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Analyzing the massive datasets of today’s applications will 
require scalable and sophisticated machine-learning methods. 
NOMAD, a novel nomadic framework, combines two common 
approaches: stochastic optimization and distributed computing.

Today’s applications often contain datasets 
that are too big to fit in a single comput-
er’s main memory. Analyzing these massive 
datasets will require scalable and sophisti-

cated machine-learning methods. Two commonly used 
approaches are stochastic optimization and inference 
algorithms,1 which process one data point at a time; and 
distributed computing based on the MapReduce frame-
work,2 where the computation proceeds in iterations, 
with a master processor distributing the computation 
to slaves at each iteration. Although stochastic optimi-
zation and inference algorithms are effective for large-
scale machine learning, they are inherently sequential. 
On the other hand, MapReduce-based algorithms suffer 
from the curse of the last reducer, in that the slaves must 
wait for the slowest processor to finish before moving on 
to the next computational iteration.

In this article, we describe NOMAD, a novel nomadic 
framework that combines stochastic optimization’s 
and distributed computing’s advantages without incur-
ring their drawbacks. NOMAD is an acronym for Non-
locking, stOchastic Multimachine framework for Asyn-
chronous and Decentralized computation. We show that 
many modern machine-learning problems have a double 
separability property, meaning the objective function 
decomposes into a sum over two different variables. We 
use two concrete problems to illustrate our framework: 
matrix completion for recommender systems and latent 
Dirichlet allocation for topic modeling.

MATRIX COMPLETION
In applications such as recommender systems, gene–
disease interactions in bioinformatics, and link predic-
tions in social-network analysis, we observe incomplete 

Nomadic Computing
for Big Data Analytics
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interactions between two different 
kinds of entities. For instance, when 
users are interacting with movies, the 
interactions might be implicit (the user 
watched the movie) or explicit (the user 
reviewed and rated the movie). Given 
the observed interactions, we must 
infer the unobserved interactions. 
This challenge has great practical sig-
nificance because it often underlies 
the systems that e-commerce websites 
use to recommend ads, products, news 
articles, and movies to users.3

Mathematically, the problem can 
be formulated as follows. Let A ∈
Rm×n be an interaction matrix, where 
m denotes the number of users and n
the number of items. Typically m ≫ n.
Furthermore, let Ω ∈ [1, …, m] × [1, …, n]
denote the observed entries of A, that 
is, (i, j) ∈ Ω implies that the interaction 
between user i and item j has a value 
of Aij. The goal is to accurately predict 
the unobserved entries of A. For conve-
nience, we define Ωi as the set of inter-
actions observed for the ith user, that 
is, Ωi: = {j: (i,j) ∈ Ω}. Analogously, j
:= {i: (i,j) ∈ Ω} is the set of users who 
have interacted with item j. Also, let 
ai

T denote the ith row of A.
One popular model for matrix com-

pletion finds matrices W ∈ Rm×k and H
∈ Rn×k with k ≪ min(m,n), such that 
A ≈ WHT.3 One way to understand this 
model is to think of each row wi

T ∈ Rk

of W as a k-dimensional embedding of 
the user. Analogously, each row hj

T ∈
Rk of H is an embedding of the item in 
the same k-dimensional space. To pre-
dict the (i,j)th entry of A, we simply use 
〈wi,hj〉, where 〈⋅,⋅〉 denotes the Euclidean 
inner product of two vectors. The mod-
el’s goodness of fit is measured by a 
loss function, typically given by 1/2(Aij
– 〈wi,hj〉)2. Furthermore, we need to 
enforce regularization to prevent 
overfitting and to properly predict the 

unknown A entries. For instance, a 
popular regularizer is

2 ii=1

m w i

2
+
2

jj =1

n hj
2

,

where λ > 0 is a tunable parameter. Here, 
|⋅| denotes the cardinality of a set, and ||⋅||
is the L2 norm of a vector. Putting every-
thing together yields the following 
empirical risk-minimization problem: 

min
W ,H

J (W ,H) :=

1
2

Aij w i ,hj( )2
(i ,j )

+regularization onW andH

.

Stochastic optimization
Stochastic gradient descent (SGD) is a 
popular stochastic optimization tech-
nique,1 which replaces J(W,H) by the 
instantaneous approximation 

J (W ,H ) 1
2

(Aij w ihj )
2

(i ,j )

+ ( w i

2
+ hj

2
)

.

The gradient of this objective func-
tion is easily computed as

wi
J (W ,H ) = (Aij w i ,hj )hj + w i

and

hj
J (W ,H ) = (Aij w i ,hj )w i + hj ,

and is used to update the parameters

w it
w it

st (Aij w ihj )hjt + w it

(1)

hjt hjt st (Aij w ihj )w it
+ hjt ,

(2)

where st is the learning rate for the tth 
update. Thus, stochastic optimization 
requires sampling a random index 
(it,jt) uniformly from the set of nonzero 
indices Ω, and performing updates 1 
and 2.

NOMAD: A novel parallel 
scheme for matrix completion
Note that SGD updates 1 and 2 only 
require us to read wi,hj, and Aij for some 
(i,j) ∈ Ω, and to update wi and hj (see 
Figure 1). As a result, we can simultane-
ously perform multiple SGD updates in 
parallel. The updates will not interfere 
with one other as long as we ensure 
they are not reading or writing the 
same wi and hj values. This observation 
forms the basis of NOMAD.

We refer to a parallel computing 
unit as a worker. In a shared memory 
setting, a worker is a thread; in a dis-
tributed memory architecture, it is a 
machine. This abstraction allows us 
to present NOMAD in a unified man-
ner. Of course, NOMAD can also be 
used in a hybrid setting where multi-
ple threads are spread across multi-
ple machines. The users {1, …, m} are 
split into p disjoint sets I1, I2, …, Ip,
which are of approximately equal size. 
(An alternative strategy is to split the 
users such that each set has approxi-
mately the same number of ratings.) 
This induces a partition of the rows of 
the ratings matrix A. The qth worker 
stores n sets of indices j

(q)  for j ∈ {1, …, 
n}, which are defined as 

j
(q)
:= {(i , j ) j ;i Iq },

as well as the corresponding values 
of A. Note that once the data is parti-
tioned and distributed to the work-
ers, it is never moved during the algo-
rithm’s execution. 

Recall that there are two types of 
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parameters in matrix completion: 
wi user parameters and hj item para-
meters. In NOMAD, wi parameters 
are partitioned according to I1,I2, …, 
Ip, that is, the qth worker stores and 
updates wi for i ∈ Iq. The variables in W
are partitioned at the beginning, and 
never move across workers during the 
algorithm’s execution. On the other 
hand, hj parameters are split randomly 
into p partitions at the beginning, and 
their ownership changes as the algo-
rithm progresses. The hj variables are 
nomadic: at each time point, one hj
variable resides in only one worker, 
moving to another worker after it is 
processed, independent of other item 
variables. (Due to symmetry in the 
formulation of the matrix-completion 
problem, one can also make wi
nomadic and partition hj. Because the 
number of users is usually much larger 
than the number of items, this leads to 
more communication; therefore, we 
made the hj variables nomadic.)

Processing an item variable hj at the 
qth worker entails executing SGD up-
dates 1 and 2 on the ratings in the set 

j
(q)

. These updates require access to 
only hj and wi for i ∈ Iq; because Iq are 
disjoint sets, only one worker accesses 

each wi variable. This is why the com-
munication of wi variables is not nec-
essary. On the other hand, hj is updated 
only by the worker that currently owns 
it, so no lock is needed; this is parallel 
computing’s popular owner-computes 
rule (see Figure 2).

The resultant algorithm has the fol-
lowing attractive properties: 

› Nonblocking communication.
Processors exchange messages 
asynchronously,4 and there is no 
bulk synchronization.

› Decentralized. Workers are sym-
metric, and each worker does the 
same amount of computation 
and communication. 

› Lock free. Owing to the owner-
computes paradigm, the need for 
locking variables is completely 
eliminated. 

› Fully asynchronous computation.
Because the algorithm is lock 
free, the variable updates in 
individual processors are fully 
asynchronous. 

› Serializability. There is an 
equivalent update ordering in 
a serial implementation. Stale 
parameters are never used, 

which empirically leads to 
faster convergence.5

We performed two experiments to 
demonstrate NOMAD’s performance. 
For the first experiment on shared mem-
ory experiments, we pitted NOMAD 
against FPSGD**6 (which is shown to 
outperform DSGD in single machine 
experiments) as well as CCD++. For 
the second experiment on distributed 
memory, we compared NOMAD with 
DSGD,7 DSGD++,8 and CCD++.9 DSGD 
and CCD++ are synchronous algo-
rithms, and DSGD++ and FPSGD** are 
variants of asynchronous SGD.

We worked with three benchmark 
datasets: Netflix, Yahoo! Music, and 
Hugewiki (see Table 1). We used the 
same training and test dataset partition 
for all algorithms in every experiment. 
Because our goal was to compare opti-
mization algorithms, we did very min-
imal parameter tuning. For instance, 
we used the same regularization para-
meter λ for each dataset as reported by 
Hsiang-Fu Yu and his colleagues.9 By 
default, we used k = 100 for the dimen-
sion of the latent space. We initialized 
all algorithms with the same initial 
parameters: each W and H entry was 
set by independently sampling a uni-
formly random variable in the range

( 0, 1
k

).6,9

We compared solvers in terms of 
root mean square error (RMSE) on the 
test set, defined as 

(Aij w i ,hj )
2

(i ,j ) test

test
,

where Ωtest denotes the ratings in the 
test set.

We ran all experiments at the 
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FIGURE 1. Access graph for stochastic optimization of the matrix-completion objective 
function. (a) Updating the parameters wi and hj requires access to wi, hj, and Aij.
(b) The same access pattern represented graphically. Black indicates that the node value 
is being updated, gray that the node value is being read, and white that the nodes are 
being neither updated nor read. 
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University of Texas at Austin using the 
Stampede Cluster, a Linux cluster in 
which each node is outfitted with two 
Intel Xeon E5 (Sandy Bridge) proces-
sors and an Intel Xeon Phi Coproces-
sor (Many Integrated Core Architec-
ture). We used the nodes in the normal 

queue, which were equipped with 32 
GBytes of RAM and 16 cores (only 4 of 
the 16 cores were used for computa-
tion). MVAPICH2 software handled 
intermachine communication.

SGD methods’ convergence speed 
depends on the step-size schedule 

chosen. The schedule we used for 
NOMAD was

st =
1 + t 1.5

,

where t is the number of SGD updates 
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FIGURE 2. The NOMAD algorithm. Each x denotes an observed entry in the interaction matrix A. The ownership of data and variables is 
shown by different colors. Small rectangles in the middle denote each machine’s active regions. (a) Initial assignment of matrices W and 
H. Each worker processes only the diagonal active area. (b) Once a worker finishes processing column j, it sends the corresponding item 
parameter hj to another worker. Here, h2 is sent from worker 1 to worker 4. (c) Upon receipt, the column is processed by the new worker. 
Here, worker 4 can now process column 3 because it owns the column. (d) During the algorithm’s execution, ownership of the hj item 
parameters changes.

Previous Page | Contents  | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags



56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

BIG DATA

performed on a particular user–item 
pair (i,j). DSGD and DSGD++, on the 
other hand, use an alternative strategy 
called bold driver that adapts step size 
by monitoring the change of the objec-
tive function.7

Shared memory experiment
For the shared memory experiment 
(see Figure 3), we fixed the number 
of cores to 30 and compared the per-
formance of NOMAD with CCD++ 
and FPSGD** (because the current 
FPSGD** implementation in LibMF 
only reports CPU execution time, we 
divided this by the number of threads 
and used this as a proxy for wall-clock 
time). On Netflix (Figure 3a), NOMAD 
not only converged to a slightly bet-
ter quality solution than did the other 
methods (NOMAD RMSE was 0.914, 
versus 0.916 for FPSGD** and CCD++), 
but also rapidly reduced the RMSE 
from the beginning. On Yahoo! Music 
(Figure 3b), NOMAD converged to a 
slightly worse solution than FPSGD** 
(RMSE 21.894 versus 21.853, respec-
tively), but as with Netflix, the ini-
tial convergence was more rapid. On 

Hugewiki (Figure 3c), the difference 
in RMSE was smaller but NOMAD still 
outperformed the other two methods. 
CCD++’s initial speed on Hugewiki 
was comparable to NOMAD, but its 
quality in terms of test RMSE started 
to deteriorate after 1,500. 

Distributed memory experiment
For the distributed memory experi-
ment (see Figure 4), we used four com-
putation threads per machine, fixed 
the number of machines to 32 (64 for 
Hugewiki), and compared the perfor-
mance of NOMAD with DSGD, 
DSGD++, and CCD++. On Netflix and 
Hugewiki, NOMAD converged much 
faster than its competitors; not only 
was its initial convergence faster, but 
it also discovered a better quality solu-
tion. On Yahoo! Music, all four meth-
ods performed similarly because the 
cost of network communication rela-
tive to the size of the data is much 
higher for Yahoo! Music. While Net-
flix and Hugewiki have 5,575 and 
68,635 nonzero ratings per item, 
respectively, Yahoo! Music has only 
404 ratings per item. Therefore, when 

Yahoo! Music was divided equally 
across 32 machines, each item only 
had an average of 10 ratings per 
machine. Hence, the cost of sending 
and receiving item parameter vector hj
for one item j across the network was 
higher than for executing SGD updates 
on the ratings of the item locally stored 
within the machine, j

(q)
.

Consequently, the cost of network 
communication dominated the algo-
rithms’ overall execution time, mean-
ing that there was little difference in 
their convergence speeds.

LATENT DIRICHLET 
ALLOCATION
Topic models, including the popular 
latent Dirichlet allocation (LDA),11

allow us to aggregate vocabulary 
from a document corpus to form 
latent topics. Learning meaningful 
topic models with massive document 
collections that contain millions of 
documents and billions of tokens is 
challenging for two reasons. First, it 
requires dealing with a large num-
ber of topics (typically on the order 
of thousands). Second, it requires 
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FIGURE 3. Comparison of NOMAD, FPSGD**, and CCD++ stochastic gradient descent on a single machine with 30 computation cores 
for three datasets: (a) Netflix (λ = 0.05, k = 100), (b) Yahoo! Music (λ = 1.00, k = 100), and (c) Hugewiki (λ =  0.01, k = 100).  RMSE:
root mean square error.

TABLE 1. Dataset details.

Dataset Rows Columns Nonzeros

Netflix3 2,649,429 17,770 99,072,112

Yahoo! Music10 1,999,990 624,961 252,800,275

Hugewiki 50,082,603 39,780 2,736,496,604
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a scalable, efficient way to distrib-
ute the computation across multiple 
machines. In this article, we focus 
on distributed computation and refer 
readers to Hsiang-Fu Yu and col-
leagues’ work for details on handling 
large numbers of topics.12

We begin by very briefly reviewing 
LDA. Suppose we are given I docu-
ments, denoted as d1, d2, …, dI, and let 
J denote the number of words in the 
vocabulary. Moreover, let ni denote 
the number of words in a document 
di. Let wj denote the jth word in the 
vocabulary and wi,j denote the jth 
word in the ith document. Assume 
that the documents are generated 
by sampling from T topics denoted 
as φ1, φ2, …, φT; a topic is simply a J-
dimensional multinomial distribu-
tion over words. Each document in-
cludes some proportion of the topics. 
These proportions are latent, and we 
use the T-dimensional probability 
vector θi to denote the topic distribu-
tion for a document di. Moreover, let 
zi,j denote the latent topic from which 
wi,j was drawn. Let α and β be hyper-
parameters of the Dirichlet distribu-
tion. The LDA generative process can 
be described as follows: 

1. Draw T topics φk ∼ Direchlet(β), k = 
1, …, T.

2. For each document 
di ∈ {d1, d2, …, dI }: 

Draw θi ∼ Direchlet(β). 
For j = 1, …, ni

  Draw zi,j ∼ Discrete(θi). 
  Draw wi,j ∼ Discrete(

zi ,j
).

Inference
The inference task for LDA is to char-
acterize the posterior distribution 
Pr(φi,θk,zi,j|wi,j). In the Bayesian setting, 
we want an efficient way to draw sam-
ples from this posterior distribution. 
Collapsed Gibbs sampling (CGS) is a pop-
ular LDA inference scheme.13 Define 

nz,i ,w := I (zi ,j = z
j =1

ni andwi,j = w),

nz,i ,* = nz,i ,w , nz ,*,w = nz,i ,w ,iw

and nz,*,* = nz,i ,w ,i ,w

where I(⋅) is the indicator function. The 
update rule for CGS can be written as 
follows: 

1. Decrease nzi ,j ,i ,*,nzi ,j ,*,wi ,j ,  and 
nzi ,j , *,*

 by 1. 
2. Resample zi,j according to 

Pr(zi ,j | w i ,j , , )
(nzi ,j ,i ,* + )(nzi ,j ,*,wi ,j + )

nzi ,j ,*,* + J
. (3)

3. Increase nzi ,j ,i ,*,nzi ,j , *,wi ,j ,  and 
nzi ,j ,*,*  by 1.

Although we focus on CGS, there 
are many other LDA inference tech-
niques such as collapsed variational 
Bayes, stochastic variational Bayes, 
or expectation maximization, all of 
which follow a very similar update 
pattern.14 The parallel framework we 
describe also applies to this wider class 
of inference techniques.

Nomadic inference for LDA
Figure 5 illustrates the access pattern 
for a CGS update. For simplicity, we use 
nw to denote the T-dimensional vector 
of counts corresponding to the word 
w, nd to denote the count vector cor-
responding to the dth document, and 
nt to denote the vector corresponding 
counts for each T topic in the entire 
corpus. Analogous to matrix com-
pletion, the key observation in CGS is 
that to perform an update for an occur-
rence of word w (a hyperedge in Figure 
5) in the dth document, we need to 
access counts zi,j, nw, nd, and nt. Notice 
that the access pattern of CGS without 
access to nt is identical to the access 
pattern of matrix completion (see Fig-
ure 1). Thus, the same nomadic scheme 
for matrix completion can be applied 
to parallelize CGS for LDA: partition 
the data across machines, distribute 
the static variables {nd}, and let {nw} be 
nomadic variables.

However, a crucial difference is that 
CGS updates need to read and update 
two entries of nt (the summation node 
in Figure 5). Each element of nt is a large 
value (it contains the total number of 
words from the whole corpus, which 
are assigned to each topic), and each 
update changes its value by at most 
one.15 Therefore, the relative change 
of nt in a short period of time is often 
negligible. This allows us to design 
a special nomadic scheme to keep nt
in sync across workers (see Figure 
6). Other than the global nomadic nt,
which travels across workers, we will 
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have two copies of nt in each worker: 
nt
(l )  and nt nt

(l )  is a local working copy 
for nt. The lth worker always reads and 
writes to nt

(l ) . On the other hand, nt  is 
a snapshot of nt from the last time the 
global nt visited this worker. Owing to 
the additivity of the count vector nt,

we can easily compute the change in 
nt  as nt

(l ) nt. Whenever nt arrives, 
the worker can perform the operations 
shown in Figure 6 to update the global 
nt and copy its value to nt

(l )  and nt .

Experiments
As described in Table 2, we worked 
with three large real-world data-
sets: PubMed, Amazon, and UMBC 
(WebBase Corpus processed by ebi-
quity research group at University of 
Maryland, Baltimore County; http://
ebiqu it y.u m b c.e du/ blog ger/ 201 3
/05/01/).12 The experiments were con-
ducted on Maverick (https://portal
. t a c c . u t e x a s . e d u / u s e r - g u i d e s
/maverick), a parallel platform at the 
Texas Advanced Computing Center 
(TACC). Each node contained 20 Intel 
Xeon E5-2680 CPUs and 256 GBytes of 
memory. Each job could run on at most 
32 nodes (640 cores) for 12 hours max-
imum. We set the hyperparameters to 
α = 50/T and β = 0.01, where T = 1,024 is 
the number of topics.

We compared our algorithm, 
F+NOMAD LDA (the prefix F+ denotes 
the fast F+LDA sampling algorithm 
proposed in previous work12), against 
a state-of-the-art distributed LDA 

inference approach: Yahoo! LDA,15

which is claimed to outperform 
other open source implementations 
such as AD-LDA and PLDA. Yahoo! 
LDA is a disk-based implementation 
that assumes that the latent vari-
ables associated with tokens in the 
documents are streamed from the 
disk at each iteration. In addition to 
running the disk-based Yahoo! LDA, 
denoted as Yahoo! LDA(D), we also 
ran our algorithm on the tmpfs file 
system that resides on RAM for the 
intermediate storage used by Yahoo! 
LDA. Thus, we eliminated the cost 
of disk I/O and could fairly compare 
Yahoo! LDA(D)’s code with our own 
code, which does not stream data 
from disk; we used Yahoo! LDA(M) to 
denote this version. We used the same 
training likelihood routine to evalu-
ate each model’s quality (see Equation 
2 in Alexander Smola and Shravan 
Narayanamurthy’s article15).

Multicore experiments. Both F+
NOMAD LDA and Yahoo! LDA sup-
port parallel computation on a sin-
gle machine with multiple cores. We 
conducted experiments on two data-
sets: PubMed and Amazon (see Fig-
ure 7). F+NOMAD LDA outperformed 
both the memory and disk versions 
of Yahoo! LDA and achieved a better 
quality solution in the same amount 
of time (see Figures 7a and 7b). Given 
a desired log-likelihood level, F+
NOMAD LDA was approximately four 
times faster than Yahoo! LDA.

We then turned our attention to 
F+NOMAD LDA scaling as a function 
of the number of cores (see Figure 7c). 
As the number of cores increased, con-
vergence speed became faster.

Distributed memory experiments. 
We compared the performance of 
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FIGURE 6. The global sum nt is a nomadic 
variable. Whenever a worker receives nt, it 
updates the global copy with the change 
in its local working copy n

t
(l ) , copies the 

updated value to its local working copy, 
stores a local snapshot n

t
, and passes it 

on to the next worker. The process is illus-
trated here with four processors.
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F+NOMAD LDA and Yahoo! LDA 
on two huge datasets, Amazon and 
UMBC, in a distributed memory set-
ting. We set the number of machines 
to 32 and the number of cores per 
machine to 20. F+NOMAD LDA out-
performed both the memory and disk 
versions of Yahoo! LDA and obtained 
a significantly better quality solution 
(in terms of log-likelihood) within the 
same wall-clock time (see Figure 8).

Through our experiments, we 
showed that our novel NOMAD 
framework can tackle matrix 

completion and inference in LAD. We 
are actively working to extend NOMAD 
to other machine-learning problems, 
and have obtained encouraging results 
for training support vector machines 
and logistic regression. Despite our 
framework’s many advantages, it is 
currently not fault tolerant—if one 
worker fails, there is no way to recover. 
How to design a mechanism to increase 
the fault tolerance of NOMAD frame-
work is an ongoing research challenge. 
Another research challenge will be to 

find a way to minimize nomadic vari-
ables’ movement based on the data 
distribution. We hope to collaborate 
with computer systems researchers to 
explore these interesting and active 
research areas. 
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TABLE 2. Data statistics.

Dataset No. of documents (I) No. of vocabulary in the corpus (J) No. of word tokens

PubMed 8,200,000 141,043 737,869,083

Amazon 29,907,995 1,682,527 1,499,602,431

University of Maryland, Baltimore County 40,559,164 2,881,476 1,483,145,192
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