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Abstract

Increasingly, optimization problems in machine learniegpecially those arising
from high-dimensional statistical estimation, have a éangimber of variables.
Modern statistical estimators developed over the pastdiéebave statistical or
sample complexitthat depends only weakly on the number of parameters when
there is some structure to the problem, such as sparsity. nkatequestion is
whether similar advances can be made in their computatammaplexity as well.
In this paper, we propose strategies that indicate thatadeances can indeed be
made. In particular, we investigate the greedy coordinaseent algorithm, and
note that performing the greedy step efficiently weakensdtistly dependence on
the problem size provided the solution is sparse. We thepgz®a suite of meth-
ods that perform these greedy steps efficiently by a reduttimearest neighbor
search. We also devise a more amenable form of greedy ddscertmposite
non-smooth objectives; as well as several approximatawntriof such greedy
descent. We develop a practical implementation of our @lgorthat combines
greedy coordinate descent with locality sensitive hashidighout tuning the lat-
ter data structure, we are not only able to significantly dpgethe vanilla greedy
method, but also outperform cyclic descent when the prokiembecomes large.
Our results indicate the effectiveness of our nearest heigstrategies, and also
point to many open questions regarding the developmentmpotational geo-
metric techniques tailored towards first-order optimaatnethods.

1 Introduction

Increasingly, optimization problems in machine learnirgpngery high-dimensional, where the num-
ber of variables is very large. This has led to a renewedesten iterative algorithms that require

bounded time per iteration. Such iterative methods takiewaforms such as so-called row-action
methodsl[6] which enforce constraints in the optimizatiosbpern sequentially, or first-order meth-

ods [4] which only compute the gradient or a coordinate ofjfzalient per step. But the overall time

complexity of these methods still has a high polynomial aelemce on the number of parameters.
Modern statistical estimators developed over the pastdiebave statistical or sample complexity
that depends only weakly on the number of parametets [5,8]5Clan similar advances be made

in their computational complexity?

Towards this, we investigate one of the simplest classessbfdider methods: coordinate descent,
which only updates a single coordinate of the iterate atye! . The coordinate descent class
of algorithms has seen a renewed interest after recent$1§1%,lib have shown considerable
empirical success in application to large problems. SaltaTawari [13] even show that under



certain conditions, the convergence rate of cyclic co@tirdescent is at least as fast as that of
gradient descent.

In this paper, we focus on high-dimensional optimizatioohpems where the solution is sparse.
We were motivated to investigate coordinate descent dlgos by the intuition that they could
leverage the sparsity structure of the solution by judisipehoosing the coordinate to be updated.
In particular, we show that a greedy selection of the co@igis succeeds in weakening the costly
dependence on problem size with the caveat that we couldnpethe greedy step efficiently. The
naive greedy updates would however take time that scalessitlinearly in the problem dimension
O(p) since it has to compute the coordinate with the maximum greadWe thus come to the other
main question of this papeiCan the greedy steps in a greedy coordinate scheme be pedorm
efficiently?Surprisingly, we are able to answer in the affirmative, andsh@w this by a reduction
to nearest neighbor search. This allows us to leverage gmfisant amount of recent research
on sublinearmethods for nearest neighbor search, provided it suffickate approximate nearest
neighbors. The upshot of our results is a suite of methodd#@end weakly on the problem size
or number of parameters. We also investigate several rotbmpproximate greedy coordinate
descent for which we are able to derive similar rates. Forctmposite objective case, where the
objective is the sum of a smooth component and a separablsmonth component, we propose
and analyze a “look-ahead” variant of greedy coordinateeias

The development in this paper thus raisesew line of researcbn connections between computa-
tional geometry and first-order optimization methods. stance, given our results, it would be of
interest to develop approximate nearest neighbor methiogsitto greedy coordinate descent. As an
instance of such a connection, we show that if the covariatdsrlying the optimization objective
satisfy a mutual incoherence condition, then a very simplg@st neighbor data structure suffices to
yield a good approximation. Finally, we provide simulagdhat not only show that greedy coordi-
nate descent with approximate nearest neighbor searabrpexrbverwhelmingly better than vanilla
greedy coordinate descent, but also that it starts outpeirig cyclic descent when the problem size
increases: the larger the number of variables, the grdaeaetative improvement in performance.
The results of this paper naturally lead to several openlpnoti can effective computational ge-
ometric data structures be tailored towards greedy coatelidescent? Can these be adapted to
(a) other first-order methods, perhaps based on samplidgamifferent regularized variants that
uncover structured sparsity. We hope this paper fosteteduresearch and cross-fertilization of
ideas in computational geometry and optimization.

2 Setup and Notation

We start our treatment with differentiable objective fuans, and then extend this to encompass
non-differentiable functions which arise as the sum of a@im@omponent and a separable non-
smooth component. Lef : RP — R be a convex differentiable function. We do not assume that
the function is strongly convex: indeed most optimizatiarising out of high-dimensional machine
learning problems are convex but typically not strongly ®ur analysis requires that the function
satisfies the following coordinate-wise Lipschitz cormfiti
AssumptionAl. The loss functiorC satisfies

|VL(w) = VL(V)|loo < K1 -||w— |1, for somer; > 0.
We note that this condition is weaker than the standard hipsconditions on the gradients. In par-
ticular, we say that hask.-Lipschitz continuous gradient w.ri. || when||VL(w) — VL(v)||2 <
Ko - ||w — v]|2, Note thatk; < ko; indeedx; could be up tg times smaller tham,. E.g. when
L(w) = 1/2w " Aw with a positive semi-definite matrit , we haves; = max; A; ;, the maximum
entry on the diagonal, while, = max; A\;(A), the maxium eigenvalue of. It is thus possible for
ko to be much larger thar;: for instances; = pr; whenA is the alll’s matrix.

We are interested in the general optimization problem,
miﬂg L(w). 1)
weRP

We will focus on the case where the solution is bounded ansep®le thus assume:

AssumptionA2. The solutionw* of (@) satisfies]|w* ||~ < B for some constanB < oo indepen-
dent ofp, and that|w*||o = s, i.e., solution iss-sparse.

2.1 Coordinate Descent

Coordinate descent solvés (1) iteratively by optimizingraevsingle coordinate while holding others
fixed. Typically, the choice of the coordinate to be updagedyiclic. One caveat with this scheme



however is that it could be expensive to compute the one-tinaal optimum for general functions
L. Moreover when. is not smooth, such coordinatewise descent is not guaihidesonverge to
the global optimum in general, unless the non-differemgi@lomponent is separable [16]. A line
of recent work[[16, 17, 14] has thus focused on a “gradientei®s version of coordinate descent,
that iteratively uses a local quadratic upper boulidof the functionZ. For the case where the
optimization function is the sum of a smooth function and theegularizer, this variant is also
called lterative Soft Thresholdingl[7]. A template for swrdordinate gradient descent is the set of
iterates:w! = w!~! — LV, L(w')e;. Friedman et al[[8], Genkin et al. [10], Wu and Lange [19]
1
and others have shown considerable empirical success lyitaghese to large problems.

2.2 Greedy Coordinate Descent

In this section, we focus on a simple deterministic varidramrdinate descent that picks the coor-
dinate that attains the coordinatewise maximum of the gradiector:

Algorithm 1 Greedy Coordinate Gradient Descent

Initialize: Set the initial value ofv°.
fort=1,...do

j = argmax; |V, L(w")].

w' = w = Vi L(w)e;.
end for

Lemma 1. Suppose the convex differentiable functirsatisfies Assumptions A1 and A2. Then
the iterates of Algorithrill satisfy:
¢ o o B flw? — w2
L) — L)< B —W T
2 t

Letting ¢(p) denote the time required to solve each greedy step, |V, £(w?)|, the greedy version
of coordinate descent achieves the réter!) — L(w*) = O(s? ¢(p)/T) at timeT. Note that the
dependence on the problem sjzis restricted to the greedy step: if we could solve this maaaton
more efficiently, then we have a powerful “active-set” meth@hile brute force maximization for
the greedy step would tak@(p) time, if it can be done irD(1) time, then at timél’, the iteratew
satisfiesC (w) — L(w*) = O(s?/T) which would beindependent of the problem size

3 Nearest Neighbor and Fast Greedy

In this section, we examine whether the greedy step can berpexd insublinear time We focus in
particular on optimization problems arising from statiatilearning problems where the optimiza-
tion objective can be written as

n

L(w) =Y w2y, (2)

i=1

for some loss functiof: R xR — R, and a set of observatiofiéz?, )}, , with z* € R?, ¢’ € R.
Note that such an optimization objective arises in mosistiedl learning problems. For instance,
consider linear regression, with respopse (w, z) + ¢, wheree ~ A/(0, 1). Then given observa-
tions{ (2%, y*)}™_,, the maximum likelihood problem has the formf (2), witt, v) = (u — v)?.

Letting g(u,v) = V,.fl(u,v) denote the gradient of the sample loss with respect to its dirs
gument, and‘(w) = g(w’z?, y%), the gradient of the objectivEl(2) may be written\as’(w) =

iy &l r'(w) = (x;,7(w)) . ltthen follows that the greedy coordinate descent step goAthml
reduces to the following simple problem:

mjax| (xj,r(w))|. 3)

We can now see why the greedy stEb (3) can be performed efficiéncan be cast as a nearness
problem. Indeed, assume that the data is standardized s¢ath= 1 for j = 1,...,p. Let

z={z1,...,xp, —71,..., —x,} include the negated data vectors. Then, it can be seen that
argmax | (z;,7) | = arg min ||z; — r||3. (4)
JEP] JE2p] 7

Thus, the greedy step amounts to a nearest neighbor prolbleomputing the nearest point tan
the se{ z; }?il. While this would takeO (pn) time via brute force, the hope is to leverage the state of

3



the art in nearest neighbor search [11] to perform this greetection in sublinear time. Regarding
the time taken to compute the gradier(tw), note that after any coordinate descent update, we can
updater’ in O(1) time if we cache the valuegw, z*)}, so that- can be updated i®(n) time.

The reduction to nearest neighbor search however comeawiéheat: nearest neighbor search vari-
ants that run in sublinear time only compuatgproximate nearest neighbor$his in turn amounts
to performing the greedy step approximately. In the nextdabsections, we investigate the conse-
guences of such approximations.

3.1 Multiplicative Greedy

We first consider a variant where the greedy step is performddr a multiplicative approximation,
where we choose a coordingiesuch that, for some € (0, 1],

VLWl = ¢ VLW oo - ®)

As the following lemma shows, the approximate greedy steps little qualitative effect (proofin
Supplementary Material).

Lemma 2. The greedy coordinate descent iterates, with the greegycsimputed as in{5), satisfy:
1w —w*|
C

L(wt) — L(w*) < .

The price for the approximate greedy updates is thus jushstant factod /¢ > 1 reduction in the
convergence rate.

Note that the equivalence &f (4) need not hold under muttipilve approximations. That is, approx-
imate nearest neighbor techniques that obtaiearest neighboupto a multiplicative factor, do not
guarantee a multiplicative approximation for the innerdarct in the greedy step in turn. As the next
lemma shows this still achieves the required qualitative.ra

Lemma 3. Suppose the greedy step is performed aslin (5) with a muléilie approximation factor
of (1 + enn) (due to approximate nearest neighbor search for instafibehn, at any iteration, the
greedy coordinate descent iterates satisfy either of thafimg two conditions, for any > 0:

(@) VL(w") is small (i.e. the iterate is near-stationaryy7 £ (w')|| oo < (ii::) [l (w?)]]2, Or

(b) ﬁ(wt) o E(w*) < ennélJr/een)n-ﬁ—l _rallw ;w II5 )
3.2 Additive Greedy

Another natural variant is the following additive approxite greedy coordinate descent, where we
choose the coordinaje such that

VL@ | = VL")l — €aqa, (6)

for somec,qq. As the lemma below shows, the approximate greedy stepditte/gqualitative effect.
Lemma 4. The greedy coordinate descent iterates, with the greegycsimputed as i {6), satisfy:

K wO — w* 2
.l It

t

Note that we need obtain an additive approximation in thedyestep only upto the order of the
final precision desired of the optimization problem. In autar, for statistical estimation problems
the desired optimization accuracy need not be lower thastttesical precisionwhich is typically
of the order ofslog(p)/+/n. Indeed, given the connections elucidated above to greedydmate
descent, it is an interesting future problem to develop @xprate nearest neighbor methods with
additive approximations.

4 Tailored Nearest Neighbor Data Structures

In this section, we show that one could develop approximasrest neighbor methods tailored to
the statistical estimation setting.



4.1 Quadtreeunder Mutual Incoherence

We will show that just a vanilla quadtree yields a good appnation when the covariates satisfy

a technical statistical condition of mutual coherence. Adjtee is a tree data structure which
partitions the space. Each internal nadé the quadtree has a representative point, denoted by
rep(u), and a list of children nodes, denoted by children which partition the space under For
further details, we refer to Har-Peled [11]. The sprdgd) of the set of pointsD is defined as

&(D) = iz il 4nq s the ratio between the diameteddand the closest pair distance of
min, «; [|z;—z; ||

points inD. Following Har-Peled [11], we can show that the depth of thadiree by the standard
construction is bounded iy (log ®(D) + log n) and can be constructed in tini&p log(n®(D))).

Here, we show that a standard nearest neighbor algorithny ugiadtrees Har-Peled [11], Arya
and Mount|[2], rewritten below to allow for arbitrary appimation factor(1 + enn), suffices under
appropriate statistical conditions.

Input: quadtred’, approx. factof1 + enn), queryr.
Initialize: i = 0; Ay = {root(T)}.
while A; # {} do
for each node € A; do
Uann = NN(7, {uann} U rep(children(v))).
for each node: € childrer(v) do
if ||r —rep(u)|| — diam(u) < ||r — wannl| /(1 + €mn), thenA,; 1 = 4,11 U {u}.
end for
end for
i—i+1
end while
Returnuann

Lemma5. Let (1 + enn) be the approximation factor for the approximate nearesthimir search.
Letnn(r) be the true nearest neighbontoThen the outputian, of Algorithm[4.3 satisfies

[r — uannl|2 < (1 + enn)[lr — nn(r)]]2.
Proof. Letw be the last node in the quadtree containimgr) thrown away by the algorithm. Then,

I = nn(r)1| 2 = rep(u)] = lrep(u) — nn(r)| > [ = reptu)| — diam(u) > 12— taml,

whence the statement in the theorem follows. O

The next lemma shows the time taken by the algorithm. Aga@ewrite the analysis of Har-Peled
[11], Arya and Mountl[2] to allow for arbitrary approximatidactors.

Lemma 6. The time taken by algorithin 4.1 to computga+ enn)-nearest neighbor te from
D ={a1,...,2,}is O (log(@(D)) + (1+ L) ).

€nn

As the next lemma shows, the spread is controlled when theahatherence of the covariates is
small. In particular, defing(D) = max;.; (x;, z;). We require that the mutual coherengeD) be
small and in particular be bounded away from 1. Such a cadisi typically imposed as sulfficient
condition for sparse parameter recovéry [5, 15]. Intriglynthis very condition allows us to provide
guarantees for optimization. This thus adds to the burgepset of recent papers that are finding
that conditions imposed for strong statistical guaransgesiseful in turn for obtaining faster rates
in the corresponding optimization problems.

Under this condition, the closest pair distance can be bediag,|z; — z;||* = 2 — 2 (z;,x;) >

2(1 — 1), which in turn allows us to control the sprea@l{ D) < 2__ — /-2 which thus
2(1—p) L=
V2(1—p

yields the corollary:

Lemma 7. Suppose the mutual coherence of the covaridtes {x1,...,z,} is bounded so that
(D) < 1. Then the time taken by algoritHm #.1 to computé & enn)-nearest neighbor tofrom

is 0 (log () + (1+ A)n)



While this data structure is quite useful in most settingequires that the mutual coherence of the
covariates be bounded, and further the time required isrexqui@l (but weakly so) in the number of
samples. However, followingl[L, 11], we can use random ptajes to bring the runtime down to

O(p€5n2), and the preprocessing time@n p log p €,2).
5 Overall Time Complexity

In the previous sections, we saw that the greedy step forrgkred linear models is equivalent to
nearest neighbor search: given aueryr, we want to find its nearest neighbor among jphoints
D = {z1,...,z,} each inR". Standard data structures include quadtrees which dyaiatition
the data, and KD trees which partition the data accordingeo point mass.

Approximate nearest neighbor searich [11] estimatesppnoximatenearest neighbor, upto a multi-
plicative approximation sashn: SO that if the nearest neighboritas «; and the algorithm outputs
xk, then it guarantees thét;, — (|2 < (1 + enn)|lz; — 7||. Any such nearest neighbor algorithm,
given a query-, incurs time depends on the number of poin{sypically sublinearly), their dimen-
sionn, and the approximation factdt + ¢nn). Let us denote this cost &y, (n, p, €nn)-

From our analysis of multiplicative approximate greedye(semmdB in Supplementary Material),
given a multiplicative approximation factdt + e,,) in the approximate nearest neighbor method,
the approximate greedy coordinate descent has the comumg&te:éﬁm . “1—52 for some constant
K > 0. Thus, the number of iterations required to obtain a satuiith accuracyo is given by,
Kr1s®  gSince each of these greedy steps have €pgt, p, cnn), the overall cosCy; is

€nn €opt '

Tgreedy =
given as:Ce = Ci(n, p, enn) - f“—lﬁ Of course these approximate nearest neighbor methods also

nn €opt
require some pre-processing tirde (p, n, enn), but this can typically be amortized across multiple
runs of the optimization problem with the same covariatesgdfregularization path for instance). It
could also be reused across different models, and for athersfof data analysis. Examples include:

(a). Locality Sensitive Hashin@[12] uses random shifting wiwd@nd random projections to hash
the data points such that distant points do not collide widn iprobability. Letp = 1/(1 + €nn) <

1. Then hereC_(p,n,en) = O (np'*? ey ) while Cy(n,p, enn) = O(np”). Thus, for sparse
solutionss = o(,/p), the runtime cost scales @%; = O (np” eyl eopt) -

(b). Ailon and Chazelld]1] use multiple lookup tables after ramdprojections to obtain a nearest
neighbor data structure with costs afid (p, 7, enn) = O(p™ ), andCi(p, n, enn) = O(nlogn +
e log? p). Thus the runtime cost here scalesas= O (w .

€nn €opt
(c). In Sectior %, we show that when the covariatesratgually incoherentthen we can use a
simple quadtree, and random Gaussian projections to obtaip, n, enn) = O(np logpe,2) and

Ci(p,m, ) = O(penf). Thus the runtime cost here scalesas= O (p%*n2 egp{e;nl)

6 Non-Smooth Objectives

Now we consider the more general composite objective caggenthe objective is the sum of a
differentiable, and a separable non-differentiable fiomct

Ur}réiRpp L(w) + R(w), (7)

where we assumg is convex and differentiable and satisfies the Lipshitz domdin Assump-
tion A1, andR(w) = .. R;(w;) whereR; : R — R could be non-differentiable. Again, we
assume that Assumptién 2 holds. The natural counterpatteofjteedy algorithms in the previ-
ous sections would be to pick the coordinate with the maxinabsolute value of theubgradient
However, we did not observe good performance for this vagiher theoretically or in simula-
tions. Thus, we now studylaokaheadvariant that picks the coordinate with the maximum absolute
value of the sum of the gradient of the smooth component amdubgradient of the non-smooth
component at the next iterate.

Denote[VL(w')]; by G%, and compute theextiteratew' ™" asarg min,, g} (w — w!) + %5 (w —
wh)? + R;(w). Letp; = OR;(w!") denote the subgradient at this next iterate, and let

nh = (=1/k1)(g} + pj) = wi™ —wh. (8)



Then pick the coordinate asgmax ey ]nﬂ . The next lemma states that this variant performs
qualitatively similar to its smooth counterpart in Algdwin[1.

Algorithm 2 A Greedy Coordinate Descent Algorithm for Composite Oliyest
. Initialize: w° « 0

2: fort=1,2,3,...do

3. ji < argmax;c, 05| (with o} as defined in((8))

4; wt+1 — wt + 77; ejt'

5: end for

[EEY

Lemma 8. The greedy coordinate descent iterates of Algorifhm 2fyatis

0 _ %2
L(wt) + R(w') — L(w*) — R(w*) < %M
The greedy step for composite objectives in Algorifiim 2 atiterationt entails solving the max-
imization problem:max; |n§-|, wheren); is as defined in[{8). Let us focus on the case where the

regularizerR is the /; norm, so thatR(w) = A>>7_, |wj|, for someA > 0. Using the no-
tation from above, we thus have the following objectivein,, 3" | ¢(w”z;, y;) + AJwl]:.
Thenn; from (8) can be written in this case ag; = Sy, (w} — (z;,7(w")) /k1) — w}, where
Sr(u) = sign(u) max{|u| — r,0} is the soft-thresholding function. So the greedy step reduc
to maximizingmax; [Sy ., (w} — (z;,7(w")) /k1) — w’ over j. The next lemma shows that by
focusing the maximization on the inner produgts, »(w)) we lose at most a factor of/ x1:

Lemma. | (x;, r(w")) /ma| — nj| [ < A/ka1.
The Lemmain turn implies that i € argmax;cp,) | (z;,7(w")) /1], then

5| < [ (g, r(w')) [ra] + N k1 = glé?;]d (g (")) [Ra| + Ak < Ij%ﬁhﬂ +2X/ k1.

Typical setting of\ for statistical estimation is at the level of the statidtjpaecision of the problem
(and indeed of the order @¥(1//n) even for low-dimensional problems). Thus, as in the previou
section, we estimate the coordingtehat maximizes the inner produjctz;, 7(w)) |, which in turn
can be approximated using approximate nearest neighbahsezo, even for composite objectives,
we can reduce the greedy step to performing a nearest neigbéah. Note however that this can be
performed sublinearly only at the cost of recoveringaproximatenearest neighbor. Note that this
in turn entails that we would be performing each greedy steordinate descent approximately.

7 Experimental Results

We conducted speed trials in MATLAB comparigiglgorithms: greedy (Algorithiil 2), greedy.LSH
(coordinate to update chosen by LSH) and cyclidpmegularized problemsy " | ¢(w” z;, y;) +
Al|w||; wherel(y, t) was eithey —t)? /2 (squared loss) dog (1 +exp(—ty)) (logistic loss) and we
chose\ = 0.01. All these algorithms, after selecting a coordinate to u@dainimize the function
fully along that coordinate. For squared loss, this mininean be obtained in closed form while
for logistic we performed steps of the {-dimensional) Newton method. The data was generated
as follows: a matrixX € R™? was chosen with i.i.d. standard normal entries and the ealcima

was normalized td,-norm1. Then, we set” = Xw, for a k-sparse vectow,, € R? (with non-
zero entries placed randomly). The labglsvere chosen to be eith&t or sign(Y;) depending on
whether the squared or logistic loss was being optimizeé.rdlvs of X became the instances.

Figure[1 shows the objective function value versus CPU titoesgor the logistic loss witlp =
10%,105,10°. As p grows we keepk = 100 constant and scale as |4klog(p)]. In this case,
greedy.LSH not only speeds up naive greedy significantlyalsd beats cyclic coordinate descent.
In fact, cyclic appears to be stalled especially for= 10°,10°. The reason for this is that cyclic,

in the time allotted, was only able to compléi2’%, 40% and27% of a full sweep through the

p coordinates fop = 10%,10° and 10° respectively. Furthermore, cyclic had generated far less
sparse final iterates than greedy.LSH in3adlases. Figurgl2 shows the same plots but for squared
loss. Here, since each coordinate minimization is closeoh fand thus very quick, greedy.LSH
has a harder time competing with it. Greedy.LSH is still wagtér than naive greedy and start
to beat cyclic app = 10°. The trend of greedy.LSH catching up with cyclicagrows is clearly
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demonstrated by these plots. In contrast with the logistge¢here cyclic as able to finish several
full sweeps through the coordinate, namely3.4, 10.5 and7.9 sweeps fop = 10%,10° and10°
respectively. even though cyclic got lower objective valuewas at the expense of sparsity: cylic’'s
final iterates were usualli0 times denser than those of greedy.LSH.

Figure[3 shows the plots for the objective versus number ofdinate descent steps. We clearly see
that cyclic is wasteful in terms of number of coordinate updand greedy achieves much greater
descent in the objective per coordinate update. Moreoveedy.LSH is much closer to greedy in
its per coordinate-update performance (to the extenttlghard to tell them apartin some of these
plots). This plot thus suggests the improvements possittkehetter nearest-neighbor implementa-
tions that perform the greedy step even faster than our ptimzed greedy.LSH implementation.

Cyclic coordinate descent is one of the most competitivehos for large scalé;-regularized
problems|[[9]. We are able to outperform it for large problemimg a homegrown implementation
that was not optimized for performance. This provides gfn@asons to believe that with a careful
well-tuned LSH implementation, and indeed with better gditactures than LSH, nearest neighbor
based greedy methods should be able to scale to problemsdth@reach of current methods.
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Supplementary Material

8 Proof of Lemmal[ll

The proof follows along the same lines of the either of the tmare general Lemmas proved below:
Lemmd2 which considers the multiplicative approximatiase; and Lemnid 8 which considers the
regularized case.

9 Proof of LemmalfZ

L(weyr) — Llwt) = —ﬁilnvc(wtﬂjt 2

C
< —— VL)X
1
C
— _(L(wh) = L(w))? 9
el —wr g ) ©
where we used
L(w") (VL(w"),w" —w*)

IV ( t)lloo [ = w]ls.

IN I/\

The recursior[{9) then gives us the result.

10 Proof of Lemmal8

Lemma 10. The greedy coordinate descent iterates of Algorithm 2fyatis

1w’ —w

£(w!) + R(w') - £(w') - R(w") < 1=

Proof. As shorthand, we use’, w, j for w'*! w’, j;. Note that|n;| = ||n||« by definition of j;.
Now, n; satisfiesy; + k1n; + p; = 0, for somep € IR(w’). So,
R(w') — R(w) = R;(w)) — R;(w;)
<{pjimj) = —{gjm;) — kan -

Using this, we have

L)+ R(w') < Lw) + gm; + S + R(w)
< L(w) + R(w) ~ 1}
= £(w) + R(w) - S nll% - (10)

Now letg’ = VL(w’) to get,
Lw') = L(w) < (g',w" —w)
={g' —g,w' —w) + (g, v —w)
<nik1+ (g0 —w) |

where the last inequality is becaug — g[| < 1 [lw’ — w| and|w’ — w|| = [n;|. Combining this
with the fact thatC (w) — L(w*) < (g, w — w*) gives,

L(w") — L(w*) < 77]- K1+ (g, w —w*) .

10



Addding to this the inequalityR(w’) — R(w) < (p, w’ — w*) gives
e =Lw')+ Rw') — Lw*) — R(w*)
< ik + (p+g,w —w*)
<k +[lp+ gl D
= nlZk1 + Kl D,

whereD := ||w® — w*||;. Assuming that); < D (note thatD = O(/s) is at least lower-bounded
by a constant, and the objective can reduce by such a largeimder; > D atmost finite number
of times), we get the key inequality

¢ < 210l .

Plugging this back il (10), we get the recurrence

o ce (o)
= 8k1D?

This yieldse; < O(k1D?/t) as required. O

11 Proof of Lemmal3

Proof. Denoter = r/||r|l2. Supposer; is a(l + enn) multiplicative factor approximation to the
greedy stepnax; (Z,7). Then

|1k =713 < (1 + e |75 — 73,
so that(z;, 7) < (p%nnn) + (1+—1€nn) (Tk, T) -

Thus if (z,7) > ¢, then

= = €nn <i’k77'> 1 o
<$], T> = (1 + Enn) € + (1 + €nn) <$k77‘>
an(1 +1,_ _
= % <:Ek, 7‘> 5
which completes the proof. O

11
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