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Abstract
In this paper, we theoretically study the problem of binary classification in the
presence of random classification noise — the learner, instead of seeing the true la-
bels, sees labels that have independently been flipped with some small probability.
Moreover, random label noise isclass-conditional— the flip probability depends
on the class. We provide two approaches to suitably modify any given surrogate
loss function. First, we provide a simple unbiased estimator of any loss, and ob-
tain performance bounds for empirical risk minimization inthe presence of iid
data with noisy labels. If the loss function satisfies a simple symmetry condition,
we show that the method leads to an efficient algorithm for empirical minimiza-
tion. Second, by leveraging a reduction of risk minimization under noisy labels
to classification with weighted 0-1 loss, we suggest the use of a simple weighted
surrogate loss, for which we are able to obtain strong empirical risk bounds. This
approach has a very remarkable consequence — methods used inpractice such
as biased SVM and weighted logistic regression are provablynoise-tolerant. On
a synthetic non-separable dataset, our methods achieve over 88% accuracy even
when 40% of the labels are corrupted, and are competitive with respect to recently
proposed methods for dealing with label noise in several benchmark datasets.

1 Introduction
Designing supervised learning algorithms that can learn from data sets with noisy labels is a problem
of great practical importance. Here, by noisy labels, we refer to the setting where an adversary has
deliberately corrupted the labels [Biggio et al., 2011], which otherwise arise from some “clean”
distribution; learning from only positive and unlabeled data [Elkan and Noto, 2008] can also be cast
in this setting. Given the importance of learning from such noisy labels, a great deal of practical
work has been done on the problem (see, for instance, the survey article by Nettleton et al. [2010]).
The theoretical machine learning community has also investigated the problem of learning from
noisy labels. Soon after the introduction of the noise-freePAC model, Angluin and Laird [1988]
proposed therandom classification noise(RCN) model where each label is flipped independently
with some probabilityρ ∈ [0, 1/2). It is known [Aslam and Decatur, 1996, Cesa-Bianchi et al.,
1999] that finiteness of the VC dimension characterizes learnability in the RCN model. Similarly, in
the online mistake bound model, the parameter that characterizes learnability without noise — the
Littestone dimension — continues to characterize learnability even in the presence of random label
noise [Ben-David et al., 2009]. These results are for the so-called “0-1” loss. Learning with convex
losses has been addressed only under limiting assumptions like separability or uniform noise rates
[Manwani and Sastry, 2013].

In this paper, we consider risk minimization in the presenceof class-conditionalrandom label noise
(abbreviated CCN). The data consists of iid samples from an underlying “clean” distributionD.
The learning algorithm sees samples drawn from a noisy versionDρ of D — where the noise rates
depend on the class label. To the best of our knowledge, general results in this setting have not been
obtained before. To this end, we develop two methods for suitably modifyingany given surrogate
loss functionℓ, and show that minimizing the sample average of the modified proxy loss function
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ℓ̃ leads to provable risk bounds where the risk is calculated using the original lossℓ on the clean
distribution.

In our first approach, the modified or proxy loss is an unbiasedestimate of the loss function. The
idea of using unbiased estimators is well-known in stochastic optimization [Nemirovski et al., 2009],
and regret bounds can be obtained for learning with noisy labels in an online learning setting (See
Appendix B). Nonetheless, we bring out some important aspects of using unbiased estimators of
loss functions for empirical risk minimization under CCN. In particular, we give a simple symmetry
condition on the loss (enjoyed, for instance, by the Huber, logistic, and squared losses) to ensure that
the proxy loss is also convex. Hinge loss does not satisfy thesymmetry condition, and thus leads
to a non-convex problem. We nonetheless provide a convex surrogate, leveraging the fact that the
non-convex hinge problem is “close” to a convex problem (Theorem 6).

Our second approach is based on the fundamental observationthat the minimizer of the risk (i.e.
probability of misclassification) under the noisy distribution differs from that of the clean distribu-
tion only in where it thresholdsη(x) = P (Y = 1|x) to decide the label. In order to correct for the
threshold, we then propose a simple weighted loss function,where the weights are label-dependent,
as the proxy loss function. Our analysis builds on the notionof consistency of weighted loss func-
tions studied by Scott [2012]. This approach leads to a very remarkable result that appropriately
weighted losses like biased SVMs studied by Liu et al. [2003]are robust to CCN.

The main results and the contributions of the paper are summarized below:

1. To the best of our knowledge, we are the first to provide guarantees for risk minimization under
random label noise in the general setting of convex surrogates, without any assumptions on the
true distribution.

2. We provide two different approaches to suitably modifying any given surrogate loss function,
that surprisingly lead to very similar risk bounds (Theorems 3 and 11). These general results
include some existing results for random classification noise as special cases.

3. We resolve an elusive theoretical gap in the understanding of practical methods like biased SVM
and weighted logistic regression — they are provably noise-tolerant (Theorem 11).

4. Our proxy losses are easy to compute — both the methods yield efficient algorithms.
5. Experiments on benchmark datasets show that the methods are robust even at high noise rates.

The outline of the paper is as follows. We introduce the problem setting and terminology in Section
2. In Section 3, we give our first main result concerning the method of unbiased estimators. In
Section 4, we give our second and third main results for certain weighted loss functions. We present
experimental results on synthetic and benchmark data sets in Section 5.

1.1 Related Work
Starting from the work of Bylander [1994], many noise tolerant versions of the perceptron algorithm
have been developed. This includes the passive-aggressivefamily of algorithms [Crammer et al.,
2006], confidence weighted learning [Dredze et al., 2008], AROW [Crammer et al., 2009] and the
NHERD algorithm [Crammer and Lee, 2010]. The survey articleby Khardon and Wachman [2007]
provides an overview of some of this literature. A Bayesian approach to the problem of noisy labels
is taken by Graepel and Herbrich [2000] and Lawrence and Sch¨olkopf [2001]. As Adaboost is very
sensitive to label noise, random label noise has also been considered in the context of boosting. Long
and Servedio [2010] prove that any method based on a convex potential is inherently ill-suited to
random label noise. Freund [2009] proposes a boosting algorithm based on a non-convex potential
that is empirically seen to be robust against random label noise.

Stempfel and Ralaivola [2009] proposed the minimization ofan unbiased proxy for the case of
the hinge loss. However the hinge loss leads to a non-convex problem. Therefore, they proposed
heuristic minimization approaches for which no theoretical guarantees were provided (We address
the issue in Section 3.1). Cesa-Bianchi et al. [2011] focus on the online learning algorithms where
they only need unbiased estimates of the gradient of the lossto provide guarantees for learning with
noisy data. However, they consider a much harder noise modelwhereinstances as well as labels
are noisy. Because of the harder noise model, they necessarily require multiple noisy copies per
clean example and the unbiased estimation schemes also become fairly complicated. In particular,
their techniques break down for non-smooth losses such as the hinge loss. In contrast, we show
that unbiased estimation is always possible in the more benign random classification noise setting.
Manwani and Sastry [2013] consider whether empirical risk minimization of the loss itself on the

2



noisy data is a good idea when the goal is to obtain small risk under the clean distribution. But
it holds promise only for0-1 and squared losses. Therefore, if empirical risk minimization over
noisy samples has to work, we necessarily have to change the loss used to calculate the empirical
risk. More recently, Scott et al. [2013] study the problem ofclassification under class-conditional
noise model. However, they approach the problem from a different set of assumptions — the noise
rates arenot known, and the true distribution satisfies a certain “mutualirreducibility” property.
Furthermore, they do not give any efficient algorithm for theproblem.

2 Problem Setup and Background
Let D be the underlying true distribution generating(X,Y ) ∈ X × {±1} pairs from whichn iid
samples(X1, Y1), . . . , (Xn, Yn) are drawn. After injecting random classification noise (indepen-
dently for eachi) into these samples, corrupted samples(X1, Ỹ1), . . . , (Xn, Ỹn) are obtained. The
class-conditional random noise model (CCN, for short) is given by:

P (Ỹ = −1|Y = +1) = ρ+1, P (Ỹ = +1|Y = −1) = ρ−1, andρ+1 + ρ−1 < 1

The corrupted samples are what the learning algorithm sees.We will assume that the noise rates
ρ+1 andρ−1 are known1 to the learner. Let the distribution of(X, Ỹ ) beDρ. Instances are denoted
by x ∈ X ⊆ R

d. Noisy labels are denoted bỹy.

Let f : X → R be some real-valued decision function. Therisk of f w.r.t. the 0-1 loss is given by
RD(f) = E(X,Y )∼D

[
1{sign(f(X)) 6=Y }

]
. The optimal decision function (called Bayes optimal) that

minimizesRD over all real-valued decision functions is given byf⋆(x) = sign(η(x) − 1/2) where
η(x) = P (Y = 1|x). We denote byR∗ the correspondingBayes riskunder the clean distribution
D, i.e.R∗ = RD(f∗). Let ℓ(t, y) denote a loss function wheret ∈ R is a real-valued prediction and
y ∈ {±1} is a label. Let̃ℓ(t, ỹ) denote a suitably modifiedℓ for use with noisy labels (obtained using
methods in Sections 3 and 4). It is helpful to summarize the three important quantities associated
with a decision functionf :

1. Empiricalℓ̃-risk on the observed sample:̂Rℓ̃(f) :=
1
n

∑n
i=1 ℓ̃(f(Xi), Ỹi).

2. Asn grows, we expect̂Rℓ̃(f) to be close to thẽℓ-risk under the noisy distributionDρ:

Rℓ̃,Dρ
(f) := E(X,Ỹ )∼Dρ

[
ℓ̃(f(X), Ỹ )

]
.

3. ℓ-risk under the “clean” distributionD: Rℓ,D(f) := E(X,Y )∼D [ℓ(f(X), Y )].
Typically,ℓ is a convex function that iscalibratedwith respect to an underlying loss function such as
the 0-1 loss.ℓ is said to beclassification-calibrated[Bartlett et al., 2006] if and only if there exists a
convex, invertible, nondecreasing transformationψℓ (with ψℓ(0) = 0) such thatψℓ(RD(f)−R∗) ≤
Rℓ,D(f)−minf Rℓ,D(f). The interpretation is that we can control the excess 0-1 risk by controlling
the excessℓ-risk.

If f is not quantified in a minimization, then it is implicit that the minimization is over all measurable
functions. Though most of our results apply to a general function classF , we instantiateF to be the
set of hyperplanes of boundedL2 norm,W = {w ∈ R

d : ‖w‖2 ≤W2} for certain specific results.
Proofs are provided in the Appendix A.

3 Method of Unbiased Estimators
Let F : X → R be a fixed class of real-valued decision functions, over which the empirical risk is
minimized. The method of unbiased estimators uses the noiserates to construct an unbiased estima-
tor ℓ̃(t, ỹ) for the lossℓ(t, y). However, in the experiments we will tune the noise rate parameters
through cross-validation. The following key lemma tells ushow to construct unbiased estimators of
the loss from noisy labels.

Lemma 1. Let ℓ(t, y) be any bounded loss function. Then, if we define,

ℓ̃(t, y) :=
(1− ρ−y) ℓ(t, y)− ρy ℓ(t,−y)

1− ρ+1 − ρ−1

we have, for anyt, y, Eỹ

[
ℓ̃(t, ỹ)

]
= ℓ(t, y) .

1This is not necessary in practice. See Section 5.
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We can try to learn a good predictor in the presence of label noise by minimizing the sample average

f̂ ← argmin
f∈F

R̂ℓ̃(f) .

By unbiasedness of̃ℓ (Lemma 1), we know that, for any fixedf ∈ F , the above sample average
converges toRℓ,D(f) even though the former is computed using noisy labels whereas the latter
depends on the true labels. The following result gives a performance guarantee for this procedure in
terms of the Rademacher complexity of the function classF . The main idea in the proof is to use
the contraction principle for Rademacher complexity to getrid of the dependence on the proxy loss
ℓ̃. The price to pay for this isLρ, the Lipschitz constant of̃ℓ.

Lemma 2. Let ℓ(t, y) beL-Lipschitz int (for everyy). Then, with probability at least1− δ,

max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| ≤ 2LρR(F) +

√
log(1/δ)

2n
whereR(F) := EXi,ǫi

[
supf∈F

1
nǫif(Xi)

]
is the Rademacher complexity of the function classF

andLρ ≤ 2L/(1 − ρ+1 − ρ−1) is the Lipschitz constant of̃ℓ. Note thatǫi’s are iid Rademacher
(symmetric Bernoulli) random variables.

The above lemma immediately leads to a performance bound forf̂ with respect to the clean distri-
butionD. Our first main result is stated in the theorem below.

Theorem 3 (Main Result 1). With probability at least1− δ,

Rℓ,D(f̂) ≤ min
f∈F

Rℓ,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n
.

Furthermore, ifℓ is classification-calibrated, there exists a nondecreasing functionζℓ with ζℓ(0) = 0
such that,

RD(f̂)−R∗ ≤ ζℓ
(
min
f∈F

Rℓ,D(f)−min
f
Rℓ,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n

)
.

The term on the right hand side involves both approximation error (that is small ifF is large) and
estimation error (that is small ifF is small). However, by appropriately increasing the richness of
the classF with sample size, we can ensure that the misclassification probability of f̂ approaches
the Bayes risk of the true distribution. This is despite the fact that the method of unbiased estimators
computes the empirical minimizer̂f on a sample from the noisy distribution. Getting the optimal
empirical minimizerf̂ is efficient if ℓ̃ is convex. Next, we address the issue of convexity ofℓ̃.

3.1 Convex losses and their estimators
Note that the loss̃ℓ may not be convex even if we start with a convexℓ. An example is provided
by the familiar hinge lossℓhin(t, y) = [1 − yt]+. Stempfel and Ralaivola [2009] showed thatℓ̃hin is
not convex in general (of course, whenρ+1 = ρ−1 = 0, it is convex). Below we provide a simple
condition to ensure convexity of̃ℓ.

Lemma 4. Supposeℓ(t, y) is convex and twice differentiable almost everywhere int (for everyy)
and also satisfies the symmetry property

∀t ∈ R, ℓ′′(t, y) = ℓ′′(t,−y) .

Thenℓ̃(t, y) is also convex int.

Examples satisfying the conditions of the lemma above are the squared lossℓsq(t, y) = (t− y)2, the
logistic lossℓlog(t, y) = log(1 + exp(−ty)) and the Huber loss:

ℓHub(t, y) =





−4yt if yt < −1
(t− y)2 if − 1 ≤ yt ≤ 1

0 if yt > 1

Consider the case wherẽℓ turns out to be non-convex whenℓ is convex, as iñℓhin. In the online
learning setting (where the adversary chooses a sequence ofexamples, and the prediction of a learner
at roundi is based on the history ofi − 1 examples with independently flipped labels), we could
use a stochastic mirror descent type algorithm [Nemirovskiet al., 2009] to arrive at risk bounds (See
Appendix B) similar to Theorem 3. Then, we only need the expected loss to be convex and therefore

4



ℓhin does not present a problem. At first blush, it may appear that we do not have much hope of
obtainingf̂ in the iid setting efficiently. However, Lemma 2 provides a clue.

We will now focus on the function classW of hyperplanes. Even thougĥRℓ̃(w) is non-convex, it
is uniformly close toRℓ̃,Dρ

(w). SinceRℓ̃,Dρ
(w) = Rℓ,D(w), this shows that̂Rℓ̃(w) is uniformly

close to a convex function overw ∈ W . The following result shows that we can therefore approx-
imately minimizeF (w) = R̂ℓ̃(w) by minimizing the biconjugateF ⋆⋆. Recall that the (Fenchel)
biconjugateF ⋆⋆ is the largest convex function that minorizesF .

Lemma 5. LetF :W → R be a non-convex function defined on function classW such it isε-close
to a convex functionG :W → R:

∀w ∈ W , |F (w)−G(w)| ≤ ε
Then any minimizer ofF ⋆⋆ is a2ε-approximate (global) minimizer ofF .

Now, the following theorem establishes bounds for the case whenℓ̃ is non-convex, via the solution
obtained by minimizing the convex functionF ∗∗.

Theorem 6. Let ℓ be a loss, such as the hinge loss, for whichℓ̃ is non-convex. LetW = {w :
‖w2‖ ≤ W2}, let ‖Xi‖2 ≤ X2 almost surely, and let̂wapprox be any (exact) minimizer of the
convex problem

min
w∈W

F ⋆⋆(w) ,

whereF ⋆⋆(w) is the (Fenchel) biconjugate of the functionF (w) = R̂ℓ̃(w). Then, with probability

at least1− δ, ŵapprox is a2ε-minimizer ofR̂ℓ̃(·) where

ε =
2LρX2W2√

n
+

√
log(1/δ)

2n
.

Therefore, with probability at least1− δ,
Rℓ,D(ŵapprox) ≤ min

w∈W
Rℓ,D(w) + 4ε .

Numerical or symbolic computation of the biconjugate of a multidimensional function is difficult,
in general, but can be done in special cases. It will be interesting to see if techniques from Compu-
tational Convex Analysis [Lucet, 2010] can be used to efficiently compute the biconjugate above.

4 Method of label-dependent costs
We develop the method of label-dependent costs from two key observations. First, the Bayes clas-
sifier for noisy distribution, denoted̃f∗, for the caseρ+1 6= ρ−1, simply uses a threshold different
from1/2. Second,̃f∗ is the minimizer of a “label-dependent 0-1 loss” on the noisydistribution. The
framework we develop here generalizes known results for theuniform noise rate settingρ+1 = ρ−1

and offers a more fundamental insight into the problem. The first observation is formalized in the
lemma below.

Lemma 7. DenoteP (Y = 1|X) by η(X) andP (Ỹ = 1|X) by η̃(X). The Bayes classifier under
the noisy distribution,̃f∗ = argminf E(X,Ỹ )∼Dρ

[
1{sign(f(X)) 6=Ỹ }

]
is given by,

f̃∗(x) = sign(η̃(x)− 1/2) = sign

(
η(x) − 1/2− ρ−1

1− ρ+1 − ρ−1

)
.

Interestingly, this “noisy” Bayes classifier can also be obtained as the minimizer of a weighted 0-1
loss; which as we will show, allows us to “correct” for the threshold under the noisy distribution.
Let us first introduce the notion of “label-dependent” costsfor binary classification. We can write
the 0-1 loss as a label-dependent loss as follows:

1{sign(f(X)) 6=Y } = 1{Y=1}1{f(X)≤0} + 1{Y=−1}1{f(X)>0}

We realize that the classical 0-1 loss isunweighted. Now, we could consider anα-weighted version
of the 0-1 loss as:

Uα(t, y) = (1− α)1{y=1}1{t≤0} + α1{y=−1}1{t>0},

whereα ∈ (0, 1). In fact we see that minimization w.r.t. the 0-1 loss is equivalent to that w.r.t.
U1/2(f(X), Y ). It is not a coincidence that Bayes optimalf∗ has a threshold 1/2. The following
lemma [Scott, 2012] shows that in fact for anyα-weighted 0-1 loss, the minimizer thresholdsη(x)
atα.
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Lemma 8 (α-weighted Bayes optimal [Scott, 2012]). DefineUα-risk under distributionD as

Rα,D(f) = E(X,Y )∼D[Uα(f(X), Y )].

Then,f∗
α(x) = sign(η(x) − α) minimizesUα-risk.

Now consider the risk off w.r.t. theα-weighted 0-1 loss under noisy distributionDρ:

Rα,Dρ
(f) = E(X,Ỹ )∼Dρ

[
Uα(f(X), Ỹ )

]
.

At this juncture, we are interested in the following question: Does there exist anα ∈ (0, 1) such
that the minimizer ofUα-risk under noisy distributionDρ has the same sign as that of the Bayes
optimalf∗? We now present our second main result in the following theorem that makes a stronger
statement — theUα-risk under noisy distributionDρ is linearly related to the 0-1 risk under the
clean distributionD. The corollary of the theorem answers the question in the affirmative.

Theorem 9 (Main Result 2). For the choices,

α∗ =
1− ρ+1 + ρ−1

2
andAρ =

1− ρ+1 − ρ−1

2
,

there exists a constantBX that is independent off such that, for all functionsf ,

Rα∗,Dρ
(f) = AρRD(f) +BX .

Corollary 10. Theα⋆-weighted Bayes optimal classifier under noisy distribution coincides with
that of 0-1 loss under clean distribution:

argmin
f

Rα∗,Dρ
(f) = argmin

f
RD(f) = sign(η(x) − 1/2).

4.1 Proposed Proxy Surrogate Losses
Consider any surrogate loss functionℓ; and the following decomposition:

ℓ(t, y) = 1{y=1}ℓ1(t) + 1{y=−1}ℓ−1(t)

whereℓ1 andℓ−1 are partial losses ofℓ. Analogous to the 0-1 loss case, we can defineα-weighted
loss function (Eqn. (1)) and the correspondingα-weightedℓ-risk. Can we hope to minimize anα-
weightedℓ-risk with respect to noisy distributionDρ and yet bound the excess 0-1 risk with respect
to the clean distributionD? Indeed, theα⋆ specified in Theorem 9 is precisely what we need. We are
ready to state our third main result, which relies on a generalized notion of classification calibration
for α-weighted losses [Scott, 2012]:

Theorem 11 (Main Result 3). Consider the empirical risk minimization problem with noisy labels:

f̂α = argmin
f∈F

1

n

n∑

i=1

ℓα(f(Xi), Ỹi).

Defineℓα as anα-weighted margin loss function of the form:

ℓα(t, y) = (1− α)1{y=1}ℓ(t) + α1{y=−1}ℓ(−t) (1)

whereℓ : R→ [0,∞) is a convex loss function with Lipschitz constantL such that it is classification-
calibrated (i.e. ℓ

′

(0) < 0). Then, for the choicesα∗ andAρ in Theorem 9, there exists a nonde-
creasing functionζℓα⋆ with ζℓα⋆ (0) = 0, such that the following bound holds with probability at
least1− δ:

RD(f̂α∗)−R∗ ≤ A−1
ρ ζℓα⋆

(
min
f∈F

Rα∗,Dρ
(f)−min

f
Rα∗,Dρ

(f) + 4LR(F) + 2

√
log(1/δ)

2n

)
.

Aside from bounding excess 0-1 risk under the clean distribution, the importance of the above the-
orem lies in the fact that it prescribes an efficient algorithm for empirical minimization with noisy
labels:ℓα is convex ifℓ is convex. Thus for any surrogate loss function includingℓhin, f̂α∗ can be
efficiently computed using the method of label-dependent costs. Note that the choice ofα∗ above
is quite intuitive. For instance, whenρ−1 ≪ ρ+1 (this occurs in settings such as Liu et al. [2003]
where there are only positive and unlabeled examples),α∗ < 1 − α∗ and therefore mistakes on
positives are penalized more than those on negatives. This makes intuitive sense since an observed
negative may well have been a positive but the other way around is unlikely. In practice we do not
need to knowα∗, i.e. the noise ratesρ+1 andρ−1. The optimization problem involves just one
parameter that can be tuned by cross-validation (See Section 5).
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5 Experiments
We show the robustness of the proposed algorithms to increasing rates of label noise on synthetic and
real-world datasets. We compare the performance of the two proposed methods with state-of-the-art
methods for dealing with random classification noise. We divide each dataset (randomly) into 3
training and test sets. We use a cross-validation set to tunethe parameters specific to the algorithms.
Accuracy of a classification algorithm is defined as the fraction of examples in the test set classified
correctlywith respect to the clean distribution. For given noise ratesρ+1 andρ−1, labels of the
training data are flipped accordingly and average accuracy over 3 train-test splits is computed2. For
evaluation, we choose a representative algorithm based on each of the two proposed methods —̃ℓlog
for the method of unbiased estimators and the widely-used C-SVM [Liu et al., 2003] method (which
applies different costs on positives and negatives) for themethod of label-dependent costs.

5.1 Synthetic data
First, we use the synthetic 2D linearly separable dataset shown in Figure 1(a). We observe from
experiments that our methods achieve over 90% accuracy evenwhenρ+1 = ρ−1 = 0.4. Figure 1
shows the performance of̃ℓlog on the dataset for different noise rates. Next, we use a 2D UCI
benchmark non-separable dataset (‘banana’). The dataset and classification results using C-SVM
(in fact, for uniform noise rates,α∗ = 1/2, so it is just the regular SVM) are shown in Figure 2. The
results for higher noise rates are impressive as observed from Figures 2(d) and 2(e). The ‘banana’
dataset has been used in previous research on classificationwith noisy labels. In particular, the
Random Projection classifier [Stempfel and Ralaivola, 2007] that learns a kernel perceptron in the
presence of noisy labels achieves about 84% accuracy atρ+1 = ρ−1 = 0.3 as observed from
our experiments (as well as shown by Stempfel and Ralaivola [2007]), and the random hyperplane
sampling method [Stempfel et al., 2007] gets about the same accuracy at(ρ+1, ρ−1) = (0.2, 0.4) (as
reported by Stempfel et al. [2007]). Contrast these with C-SVM that achieves about 90% accuracy
atρ+1 = ρ−1 = 0.2 and over 88% accuracy atρ+1 = ρ−1 = 0.4.
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Figure 1: Classification of linearly separable synthetic data set using̃ℓlog. The noise-free data is
shown in the leftmost panel. Plots (b) and (c) show training data corrupted with noise rates(ρ+1 =
ρ−1 = ρ) 0.2 and 0.4 respectively. Plots (d) and (e) show the corresponding classification results.
The algorithm achieves 98.5% accuracy even at0.4 noise rate per class. (Best viewed in color).
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Figure 2: Classification of ‘banana’ data set using C-SVM. The noise-free data is shown in (a). Plots
(b) and (c) show training data corrupted with noise rates(ρ+1 = ρ−1 = ρ) 0.2 and 0.4 respectively.
Note that forρ+1 = ρ−1, α∗ = 1/2 (i.e. C-SVM reduces to regular SVM). Plots (d) and (e) show
the corresponding classification results (Accuracies are 90.6% and 88.5% respectively). Even when
40% of the labels are corrupted (ρ+1 = ρ−1 = 0.4), the algorithm recovers the class structures as
observed from plot (e). Note that the accuracy of the method at ρ = 0 is 90.8%.

5.2 Comparison with state-of-the-art methods on UCI benchmark

We compare our methods with three state-of-the-art methodsfor dealing with random classi-
fication noise: Random Projection (RP) classifier [Stempfeland Ralaivola, 2007]), NHERD

2Note that training and cross-validation are done on the noisy training data in our setting. To account for
randomness in the flips to simulate a given noise rate, we repeat each experiment 3 times — independent
corruptions of the data set for same setting ofρ+1 andρ

−1, and present the mean accuracy over the trials.
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DATASET (d, n+, n−) Noise rates ℓ̃log C-SVM PAM NHERD RP
ρ+1 = ρ−1 = 0.2 70.12 67.85 69.34 64.90 69.38

Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 70.07 67.81 67.79 65.68 66.28
(9, 77, 186) ρ+1 = ρ−1 = 0.4 67.79 67.79 67.05 56.50 54.19

ρ+1 = ρ−1 = 0.2 76.04 66.41 69.53 73.18 75.00
Diabetes ρ+1 = 0.3, ρ−1 = 0.1 75.52 66.41 65.89 74.74 67.71
(8, 268, 500) ρ+1 = ρ−1 = 0.4 65.89 65.89 65.36 71.09 62.76

ρ+1 = ρ−1 = 0.2 87.80 94.31 96.22 78.49 84.02
Thyroid ρ+1 = 0.3, ρ−1 = 0.1 80.34 92.46 86.85 87.78 83.12
(5, 65, 150) ρ+1 = ρ−1 = 0.4 83.10 66.32 70.98 85.95 57.96

ρ+1 = ρ−1 = 0.2 71.80 68.40 63.80 67.80 62.80
German ρ+1 = 0.3, ρ−1 = 0.1 71.40 68.40 67.80 67.80 67.40
(20, 300, 700) ρ+1 = ρ−1 = 0.4 67.19 68.40 67.80 54.80 59.79

ρ+1 = ρ−1 = 0.2 82.96 61.48 69.63 82.96 72.84
Heart ρ+1 = 0.3, ρ−1 = 0.1 84.44 57.04 62.22 81.48 79.26
(13, 120, 150) ρ+1 = ρ−1 = 0.4 57.04 54.81 53.33 52.59 68.15

ρ+1 = ρ−1 = 0.2 82.45 91.95 92.90 77.76 65.29
Image ρ+1 = 0.3, ρ−1 = 0.1 82.55 89.26 89.55 79.39 70.66
(18, 1188, 898) ρ+1 = ρ−1 = 0.4 63.47 63.47 73.15 69.61 64.72

Table 1: Comparative study of classification algorithms on UCI benchmark datasets. Entries within
1% from the best in each row are in bold. All the methods exceptNHERD variants (which
are not kernelizable) use Gaussian kernel with width 1.All method-specific parameters are esti-
mated through cross-validation. Proposed methods (ℓ̃log and C-SVM) are competitive across all the
datasets. We show the best performing NHERD variant (‘project’ and ‘exact’) in each case.

[Crammer and Lee, 2010]) (project and exact variants3), and perceptron algorithm with mar-
gin (PAM) which was shown to be robust to label noise by Khardon and Wachman [2007].
We use the standard UCI classification datasets, preprocessed and made available by Gunnar
Rätsch(http://theoval.cmp.uea.ac.uk/matlab). For kernelized algorithms, we use
Gaussian kernel with width set to the best width obtained by tuning it for a traditional SVM on
the noise-free data. For̃ℓlog, we useρ+1 andρ−1 that give the best accuracy in cross-validation. For
C-SVM, we fix one of the weights to 1, and tune the other. Table 1shows the performance of the
methods for different settings of noise rates. C-SVM is competitive in 4 out of 6 datasets (Breast
cancer, Thyroid, German and Image), while relatively poorer in the other two. On the other hand,
ℓ̃log is competitive in all the data sets, and performs the best more often. When about 20% labels are
corrupted, uniform (ρ+1 = ρ−1 = 0.2) and non-uniform cases (ρ+1 = 0.3, ρ−1 = 0.1) have similar
accuracies in all the data sets, for both C-SVM andℓ̃log. Overall, we observe that the proposed
methods are competitive and are able to tolerate moderate tohigh amounts of label noise in the data.
Finally, in domains where noise rates are approximately known, our methods can benefit from the
knowledge of noise rates. Our analysis shows that the methods are fairly robust to misspecification
of noise rates (See Appendix C for results).

6 Conclusions and Future Work
We addressed the problem of risk minimization in the presence of random classification noise, and
obtained general results in the setting using the methods ofunbiased estimators and weighted loss
functions. We have given efficient algorithms for both the methods with provable guarantees for
learning under label noise. The proposed algorithms are easy to implement and the classification
performance is impressive even at high noise rates and competitive with state-of-the-art methods on
benchmark data. The algorithms already give a new family of methods that can be applied to the
positive-unlabeled learning problem [Elkan and Noto, 2008], but the implications of the methods for
this setting should be carefully analysed. We could consider harder noise models such as label noise
depending on the example, and “nasty label noise” where labels to flip are chosen adversarially.

7 Acknowledgments
This research was supported by DOD Army grant W911NF-10-1-0529 to ID; PR acknowledges the
support of ARO via W911NF-12-1-0390 and NSF via IIS-1149803, IIS-1320894.

3A family of methods proposed by Crammer and coworkers [Crammer et al., 2006, 2009, Dredze et al.,
2008] could be compared to, but [Crammer and Lee, 2010] show that the 2 NHERD variants perform the best.
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A Proofs

Proof of Lemma 1.One could directly compute and see thatℓ̃ is unbiased. But to give a little more
insight into what motivates the definition ofℓ̃, consider the conditions that unbiasedness imposes on
it. We should have, for everyt,

E
ỹ

ρ∼y

[
ℓ̃(t, ỹ)

]
= ℓ(t, y) .

Considering the casesy = +1 andy = −1 separately, gives the equations

(1− ρ+1)ℓ̃(t,+1) + ρ+1ℓ̃(t,−1) = ℓ(t,+1) ,

(1− ρ−1)ℓ̃(t,−1) + ρ−1ℓ̃(t,+1) = ℓ(t,−1) .

Solving these two equations forℓ̃(t,+1) andℓ̃(t,−1) gives

ℓ̃(t,+1) =
(1 − ρ−1)ℓ(t,+1)− ρ+1ℓ(t,−1)

1− ρ+1 − ρ−1
,

ℓ̃(t,−1) = (1 − ρ+1)ℓ(t,−1)− ρ−1ℓ(t,+1)

1− ρ+1 − ρ−1
.

Proof of Lemma 2.By the basic Rademacher bound on the maximal deviation between risks and
empirical risks overf ∈ F , we get

max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| ≤ 2 ·R(ℓ̃ ◦ F) +

√
log(1/δ)

2n

where

R(ℓ̃ ◦ F) := EXi,Ỹi,ǫi

[
sup
f∈F

1

n

n∑

i=1

ǫiℓ̃(f(Xi), Ỹi)

]

If ℓ is L-Lipschitz thenℓ̃ is Lρ Lipschitz for Lρ = (1 + |ρ+1 − ρ−1|)L/(1 − ρ+1 − ρ−1) ≤
2L/(1− ρ+1− ρ−1) and hence by the Lipschitz composition property of Rademacher averages, we
have

R(ℓ̃ ◦ F) ≤ Lρ ·R(F) .

Proof of Theorem 3.Let f⋆ be the minimizer ofRℓ,D(·) overF . We have

Rℓ,D(f̂)−Rℓ,D(f⋆)

= Rℓ̃,Dρ
(f̂)−Rℓ̃,Dρ

(f⋆)

= R̂ℓ̃(f̂)− R̂ℓ̃(f
⋆) + (Rℓ̃,Dρ

(f̂)− R̂ℓ̃(f̂))

+ (R̂ℓ̃(f
⋆)−Rℓ̃,Dρ

(f⋆))

≤ 0 + 2max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| .

We can now apply Lemma 2 to control the last quantity above, and thus obtain the first statement of
the theorem. Now, ifℓ is classification-calibrated, then from Theorem 1 of [Bartlett et al., 2006], we
know there exists a convex, invertible, nondecreasing transformationψℓ with ψℓ(0) = 0 such that,

ψℓ(RD(f)−R∗) ≤ Rℓ,D(f)− inf
f
Rℓ,D(f)

Subtractingminf Rℓ,D(f) off either sides of the first inequality in the theorem statement, and real-
izing thatψ−1

ℓ is nondecreasing as well, withψ−1
ℓ (0) = 0, we conclude:

RD(f̂)−R∗ ≤ ψ−1
ℓ

(
min
f∈F

Rℓ,D(f)−min
f
Rℓ,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n

)
.
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Proof of Lemma 4.Let us computẽℓ′′(t, y) (recall that differentiation is w.r.t.t) and show that it is
non-negative under the symmetry conditionℓ′′(t, y) = ℓ′′(t,−y). We have

ℓ̃′′(t, y) =
(1− ρ−y)ℓ

′′(t, y)− ρyℓ′′(t,−y)
1− ρ+1 − ρ−1

=
(1− ρ−y)ℓ

′′(t, y)− ρyℓ′′(t, y)
1− ρ+1 − ρ−1

=
(1− ρ−y − ρy)ℓ′′(t, y)

1− ρ+1 − ρ−1

= ℓ′′(t, y) ≥ 0 ,

sinceℓ is convex int.

Proof of Lemma 5.SinceF ≥ G − ε andF ⋆⋆ is the largest convex function that minorizesF , we
must haveF ⋆⋆ ≥ G− ε. This means thatF ⋆⋆ + 2ε ≥ G+ ε ≥ F . Thus,F is sandwiched between
F ⋆⋆ + 2ε andF ⋆⋆. The lemma follows directly from this.

Proof of Theorem 6.The first part of the theorem follows by combining Lemma 2 and Lemma 5,
using the fact that if‖w‖2 ≤ W2 for anyw and‖Xi‖2 ≤ X2 then,R(W) ≤ W2X2/

√
n. The

second part follows by noting that Theorem 3 is true also for2ε-minimizers of the empirical risk̂Rℓ̃
provided we add2ε to the right hand side.

Proof of Lemma 7.The first equality is true because the optimal bayes classifier underDρ thresholds
η̃(X) = P (Ỹ = 1|X) at 1/2. Now,

η̃(X) = P (Ỹ = 1, Y = 1|X) + P (Ỹ = 1, Y = −1|X)

= P (Ỹ = 1|Y = 1)P (Y = 1|X) + P (Ỹ = 1|Y = −1)P (Y = −1|X)

= (1 − ρ+1)η(X) + ρ−1(1− η(X))

= (1 − ρ+1 − ρ−1)η(X) + ρ−1.

Therefore,

sign(η̃(x) − 1/2) = sign((1− ρ+1 − ρ−1)η(x) + ρ−1 − 1/2)

= sign

(
η(x) − 1/2− ρ−1

1− ρ+1 − ρ−1

)
.

Proof of Theorem 9.Let us think off as{±1}-valued since bothCD andCα,Dρ
depend only on

sign(f). We have,
CD(f) = EY

[
1{f(X) 6=Y }

]

and
Cα,Dρ

(f) = EỸ

[
(1 − α)1{Ỹ=1}1{f(X) 6=1} + α1{Ỹ =−1}1{f(X) 6=−1}

]
.

Note thatRD(f) = EX [CD(f)], andRα,Dρ
(f) = EX

[
Cα,Dρ

(f)
]
. Also note thatCD(f) = η(X)

if f(X) = −1, andCD(f) = 1− η(X) otherwise.
Similarly,Cα,Dρ

(f) = (1 − α)η̃(X) if f(X) = −1 andCα,Dρ
(f) = α(1 − η̃(X)) otherwise. We

want to findA andB such that the following equations hold simultaneously:

(1− α)η̃(X) = Aη(X) +B

α(1 − η̃(X)) = A(1− η(X)) +B

Using the relation betweenη(X) andη̃(X) in Lemma 7 and solving forA we get,

A =
(1− ρ+1 − ρ−1)η(X) + ρ−1 − α

2η(X)− 1
.

2



Choosingα = α∗ = 1−ρ+1+ρ−1

2 , and simplifying, we get a constantA that depends only on the
noise rates:

A = Aρ =
1− ρ+1 − ρ−1

2
.

Consequently,

B = ρ−1(1− α∗)− α∗

2
(1 − ρ+1 − ρ−1)η(X).

Taking expectation with respect toX , we conclude:

Rα∗,Dη
(f) = AρRD(f) + BX ,

whereBX = EX [B].

Proof of Corollary 10.The proof is immediate from Theorem 9 observing thatBX is independent
of f .

Proof of Theorem 11.From Corollary 4.1 in [Scott, 2012], we can infer thatℓα is α-CC for given
α ∈ (0, 1), asℓ is convex, classification-calibrated andℓ

′

(0) < 0. Then, from Theorem 3.1 in [Scott,
2012], there exists aninvertible, non-decreasingconvex transformationψℓα with ψℓα(0) = 0 such
that, for anyf and any distributionD,

ψℓα(Rα,D(f)−min
f
Rα,D(f)) ≤ Rℓα,D(f)−min

f
Rℓα,D(f).

Fix distribution to beDρ, and letf = f̂α. The RHS of the above inequality can then be controlled
similarly as in the proof of Theorem 3. It is easy to see that the Lipschitz constant ofℓα is same as
that ofℓ, denotedL. With probability at least1− δ:

Rℓα,Dρ
(f̂α)−min

f∈F
Rℓα,Dρ

(f) ≤ 4LR(F) + 2

√
log(1/δ)

2n
.

Now considerRα,Dρ
(f)−minf Rα,Dρ

(f). Using the linear relationship betweenRα,Dρ
andRD at

α∗ (Theorem 9), we getRα∗,Dρ
(f)−minf Rα∗,Dρ

(f) = Aρ(RD(f)−R∗). BX vanishes because
it is constant for the distributionDρ. Note thatψ−1

ℓα∗
is nondecreasing as well andψ−1

ℓα∗
(0) = 0.

Subtractingminf Rα∗,Dρ
(f) from both sides of the second inequality above, the statement of the

theorem follows: With probability at least1− δ,

RD(f̂α∗)−R∗ ≤ A−1
ρ ψ−1

ℓα⋆

(
min
f∈F

Rα∗,Dρ
(f)−min

f
Rα∗,Dρ

(f) + 4LR(F) + 2

√
log(1/δ)

2n

)
.

B Online learning

Consider the setting where an adversary chooses a sequence(x1, y1), . . . , (xn, yn) of examples. At
time i, the learner has to make a prediction based on(x1, ỹ1), . . . , (xi−1, ỹi−1) andxi whereỹi
are the noisy labels. But the learner’s cumulative loss as well as that of the best fixed predictor in
hindsight are both computed using the true labelsyi. Note that ifℓ(t, y) is convex int (for everyy),
and we chooseλ1 ∈ ∂ℓ(t, y) andλ2 ∈ ∂ℓ(t,−y), (where∂ℓ is the subdifferential w.r.t.t) we have

Eỹ [g(t, ỹ)] ∈ ∂ℓ(t, y) (2)

where

g(t, y) =
(1 − ρ−y)λ1 − ρy λ2

1− ρ+1 − ρ−1
(3)

We show that Algorithm 1 indeed satisfies low regret (in expectation) on the original sequence
chosen by the adversary even though it only receives noisy versions of the labels. We fix the function
class to be the setW of bounded-norm hyperplanes.

3



Algorithm 1 Online learning using unbiased gradients
Choose learning rateγ > 0
W = {w : ‖w‖2 ≤W2}
ΠW (·) = Euclidean projection ontoW
Initializew0 ← 0

for i = 1 to n do
Receivexi ∈ R

d

Predict〈wi−1,xi〉
Receive noisy label̃yi
Updatewi ← ΠW (wi−1 − γg(〈wi−1,xi〉 , ỹi)xi) whereg(·, ·) is defined in (3)

end for

Theorem 12. Let ℓ(t, y) be convex andL-Lipschitz int (for everyy). Fix an arbitrary sequence
(x1, y1), . . . , (xn, yn). If Algorithm 1 is run on noisy data set(x1, ỹ1), . . . , (xn, ỹn) with learning
rateγ =W2/(X2Lρ

√
n) whereỹi is noisy version ofyi with noise ratesρ+1, ρ−1, then we have

Eỹ1:n

[
max

‖w‖2≤W2

n∑

i=1

(ℓ(〈wi−1,xi〉 , yi)− ℓ(〈w,xi〉 , yi))
]
≤ LρX2W2

√
n ,

whereLρ := (1+ |ρ+1−ρ−1|)L/(1−ρ+1−ρ−1) and it is assumed that‖xi‖ ≤ X2 for all i ∈ [n].

Proof. Let us use the abbreviationgi for g(〈wi−1,xi〉 , ỹi)xi so that the update in Algorithm 1
becomeswi ← ΠW (wi−1 − γgi). It is well known [Zinkevich, 2003] that, for anyw,

n∑

i=1

〈gi,wi−1 −w〉 ≤ γ

2

n∑

i=1

‖gi‖2 +
‖w‖2
2γ

. (4)

Sinceℓ is L-Lipschitz, theλ1, λ2 appearing in the definition (3) ofg(·, ·) satisfy |λ1|, |λ2| ≤ L.
This implies|g(t, y)| ≤ (1 + |ρ+1 − ρ−1|)L/(1 − ρ+1 − ρ−1) = Lρ and hence‖gi‖ ≤ LρX2.

Thus, we have, for anyw with ‖w‖ ≤ W2,
∑n

i=1 〈gi,wi−1 −w〉 ≤ γL2
ρX

2
2n

2 +
W 2

2

2γ . Choosing

γ = (W2/LρX2)
1√
n

, we get
∑n

i=1 〈gi,wi−1 −w〉 ≤ LρX2W2
√
n. Note thatwi−1 only depends

on ỹ1:i−1. Hence

Eỹi
[〈gi,wi−1 −w〉 | ỹ1:i−1] = 〈Eỹi

[gi | ỹ1:i−1] ,wi−1 −w〉 ≥ ℓ(〈wi−1,xi〉 , yi)−ℓ(〈w,xi〉 , yi)
becauseEỹi

[gi | ỹ1:i−1] ∈ ∂w=wi−1
ℓ(〈w,xi〉 , yi) by (2) and the chain rule for differentiation, and

ℓ(〈w,xi〉 , yi) is convex inw. Thus, for anyw with ‖w‖2 ≤W2,

Eỹ1:n

[
n∑

i=1

ℓ(〈wi−1,xi〉 , yi)
]
−

n∑

i=1

ℓ(〈w,xi〉 , yi) ≤ LρX2W2

√
n.

Since the above inequality is true for anyw with ‖w‖2 ≤ 1, we have

Eỹ1:n

[
n∑

i=1

ℓ(〈wi−1,xi〉 , yi)
]
− min

‖w‖2≤W2

n∑

i=1

ℓ(〈w,xi〉 , yi) ≤ LρX2W2

√
n.

Observing that the minimum overw is not random allows us to move it inside the expectation giving
us the theorem.

C Experiments

C.1 Knowledge of noise rates

The proposed algorithms require the knowledge of noise rates ρ+1 andρ−1. However, in practice,
we do not know the true value of noise rates, and therefore we resort to cross-validating the values
in our experiments. We emphasize here that in case the true noise rates are known, our methods
can benefit from that knowledge as observed from our experiments (results not shown), whereas the
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(b) Hinge online
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(c) Huber online
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(d) Logistic online

Figure 3: Study of sensitivity of batch (ℓ̃log) and online (Hinge, Huber and Logistic) methods (Al-
gorithm 1) to specification of noise ratesρ+1 and ρ−1. True noise ratesρ+1 = ρ−1 = ρ are
misspecified as(ρ+1 ± ǫ, ρ−1 ± ǫ) for ǫ ∈ {0.1, 0.2, 0.3, 0.4}. The ratio between the average accu-
racy for a givenǫ and the accuracy atǫ = 0, i.e. when true noise rates are specified, is plotted for
different values of noise ratesρ. The ratio is computed for each of the 6 UCI data sets in Table 1
and the mean and the standard deviation of the ratios are shown. Ratio being equal to 1 for a given
ǫ means that the performance of the algorithm, on average, is unaltered by misspecification of noise
rates up toǫ. As expected, the ratio decreases, i.e. the algorithms perform worse asǫ increases.
Most of the ratios being close to 1 suggests that the proposedmethods are fairly robust with respect
to ǫ-misspecification of noise rates.

competitive methodscannotas they do not involve noise rates. In some cases (and domains), we
may be able to approximately specify noise rates. This motivates our study presented in Figure 3.
True noise ratesρ+1 = ρ−1 = ρ are misspecified as(ρ+1 ± ǫ, ρ−1 ± ǫ) for ǫ ∈ {0.1, 0.2, 0.3, 0.4}.
The ratio between the average accuracy for a givenǫ and the accuracy atǫ = 0, i.e. when true
noise rates are specified, is a measure of sensitivity of the algorithms toǫ-misspecification of noise
rates. We would want the ratio to be close to 1 for a givenǫ, which would suggest that the method
is fairly robust with respect to theǫ-misspecification. The results in Figure 3 show that the proposed
methods are robust toǫ-misspecification of noise rates, which in turn suggests that our methods can
find better use in applications where labels can be noisyandnoise rates are approximately known,
without resorting to ad-hoc cross-validation procedures on the noisy data.
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