
52 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

COVER FEATURE BIG DATA

Hsiang-Fu Yu, University of Texas at Austin

Cho-Jui Hsieh, University of California, Davis

Hyokun Yun, Amazon.com

S.V.N. Vishwanathan, University of California, Santa Cruz

Inderjit Dhillon, University of Texas at Austin

Analyzing the massive datasets of today’s applications will
require scalable and sophisticated machine-learning methods.
NOMAD, a novel nomadic framework, combines two common
approaches: stochastic optimization and distributed computing.

Today’s applications often contain datasets
that are too big to fit in a single comput-
er’s main memory. Analyzing these massive
datasets will require scalable and sophisti-

cated machine-learning methods. Two commonly used
approaches are stochastic optimization and inference
algorithms,1 which process one data point at a time; and
distributed computing based on the MapReduce frame-
work,2 where the computation proceeds in iterations,
with a master processor distributing the computation
to slaves at each iteration. Although stochastic optimi-
zation and inference algorithms are effective for large-
scale machine learning, they are inherently sequential.
On the other hand, MapReduce-based algorithms suffer
from the curse of the last reducer, in that the slaves must
wait for the slowest processor to finish before moving on
to the next computational iteration.

In this article, we describe NOMAD, a novel nomadic
framework that combines stochastic optimization’s
and distributed computing’s advantages without incur-
ring their drawbacks. NOMAD is an acronym for Non-
locking, stOchastic Multimachine framework for Asyn-
chronous and Decentralized computation. We show that
many modern machine-learning problems have a double
separability property, meaning the objective function
decomposes into a sum over two different variables. We
use two concrete problems to illustrate our framework:
matrix completion for recommender systems and latent
Dirichlet allocation for topic modeling.

MATRIX COMPLETION
In applications such as recommender systems, gene–
disease interactions in bioinformatics, and link predic-
tions in social-network analysis, we observe incomplete

Nomadic Computing
for Big Data Analytics

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

A P R I L 2 0 1 6 53

interactions between two different
kinds of entities. For instance, when
users are interacting with movies, the
interactions might be implicit (the user
watched the movie) or explicit (the user
reviewed and rated the movie). Given
the observed interactions, we must
infer the unobserved interactions.
This challenge has great practical sig-
nificance because it often underlies
the systems that e-commerce websites
use to recommend ads, products, news
articles, and movies to users.3

Mathematically, the problem can
be formulated as follows. Let A ∈
Rm×n be an interaction matrix, where
m denotes the number of users and n
the number of items. Typically m ≫ n.
Furthermore, let Ω ∈ [1, …, m] × [1, …, n]
denote the observed entries of A, that
is, (i, j) ∈ Ω implies that the interaction
between user i and item j has a value
of Aij. The goal is to accurately predict
the unobserved entries of A. For conve-
nience, we define Ωi as the set of inter-
actions observed for the ith user, that
is, Ωi: = {j: (i,j) ∈ Ω}. Analogously, j
:= {i: (i,j) ∈ Ω} is the set of users who
have interacted with item j. Also, let
ai

T denote the ith row of A.
One popular model for matrix com-

pletion finds matrices W ∈ Rm×k and H
∈ Rn×k with k ≪ min(m,n), such that
A ≈ WHT.3 One way to understand this
model is to think of each row wi

T ∈ Rk

of W as a k-dimensional embedding of
the user. Analogously, each row hj

T ∈
Rk of H is an embedding of the item in
the same k-dimensional space. To pre-
dict the (i,j)th entry of A, we simply use
〈wi,hj〉, where 〈⋅,⋅〉 denotes the Euclidean
inner product of two vectors. The mod-
el’s goodness of fit is measured by a
loss function, typically given by 1/2(Aij
– 〈wi,hj〉)2. Furthermore, we need to
enforce regularization to prevent
overfitting and to properly predict the

unknown A entries. For instance, a
popular regularizer is

2 ii=1

m w i

2
+
2

jj =1

n hj
2

,

where λ > 0 is a tunable parameter. Here,
|⋅| denotes the cardinality of a set, and ||⋅||
is the L2 norm of a vector. Putting every-
thing together yields the following
empirical risk-minimization problem:

min
W ,H

J (W ,H) :=

1
2

Aij w i ,hj()2
(i ,j)

+regularization onW andH

.

Stochastic optimization
Stochastic gradient descent (SGD) is a
popular stochastic optimization tech-
nique,1 which replaces J(W,H) by the
instantaneous approximation

J (W ,H) 1
2

(Aij w ihj)
2

(i ,j)

+ (w i

2
+ hj

2
)

.

The gradient of this objective func-
tion is easily computed as

wi
J (W ,H) = (Aij w i ,hj)hj + w i

and

hj
J (W ,H) = (Aij w i ,hj)w i + hj ,

and is used to update the parameters

w it
w it

st (Aij w ihj)hjt + w it

(1)

hjt hjt st (Aij w ihj)w it
+ hjt ,

(2)

where st is the learning rate for the tth
update. Thus, stochastic optimization
requires sampling a random index
(it,jt) uniformly from the set of nonzero
indices Ω, and performing updates 1
and 2.

NOMAD: A novel parallel
scheme for matrix completion
Note that SGD updates 1 and 2 only
require us to read wi,hj, and Aij for some
(i,j) ∈ Ω, and to update wi and hj (see
Figure 1). As a result, we can simultane-
ously perform multiple SGD updates in
parallel. The updates will not interfere
with one other as long as we ensure
they are not reading or writing the
same wi and hj values. This observation
forms the basis of NOMAD.

We refer to a parallel computing
unit as a worker. In a shared memory
setting, a worker is a thread; in a dis-
tributed memory architecture, it is a
machine. This abstraction allows us
to present NOMAD in a unified man-
ner. Of course, NOMAD can also be
used in a hybrid setting where multi-
ple threads are spread across multi-
ple machines. The users {1, …, m} are
split into p disjoint sets I1, I2, …, Ip,
which are of approximately equal size.
(An alternative strategy is to split the
users such that each set has approxi-
mately the same number of ratings.)
This induces a partition of the rows of
the ratings matrix A. The qth worker
stores n sets of indices j

(q) for j ∈ {1, …,
n}, which are defined as

j
(q)
:= {(i , j) j ;i Iq },

as well as the corresponding values
of A. Note that once the data is parti-
tioned and distributed to the work-
ers, it is never moved during the algo-
rithm’s execution.

Recall that there are two types of

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

54 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

BIG DATA

parameters in matrix completion:
wi user parameters and hj item para-
meters. In NOMAD, wi parameters
are partitioned according to I1,I2, …,
Ip, that is, the qth worker stores and
updates wi for i ∈ Iq. The variables in W
are partitioned at the beginning, and
never move across workers during the
algorithm’s execution. On the other
hand, hj parameters are split randomly
into p partitions at the beginning, and
their ownership changes as the algo-
rithm progresses. The hj variables are
nomadic: at each time point, one hj
variable resides in only one worker,
moving to another worker after it is
processed, independent of other item
variables. (Due to symmetry in the
formulation of the matrix-completion
problem, one can also make wi
nomadic and partition hj. Because the
number of users is usually much larger
than the number of items, this leads to
more communication; therefore, we
made the hj variables nomadic.)

Processing an item variable hj at the
qth worker entails executing SGD up-
dates 1 and 2 on the ratings in the set

j
(q)

. These updates require access to
only hj and wi for i ∈ Iq; because Iq are
disjoint sets, only one worker accesses

each wi variable. This is why the com-
munication of wi variables is not nec-
essary. On the other hand, hj is updated
only by the worker that currently owns
it, so no lock is needed; this is parallel
computing’s popular owner-computes
rule (see Figure 2).

The resultant algorithm has the fol-
lowing attractive properties:

› Nonblocking communication.
Processors exchange messages
asynchronously,4 and there is no
bulk synchronization.

› Decentralized. Workers are sym-
metric, and each worker does the
same amount of computation
and communication.

› Lock free. Owing to the owner-
computes paradigm, the need for
locking variables is completely
eliminated.

› Fully asynchronous computation.
Because the algorithm is lock
free, the variable updates in
individual processors are fully
asynchronous.

› Serializability. There is an
equivalent update ordering in
a serial implementation. Stale
parameters are never used,

which empirically leads to
faster convergence.5

We performed two experiments to
demonstrate NOMAD’s performance.
For the first experiment on shared mem-
ory experiments, we pitted NOMAD
against FPSGD**6 (which is shown to
outperform DSGD in single machine
experiments) as well as CCD++. For
the second experiment on distributed
memory, we compared NOMAD with
DSGD,7 DSGD++,8 and CCD++.9 DSGD
and CCD++ are synchronous algo-
rithms, and DSGD++ and FPSGD** are
variants of asynchronous SGD.

We worked with three benchmark
datasets: Netflix, Yahoo! Music, and
Hugewiki (see Table 1). We used the
same training and test dataset partition
for all algorithms in every experiment.
Because our goal was to compare opti-
mization algorithms, we did very min-
imal parameter tuning. For instance,
we used the same regularization para-
meter λ for each dataset as reported by
Hsiang-Fu Yu and his colleagues.9 By
default, we used k = 100 for the dimen-
sion of the latent space. We initialized
all algorithms with the same initial
parameters: each W and H entry was
set by independently sampling a uni-
formly random variable in the range

(0, 1
k

).6,9

We compared solvers in terms of
root mean square error (RMSE) on the
test set, defined as

(Aij w i ,hj)
2

(i ,j) test

test
,

where Ωtest denotes the ratings in the
test set.

We ran all experiments at the

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x x

Items Users

hj

WiW

H A

Aij

(a) (b)

FIGURE 1. Access graph for stochastic optimization of the matrix-completion objective
function. (a) Updating the parameters wi and hj requires access to wi, hj, and Aij.
(b) The same access pattern represented graphically. Black indicates that the node value
is being updated, gray that the node value is being read, and white that the nodes are
being neither updated nor read.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

A P R I L 2 0 1 6 55

University of Texas at Austin using the
Stampede Cluster, a Linux cluster in
which each node is outfitted with two
Intel Xeon E5 (Sandy Bridge) proces-
sors and an Intel Xeon Phi Coproces-
sor (Many Integrated Core Architec-
ture). We used the nodes in the normal

queue, which were equipped with 32
GBytes of RAM and 16 cores (only 4 of
the 16 cores were used for computa-
tion). MVAPICH2 software handled
intermachine communication.

SGD methods’ convergence speed
depends on the step-size schedule

chosen. The schedule we used for
NOMAD was

st =
1 + t 1.5

,

where t is the number of SGD updates

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

xx

x
x

xx

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

xx

x
x

xx

H

H

H

H

W
W W

W

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

xx

x
x

xx

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

xx

x
x

xx

(a) (b)

(c) (d)

FIGURE 2. The NOMAD algorithm. Each x denotes an observed entry in the interaction matrix A. The ownership of data and variables is
shown by different colors. Small rectangles in the middle denote each machine’s active regions. (a) Initial assignment of matrices W and
H. Each worker processes only the diagonal active area. (b) Once a worker finishes processing column j, it sends the corresponding item
parameter hj to another worker. Here, h2 is sent from worker 1 to worker 4. (c) Upon receipt, the column is processed by the new worker.
Here, worker 4 can now process column 3 because it owns the column. (d) During the algorithm’s execution, ownership of the hj item
parameters changes.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

BIG DATA

performed on a particular user–item
pair (i,j). DSGD and DSGD++, on the
other hand, use an alternative strategy
called bold driver that adapts step size
by monitoring the change of the objec-
tive function.7

Shared memory experiment
For the shared memory experiment
(see Figure 3), we fixed the number
of cores to 30 and compared the per-
formance of NOMAD with CCD++
and FPSGD** (because the current
FPSGD** implementation in LibMF
only reports CPU execution time, we
divided this by the number of threads
and used this as a proxy for wall-clock
time). On Netflix (Figure 3a), NOMAD
not only converged to a slightly bet-
ter quality solution than did the other
methods (NOMAD RMSE was 0.914,
versus 0.916 for FPSGD** and CCD++),
but also rapidly reduced the RMSE
from the beginning. On Yahoo! Music
(Figure 3b), NOMAD converged to a
slightly worse solution than FPSGD**
(RMSE 21.894 versus 21.853, respec-
tively), but as with Netflix, the ini-
tial convergence was more rapid. On

Hugewiki (Figure 3c), the difference
in RMSE was smaller but NOMAD still
outperformed the other two methods.
CCD++’s initial speed on Hugewiki
was comparable to NOMAD, but its
quality in terms of test RMSE started
to deteriorate after 1,500.

Distributed memory experiment
For the distributed memory experi-
ment (see Figure 4), we used four com-
putation threads per machine, fixed
the number of machines to 32 (64 for
Hugewiki), and compared the perfor-
mance of NOMAD with DSGD,
DSGD++, and CCD++. On Netflix and
Hugewiki, NOMAD converged much
faster than its competitors; not only
was its initial convergence faster, but
it also discovered a better quality solu-
tion. On Yahoo! Music, all four meth-
ods performed similarly because the
cost of network communication rela-
tive to the size of the data is much
higher for Yahoo! Music. While Net-
flix and Hugewiki have 5,575 and
68,635 nonzero ratings per item,
respectively, Yahoo! Music has only
404 ratings per item. Therefore, when

Yahoo! Music was divided equally
across 32 machines, each item only
had an average of 10 ratings per
machine. Hence, the cost of sending
and receiving item parameter vector hj
for one item j across the network was
higher than for executing SGD updates
on the ratings of the item locally stored
within the machine, j

(q)
.

Consequently, the cost of network
communication dominated the algo-
rithms’ overall execution time, mean-
ing that there was little difference in
their convergence speeds.

LATENT DIRICHLET
ALLOCATION
Topic models, including the popular
latent Dirichlet allocation (LDA),11

allow us to aggregate vocabulary
from a document corpus to form
latent topics. Learning meaningful
topic models with massive document
collections that contain millions of
documents and billions of tokens is
challenging for two reasons. First, it
requires dealing with a large num-
ber of topics (typically on the order
of thousands). Second, it requires

Time (s) Time (s) Time (s)

22

24

26

0.5

0.6

0.7

0.8

0.9

1

0.91

0.92

0.93

0.94

0.95

Te
st

 R
M

SE

Te
st

 R
M

SE

Te
st

 R
M

SE

0 100 200 300 400 0 100 200 300 400 0 500 1,000 1,500 2,000 3,0002,500

NOMAD
FPSGD**
CCD++

NOMAD
FPSGD**
CCD++

NOMAD
FPSGD**
CCD++

(a) (b) (c)

FIGURE 3. Comparison of NOMAD, FPSGD**, and CCD++ stochastic gradient descent on a single machine with 30 computation cores
for three datasets: (a) Netflix (λ = 0.05, k = 100), (b) Yahoo! Music (λ = 1.00, k = 100), and (c) Hugewiki (λ = 0.01, k = 100). RMSE:
root mean square error.

TABLE 1. Dataset details.

Dataset Rows Columns Nonzeros

Netflix3 2,649,429 17,770 99,072,112

Yahoo! Music10 1,999,990 624,961 252,800,275

Hugewiki 50,082,603 39,780 2,736,496,604

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

A P R I L 2 0 1 6 57

a scalable, efficient way to distrib-
ute the computation across multiple
machines. In this article, we focus
on distributed computation and refer
readers to Hsiang-Fu Yu and col-
leagues’ work for details on handling
large numbers of topics.12

We begin by very briefly reviewing
LDA. Suppose we are given I docu-
ments, denoted as d1, d2, …, dI, and let
J denote the number of words in the
vocabulary. Moreover, let ni denote
the number of words in a document
di. Let wj denote the jth word in the
vocabulary and wi,j denote the jth
word in the ith document. Assume
that the documents are generated
by sampling from T topics denoted
as φ1, φ2, …, φT; a topic is simply a J-
dimensional multinomial distribu-
tion over words. Each document in-
cludes some proportion of the topics.
These proportions are latent, and we
use the T-dimensional probability
vector θi to denote the topic distribu-
tion for a document di. Moreover, let
zi,j denote the latent topic from which
wi,j was drawn. Let α and β be hyper-
parameters of the Dirichlet distribu-
tion. The LDA generative process can
be described as follows:

1. Draw T topics φk ∼ Direchlet(β), k =
1, …, T.

2. For each document
di ∈ {d1, d2, …, dI }:

Draw θi ∼ Direchlet(β).
For j = 1, …, ni

 Draw zi,j ∼ Discrete(θi).
 Draw wi,j ∼ Discrete(

zi ,j
).

Inference
The inference task for LDA is to char-
acterize the posterior distribution
Pr(φi,θk,zi,j|wi,j). In the Bayesian setting,
we want an efficient way to draw sam-
ples from this posterior distribution.
Collapsed Gibbs sampling (CGS) is a pop-
ular LDA inference scheme.13 Define

nz,i ,w := I (zi ,j = z
j =1

ni andwi,j = w),

nz,i ,* = nz,i ,w , nz ,*,w = nz,i ,w ,iw

and nz,*,* = nz,i ,w ,i ,w

where I(⋅) is the indicator function. The
update rule for CGS can be written as
follows:

1. Decrease nzi ,j ,i ,*,nzi ,j ,*,wi ,j , and
nzi ,j , *,*

 by 1.
2. Resample zi,j according to

Pr(zi ,j | w i ,j , ,)
(nzi ,j ,i ,* +)(nzi ,j ,*,wi ,j +)

nzi ,j ,*,* + J
. (3)

3. Increase nzi ,j ,i ,*,nzi ,j , *,wi ,j , and
nzi ,j ,*,* by 1.

Although we focus on CGS, there
are many other LDA inference tech-
niques such as collapsed variational
Bayes, stochastic variational Bayes,
or expectation maximization, all of
which follow a very similar update
pattern.14 The parallel framework we
describe also applies to this wider class
of inference techniques.

Nomadic inference for LDA
Figure 5 illustrates the access pattern
for a CGS update. For simplicity, we use
nw to denote the T-dimensional vector
of counts corresponding to the word
w, nd to denote the count vector cor-
responding to the dth document, and
nt to denote the vector corresponding
counts for each T topic in the entire
corpus. Analogous to matrix com-
pletion, the key observation in CGS is
that to perform an update for an occur-
rence of word w (a hyperedge in Figure
5) in the dth document, we need to
access counts zi,j, nw, nd, and nt. Notice
that the access pattern of CGS without
access to nt is identical to the access
pattern of matrix completion (see Fig-
ure 1). Thus, the same nomadic scheme
for matrix completion can be applied
to parallelize CGS for LDA: partition
the data across machines, distribute
the static variables {nd}, and let {nw} be
nomadic variables.

However, a crucial difference is that
CGS updates need to read and update
two entries of nt (the summation node
in Figure 5). Each element of nt is a large
value (it contains the total number of
words from the whole corpus, which
are assigned to each topic), and each
update changes its value by at most
one.15 Therefore, the relative change
of nt in a short period of time is often
negligible. This allows us to design
a special nomadic scheme to keep nt
in sync across workers (see Figure
6). Other than the global nomadic nt,
which travels across workers, we will

Time (s) Time (s) Time (s)

22

24

26

0.50

0.55

0.60

0.65

0.70

0.92

0.94

0.93

0.98

1

Te
st

 R
M

SE

Te
st

 R
M

SE

Te
st

 R
M

SE

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 200 400 600

NOMAD
DSGD
DSGD++
CCD++

NOMAD
DSGD
DSGD++
CCD++

NOMAD
DSGD
DSGD++
CCD++

FIGURE 4. Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a high-performance computing cluster with four computing
threads and two communication threads per machine for three datasets: (a) Netflix (machines = 32, λ = 0.05, k = 100), (b) Yahoo!
Music (machines = 32, λ = 1.00, k = 100), and (c) Hugewiki (machines = 64, λ = 0.01, k = 100).

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

58 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

BIG DATA

have two copies of nt in each worker:
nt
(l) and nt nt

(l) is a local working copy
for nt. The lth worker always reads and
writes to nt

(l) . On the other hand, nt is
a snapshot of nt from the last time the
global nt visited this worker. Owing to
the additivity of the count vector nt,

we can easily compute the change in
nt as nt

(l) nt. Whenever nt arrives,
the worker can perform the operations
shown in Figure 6 to update the global
nt and copy its value to nt

(l) and nt .

Experiments
As described in Table 2, we worked
with three large real-world data-
sets: PubMed, Amazon, and UMBC
(WebBase Corpus processed by ebi-
quity research group at University of
Maryland, Baltimore County; http://
ebiqu it y.u m b c.e du/ blog ger/ 201 3
/05/01/).12 The experiments were con-
ducted on Maverick (https://portal
. t a c c . u t e x a s . e d u / u s e r - g u i d e s
/maverick), a parallel platform at the
Texas Advanced Computing Center
(TACC). Each node contained 20 Intel
Xeon E5-2680 CPUs and 256 GBytes of
memory. Each job could run on at most
32 nodes (640 cores) for 12 hours max-
imum. We set the hyperparameters to
α = 50/T and β = 0.01, where T = 1,024 is
the number of topics.

We compared our algorithm,
F+NOMAD LDA (the prefix F+ denotes
the fast F+LDA sampling algorithm
proposed in previous work12), against
a state-of-the-art distributed LDA

inference approach: Yahoo! LDA,15

which is claimed to outperform
other open source implementations
such as AD-LDA and PLDA. Yahoo!
LDA is a disk-based implementation
that assumes that the latent vari-
ables associated with tokens in the
documents are streamed from the
disk at each iteration. In addition to
running the disk-based Yahoo! LDA,
denoted as Yahoo! LDA(D), we also
ran our algorithm on the tmpfs file
system that resides on RAM for the
intermediate storage used by Yahoo!
LDA. Thus, we eliminated the cost
of disk I/O and could fairly compare
Yahoo! LDA(D)’s code with our own
code, which does not stream data
from disk; we used Yahoo! LDA(M) to
denote this version. We used the same
training likelihood routine to evalu-
ate each model’s quality (see Equation
2 in Alexander Smola and Shravan
Narayanamurthy’s article15).

Multicore experiments. Both F+
NOMAD LDA and Yahoo! LDA sup-
port parallel computation on a sin-
gle machine with multiple cores. We
conducted experiments on two data-
sets: PubMed and Amazon (see Fig-
ure 7). F+NOMAD LDA outperformed
both the memory and disk versions
of Yahoo! LDA and achieved a better
quality solution in the same amount
of time (see Figures 7a and 7b). Given
a desired log-likelihood level, F+
NOMAD LDA was approximately four
times faster than Yahoo! LDA.

We then turned our attention to
F+NOMAD LDA scaling as a function
of the number of cores (see Figure 7c).
As the number of cores increased, con-
vergence speed became faster.

Distributed memory experiments.
We compared the performance of

← ← nt ← nt, nt
(3)+ (), nt

nt
(1), nt¯

nt
(4), ntnt

(2), nt ¯

nt
(3), nt¯

nt

nt nt

¯

nt
(3) − nt¯ ¯

FIGURE 6. The global sum nt is a nomadic
variable. Whenever a worker receives nt, it
updates the global copy with the change
in its local working copy n

t
(l) , copies the

updated value to its local working copy,
stores a local snapshot n

t
, and passes it

on to the next worker. The process is illus-
trated here with four processors.

Words Documents

WordsTopics

Do
cu

m
en

ts
nwt

ndt

nt

Summation node

nt

ndt

nwt

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x x

C

zij

(a) (b)

FIGURE 5. Access graph for collapsed Gibbs sampling inference for latent Dirichlet allo-
cation. (a) Updating counts nwt

 and n
dt

 requires access to n
wt

, n
dt

, nt, and zi,j. (b) The
same access pattern represented by a hypergraph. Black indicates that the node’s value
is being updated, gray that the node’s value is being read, and white that the nodes are
being neither read nor updated.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

A P R I L 2 0 1 6 59

F+NOMAD LDA and Yahoo! LDA
on two huge datasets, Amazon and
UMBC, in a distributed memory set-
ting. We set the number of machines
to 32 and the number of cores per
machine to 20. F+NOMAD LDA out-
performed both the memory and disk
versions of Yahoo! LDA and obtained
a significantly better quality solution
(in terms of log-likelihood) within the
same wall-clock time (see Figure 8).

Through our experiments, we
showed that our novel NOMAD
framework can tackle matrix

completion and inference in LAD. We
are actively working to extend NOMAD
to other machine-learning problems,
and have obtained encouraging results
for training support vector machines
and logistic regression. Despite our
framework’s many advantages, it is
currently not fault tolerant—if one
worker fails, there is no way to recover.
How to design a mechanism to increase
the fault tolerance of NOMAD frame-
work is an ongoing research challenge.
Another research challenge will be to

find a way to minimize nomadic vari-
ables’ movement based on the data
distribution. We hope to collaborate
with computer systems researchers to
explore these interesting and active
research areas.

ACKNOWLEDGMENTS
We thank the Texas Advanced Computing
Center for providing infrastructure and
timely support for our experiments. This

research was supported by National Sci-
ence Foundation grants IIS-1546452 and
IIS-1546459.

REFERENCES
1. L. Bottou and O. Bousquet, “The

Tradeoffs of Large Scale Learning,”
Proc. Advances in Neural Information
Processing Systems 20 (NIPS 07), 2007;
http://leon.bottou.org/publications
/pdf/nips-2007.pdf.

Wall time (s)
0.50.0

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.3

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

1.0 1.5 2.0
1e4

0.2 0.4 0.60.0 0.8 1.0 1.2 0.2 0.4 0.60.0 0.8 1.0 1.2 1.4
1e4 1e4

1e10 1e10 1e10

Lo
g-

lik
el

ih
oo

d

Wall time (s) Wall time (s)

Lo
g-

lik
el

ih
oo

d

Lo
g-

lik
el

ih
oo

d

F+NOMAD LDA
Yahoo! LDA (D)
Yahoo! LDA (M)

F+NOMAD LDA
Yahoo! LDA (D)
Yahoo! LDA (M)

8 cores
12 cores
20 cores

4 cores
1 core

(a) (b) (c)

FIGURE 7. Multicore experiment comparing F+NOMAD and Yahoo! (data [D] and memory [M] versions) latent Dirichlet allocation (LDA)
using 20 cores on a single machine for two datasets: (a) PubMed and (b) Amazon. (c) F+NOMAD LDA’s scaling performance as a func-
tion of number of cores.

Wall time (s) Wall time (s)

Lo
g-

lik
el

ih
oo

d

Lo
g-

lik
el

ih
oo

d

−2.2
−2.1

−2.0
−1.9

−1.8

−2.2

−2.0

−1.8

−1.6

−1.4

−1.7
−1.6
−1.5
−1.4

1e10 1e10

1e4 1e4
0.2 0.4 0.60.0 0.8 1.0 1.2 1.4 0.2 0.4 0.60.0 0.8 1.0 1.2 1.41.6

F+NOMAD LDA
Yahoo! LDA (D)
Yahoo! LDA (M)

F+NOMAD LDA
Yahoo! LDA (D)
Yahoo! LDA (M)

(a) (b)

FIGURE 8. Distributed memory experiment comparing F+NOMAD LDA and Yahoo! (D)
and (M) LDA on 32 machines with 20 cores per machine for two datasets: (a) Amazon
and (b) UMBC.

TABLE 2. Data statistics.

Dataset No. of documents (I) No. of vocabulary in the corpus (J) No. of word tokens

PubMed 8,200,000 141,043 737,869,083

Amazon 29,907,995 1,682,527 1,499,602,431

University of Maryland, Baltimore County 40,559,164 2,881,476 1,483,145,192

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

BIG DATA

2. J. Dean and S. Chemawat,
“MapReduce: Simplified Data Pro-
cessing on Large Clusters,” Comm.
ACM 50th Anniversary Issue 1958–
2008, vol. 51, no. 1, 2008, pp. 107-113.

3. R.M. Bell and Y. Koren, “Lessons
from the Netflix Prize Challenge,”
ACM SIGKDD Explorations Newsletter,
vol. 9, no. 2, 2007, pp. 75–79.

4. D.P. Bertsekas and J.N. Tsitsiklis,
Parallel and Distributed Computation:
Numerical Methods, Athena Scien-
tific, 1997.

5. Y. Low et al., “Distributed Graphlab:
A Framework for Machine Learning
and Data Mining in the Cloud,” J.
Proc. VLDB Endowment, vol. 5, no. 8,
2012, pp. 716–727.

6. Y. Zhuang et al., “A Fast Parallel SGD
for Matrix Factorization in Shared
Memory Systems,” Proc. 7th ACM
Conf. Recommender Systems (RecSys
13), 2013, pp. 249–256.

7. R. Gemulla et al., “Large-Scale
Matrix Factorization with Distrib-
uted Stochastic Gradient Descent,”
Proc. 17th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining
(KDD 11), 2011, pp. 69–77.

8. C. Teflioudi, F. Makari, and R.
Gemulla, “Distributed Matrix Com-
pletion,” Proc. IEEE 12th Int’l Conf. Data
Mining (ICDM 12), 2012, pp. 655–664.

9. H.-F. Yu et al., “Scalable Coordinate
Descent Approaches to Parallel
Matrix Factorization for Recom-
mender Systems,” Proc. IEEE 12th
Int’l Conf. Data Mining (ICDM 12),
2012, pp. 765–774.

10. G. Dror et al., “The Yahoo! Music
Dataset and KDD-Cup’11,” J. Machine
Learning Research: Conf. and Workshop
Proc., vol. 18, 2012, pp. 3–18.

11. D. Blei, A. Ng, and M. Jordan, “Latent
Dirichlet Allocation,” J. Machine Learn-
ing Research, vol. 3, 2003, pp. 993–1022.

12. H.-F. Yu et al., “A Scalable Asynchro-
nous Distributed Algorithm for Topic
Modeling,” Proc. Int’l World Wide Web
Conf. (WWW 15), 2015, pp. 1340–1350.

13. T. Griffiths and M. Steyvers, “Finding
Scientific Topics,” PNAS, vol. 101,
suppl. 1, 2004, pp. 5228–5235.

14. A. Asuncion et al., “On Smoothing
and Inference for Topic Models,” Proc.
25th Conf. Uncertainty in Artificial
Intelligence (UAI 09), 2009, pp. 27–34.

15. A.J. Smola and S. Narayanamurthy,
“An Architecture for Parallel Topic
Models,” J. Proc. VLDB Endowment,
vol. 3, no. 1, 2010, pp. 703–710.

ABOUT THE AUTHORS
HSIANG-FU YU is a PhD candidate in the Computer Science Department at the
University of Texas at Austin (UT Austin). His research interests include large-
scale machine learning and data mining. Yu received an MS degree in computer
science from National Taiwan University. Contact him at rofuyu@cs.utexas.edu.

CHO-JUI HSIEH is an assistant professor in the Department of Computer Sci-
ence and Statistics at the University of California, Davis. His research inter-
ests include new algorithms and optimization techniques for large-scale
machine-learning problems. Hsieh received a PhD in computer science from
UT Austin. Contact him at chohsieh@ucdavis.edu.

HYOKUN YUN is a machine-learning scientist at Amazon.com. His research
interests include multimodal representation learning, stochastic optimization,
and distributed computing. Yun received a PhD in statistics from Purdue Uni-
versity. Contact him at yunhyoku@amazon.com.

S.V.N. VISHWANATHAN is a professor of computer science at the University of
California, Santa Cruz. His research interests include machine learning, large-
scale distributed optimization, and personalization. Vishwanathan received a
PhD in machine learning from the Indian Institute of Science. Contact him at
vishy@ucsc.edu.

INDERJIT DHILLON is the Gottesman Family Centennial Professor of Computer
Science and Mathematics at UT Austin, as well as director of the Institute for
Computational Engineering and Sciences Center for Big Data Analytics. His
research interests include big data, machine learning, network analysis, linear
algebra, and optimization. Dhillon received a PhD in computer science from the
University of California, Berkeley. He is a Fellow of IEEE, SIAM, and ACM. Con-
tact him at inderjit@cs.utexas.edu.

stay connected.

Keep up with the latest IEEE Computer Society
publications and activities wherever you are.

| IEEE Computer Society
| Computing Now

| facebook.com/IEEEComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

| youtube.com/ieeecomputersociety

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer q
q
M

M
q

q
M

M
qM

Qmags
