000
10 10−4 0.21/0.11G 0.43/0.38G 0.53/0.41G 0.56/0.35G
30 10−4 0.43/0.46G 0.77/1.71G 2.54/2.70G 2.86/1.43G

CBCL 361 2,429 49
0.0410 2.3/2.3G 4.0/10.2G 13.5/14.4G 10.6/8.1G
0.0376 8.9/8.8G 18.0/46.8G 45.6/49.4G 30.9/29.8G
0.0373 14.6/14.5G 29.0/75.7G 84.6/91.2G 51.5/53.8G

ORL 10,304 400 25
0.0365 1.8/2.7G 6.5/14.5G 9.0/9.1G 7.4/5.4G
0.0335 14.1/20.1G 30.3/66.9G 98.6/67.7G 33.9/38.2G
0.0332 33.0/51.5G 63.3/139.0G 256.8/193.5G 76.5/82.4G
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(a) Objective value for Yahoo-
News dataset
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(b) Project gradient for Yahoo-
News dataset
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(c) L1 regularized objective value
for Yahoo-News dataset, with
ρ1 = 10, ρ2 = 20
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(d) Objective value for MNIST
dataset
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(e) Projected gradient for MNIST
dataset
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(f) L1 regularized objective value
for NMIST dataset with ρ1 =
50, 000, ρ2 = 100, 000
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(g) Objective value for RCV1
dataset
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(h) Projected gradient for RCV1
dataset
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(i) L1 regularized objective value
for RCV1 dataset with ρ1 =
0.005, ρ2 = 0.05

Figure 2: Time comparison for large sparse datasets. The result indicate that GCD is both faster and converges to better
solutions.



3. FastHals: Cyclic coordinate descent method in [3]. We
implemented the algorithm in MATLAB.

For GCD, we set the inner stopping condition ǫ to be 0.001.
We test the performance on the following dense datasets:

1. Synthetic dataset: Following the process in [12], we
generate the data by first randomly creating W and
H, and then compute V = WH. We generate two
datasets Synth03 and Synth08, the suffix numbers in-
dicate 30% or 80% variables in solutions are zeros.

2. CBCL image dataset: http://cbcl.mit.edu/cbcl/
software-datasets/FaceData2.html

3. ORL image dataset: http://www.cl.cam.ac.uk/
research/dtg/attarchive/facedatabase.html

We follow the same setting as in [8] for CBCL and ORL
datasets. The size of the datasets are summarized in Table
2. To ensure a fair comparison, all experimental results in
this paper are the average of 10 random initial points.

Table 2 compares the CPU time for each solver to achieve
the specified relative error defined by ‖V − WH‖2

F /‖V ‖2
F .

For synthetic dataset, since the exact factorization exists, all
the methods can achieve very low objective function value.
From Table 2, we can conclude that GCD is two to three
times faster than BlockPivot and FastHals on dense datasets.

As mentioned in Section 5, we implement part of GCD

in C. To have a fair comparison, the FLOPs (number of
Floating Point Operations) is listed in Table 2. FastHals is
competitive in time but slow in FLOPs. This is because it
fully utilizes dense matrix-multiplication operations, which
is efficient in MATLAB.

For NMF with KL divergence, we compare the perfor-
mance of our cyclic coordinate descent method (CCD) with
the multiplicative update algorithm (Multiplicative) proposed
in [15]. As mentioned in Section 3, the method proposed in
[3] solves a different formulation, so we do not include it
in our comparisons. Table 3 shows the runtime for CCD

and Multiplicative to achieve the specified relative error. For
KL-divergence, we define the relative error to be the objec-

tive value L(W, H) in (3) divided by
P

i,j Vij log(
Vij

(
P

j Vij)/n
),

which is the distance between Vij and the uniform distribu-
tion for each row. We implement CCD in C and Multiplicative

in MATLAB, so we also list the FLOPs in Table 3. Table 3
shows that CCD is 2 to 3 times faster than Multiplicative at
the beginning, and can be 10 times faster to get a more ac-
curate solution. If we consider FLOPs, CCD is even better.

6.2 Comparison on sparse datasets
In Section 6.1, BlockPivot, FastHals, and GCD are the three

most competitive methods. To test their scalability, we fur-
ther compare their performances on large sparse datasets.
We use the following sparse datasets:

1. Yahoo-News (K-Series): A news articles dataset.
2. RCV1 [16]: An archive of newswire stories from Reuters

Ltd. The original dataset has 781,265 documents and
47,236 features. Following the preprocessing in [18],
we choose data from 15 random categories and elimi-
nate unused features. However, our data is much larger
than the one used in [18].

3. MNIST [13]: A collection of hand-written digits.
The statistics of the datasets are summarized in Table 4.
We set k according to the number of categories for each
datasets. We run GCD and FastHals with our C implemen-
tations with sparse matrix operations, and for BlockPivot we
use the author’s code in MATLAB with sparse V as input.

In Figure 2(a), 2(d), 2(g), we show the CPU time for the 3

Table 3: Time comparison results for KL divergence. ∗ in-
dicates the specified objective value is not achievable. The
results indicate CCD outperforms Multiplicative

dataset k
relative Time (in seconds)/FLOPs
error CCD Multiplicative

Synth03
10

10−3 11.4/5.2G 34.0/68.1G
10−5 14.8/6.8G 144.2/240.6G

30
10−3 121.1/58.7G 749.5/2057.4G
10−5 184.32/89.3G 7092.3/18787.8G

Synth08
10

10−2 2.5/1.7G 30.3/71.6G
10−5 13.0/8.8G *

30
10−2 22.6/11.2G 46.0/93.9G
10−5 56.8/27.7G *

CBCL 49
0.1202 38.2/18.2G 21.2/64.1G
0.1103 123.2/58.4G 562.6/781.3G
0.1093 166.0/78.7G 3266.9/2705.4G

ORL 25
0.3370 73.7/35.0G 165.2/336.3G
0.3095 253.6/117.0G 902.2/1323.0G
0.3067 370.2/177.5G 1631.9/3280.2G

Table 4: Statistics of data sets. k is the value of reduced
dimension we use in the experiments.

Data set m n #nz k
Yahoo-News 21,839 2,340 349,792 20
MNIST 7,80 60,000 8,994,156 10
RCV1(subset) 31,025 152,120 7,817,031 15

methods to reduce the objective value of least squares NMF,
versus with logarithmically decreasing values of (f(W, H)−
f∗)/f∗, where f∗ denote the lowest average objective value,
for 10 initial points, of the 3 methods.

Compared to FastHals and BlockPivot, GCD converges to
a local optimum with lower objective value. This is impor-
tant for nonconvex optimization problems because we can
find a better local optimum. To further compare the speed
of convergence to local optimums, we check the projected
gradient ∇P f(W, H), which measures the distance between
current solution and stationary points. The results are in
Figure 2(b), 2(e) and 2(h). The figures indicate that GCD

converges to the stationary point in lesser CPU time.
We further add L1 penalty terms as in (2). We only in-

clude GCD and FastHals in the comparison because Block-

Pivot does not provide the same regularized form in their
package. Figures 2(c), 2(f) and 2(i) compare the methods
for reducing the objective value of (2). For this comparison
we choose the parameters λ1 and λ2 so that on average more
than half the variables in the solution of W and H are zero.
The figures indicate that GCD achieves lower objective func-
tion value than FastHals in MNIST, and for Yahoo-News and
RCV1, GCD is more than 10 times faster. This is because
GCD can focus on nonzero variables while FastHals updates
all the variables at each iteration.

7. DISCUSSION AND CONCLUSIONS
In summary, we propose coordinate descent methods that

do variable selection for solving least squares NMF and KL-
NMF. Our methods have theoretical guarantees and are ef-
ficient on real-life data. The significant speedups on sparse
data show a potential to apply NMF to larger problems. In
the future, our method can be extended to solve NMF with
missing values or other matrix completion problems.
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