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This paper describes a numerical method for finding good pack-
ings in Grassmannian manifolds equipped with various met-
rics. This investigation also encompasses packing in projective
spaces. In each case, producing a good packing is equivalent
to constructing a matrix that has certain structural and spectral
properties. By alternately enforcing the structural condition and
then the spectral condition, it is often possible to reach a matrix
that satisfies both. One may then extract a packing from this
matrix.

This approach is both powerful and versatile. In cases in which
experiments have been performed, the alternating projection
method yields packings that compete with the best packings
recorded. It also extends to problems that have not been studied
numerically. For example, it can be used to produce packings of
subspaces in real and complex Grassmannian spaces equipped
with the Fubini–Study distance; these packings are valuable in
wireless communications. One can prove that some of the novel
configurations constructed by the algorithm have packing diam-
eters that are nearly optimal.

1. INTRODUCTION

Let us begin with the standard facetious example. Imag-
ine that several mutually inimical nations build their cap-
ital cities on the surface of a featureless globe. Being
concerned about missile strikes, they wish to locate the
closest pair of cities as far apart as possible. In other
words, what is the best way to pack points on the sur-
face of a two-dimensional sphere?

This question, first discussed by the Dutch biologist
Tammes [Tammes 30], is the prototypical example of
packing in a compact metric space. It has been stud-
ied in detail for the last 75 years. More recently, re-
searchers have started to ask about packings in other
compact spaces. In particular, several communities have
investigated how to arrange subspaces in a Euclidean
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space so that they are as distinct as possible. An equiv-
alent formulation is to find the best packings of points
in a Grassmannian manifold. This problem has appli-
cations in quantum computing and wireless communica-
tions. There has been theoretical interest in subspace
packing since the 1960s [Tóth 65], but the first detailed
numerical study appears in a 1996 paper of Conway,
Hardin, and Sloane [Conway et al. 96].

The aim of this paper is to describe a flexible numer-
ical method that can be used to construct packings in
Grassmannian manifolds equipped with several different
metrics. The rest of this introduction provides a formal
statement of abstract packing problems, and it offers an
overview of our approach to solving them.

1.1 Abstract Packing Problems

Although we will be working with Grassmannian mani-
folds, it is more instructive to introduce packing problems
in an abstract setting. Let M be a compact metric space
endowed with the distance function distM. The packing
diameter of a finite subset X is the minimum distance be-
tween some pair of distinct points drawn from X . That
is,

packM(X ) def= min
m �=n

distM(xm, xn).

In other words, the packing diameter of a set is the diam-
eter of the largest open ball that can be centered at each
point of the set without encompassing any other point.
(It is also common to study the packing radius, which is
half the diameter of this ball.) An optimal packing of
N points is an ensemble X that solves the mathematical
program

max
|X |=N

packM(X ),

where |·| returns the cardinality of a finite set. The op-
timal packing problem is guaranteed to have a solution
because the metric space is compact and the objective is
a continuous function of the ensemble X .

This article focuses on a feasibility problem closely con-
nected with optimal packing. Given a number ρ, the goal
is to produce a set of N points for which

packM(X ) ≥ ρ. (1–1)

This problem is notoriously difficult to solve because it
is highly nonconvex, and it is even more difficult to de-
termine the maximum value of ρ for which the feasibility
problem is soluble. This maximum value of ρ corresponds
to the diameter of an optimal packing.

1.2 Alternating Projection

We will attempt to solve the feasibility problem (1–1)
in Grassmannian manifolds equipped with a number of
different metrics, but the same basic algorithm applies
in each case. Here is a high-level description of our ap-
proach.

First, we show that each configuration of subspaces is
associated with a block Gram matrix whose blocks con-
trol the distances between pairs of subspaces. Then we
prove that a configuration solves the feasibility problem
(1–1) if and only if its Gram matrix possesses both a
structural property and a spectral property. The overall
algorithm consists of the following steps.

1. Choose an initial configuration and construct its ma-
trix.

2. Alternately enforce the structural condition and the
spectral condition in hope of reaching a matrix that
satisfies both.

3. Extract a configuration of subspaces from the output
matrix.

In our work, we choose the initial configuration ran-
domly and then remove similar subspaces from it with a
simple algorithm. One can imagine more sophisticated
approaches to constructing the initial configuration.

Flexibility and ease of implementation are the major
advantages of alternating projection. This article demon-
strates that appropriate modifications of this basic tech-
nique allow us to construct solutions to the feasibility
problem in Grassmannian manifolds equipped with var-
ious metrics. Some of these problems have never been
studied numerically, and the experiments point toward
intriguing phenomena that deserve theoretical attention.
Moreover, we believe that the possibilities of this method
have not been exhausted and that it will see other appli-
cations in the future.

Alternating projection does have several drawbacks.
It may converge very slowly, and it does not always yield
a high level of numerical precision. In addition, it may
not deliver good packings when the ambient dimension
or the number of subspaces in the configuration is large.

1.3 Motivation and Related Work

This work was motivated by applications in electrical en-
gineering. In particular, subspace packings solve certain
extremal problems that arise in multiple-antenna com-
munication systems [Zheng and Tse 02, Hochwald et al.
00, Love et al. 04]. This application requires complex
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Grassmannian packings that consist of a small number
of subspaces in an ambient space of low dimension. Our
algorithm is quite effective in this parameter regime. The
resulting packings fill a significant gap in the literature,
since existing tables consider only the real case [Sloane
04a]. See Section 6.1 for additional discussion of the wire-
less application.

The approach to packing via alternating projection
was discussed in a previous publication [Tropp et al.
05], but the experiments were limited to a single case.
We are aware of several other numerical methods that
can be used to construct packings in Grassmannian
manifolds [Conway et al. 96, Trosset 01, Agrawal et
al. 01]. These techniques rely on ideas from nonlinear
programming.

1.4 Historical Interlude

The problem of constructing optimal packings in various
metric spaces has a long and lovely history. The most
famous example may be Kepler’s conjecture that an op-
timal packing of spheres in three-dimensional Euclidean
space1 locates them at the points of a face-centered cu-
bic lattice. For millennia, greengrocers have applied this
theorem when stacking oranges, but it has only been
established rigorously within the last few years [Hales
04]. Packing problems play a major role in modern com-
munications because error-correcting codes may be in-
terpreted as packings in the Hamming space of binary
strings [Cover and Thomas 91]. The standard reference
on packing is the magnum opus of Conway and Sloane
[Conway and Sloane 98]. Classical monographs on the
subject were written by L. Fejes Tóth [Tóth 64] and C.
A. Rogers [Rogers 64].

The idea of applying alternating projection to feasi-
bility problems first appeared in the work of von Neu-
mann [von Neumann 50]. He proved that an alternat-
ing projection between two closed subspaces of a Hilbert
space converges to the orthogonal projection of the ini-
tial iterate onto the intersection of the two subspaces.
Cheney and Goldstein subsequently showed that an al-
ternating projection between two closed, convex subsets
of a Hilbert space always converges to a point in their
intersection (provided that the intersection is nonempty)
[Cheney and Goldstein 59]. This result does not apply in
our setting because one of the constraint sets we define
is not convex.

1The infinite extent of a Euclidean space necessitates a more
subtle definition of an optimal packing.

1.5 Outline of Article

Here is a brief overview of this article. In Section 2, we
develop a basic description of Grassmannian manifolds
and present some natural metrics. Section 3 explains
why alternating projection is a natural algorithm for pro-
ducing Grassmannian packings, and it outlines how to
apply this algorithm for one specific metric. Section 4
gives some theoretical upper bounds on the optimal di-
ameter of packings in Grassmannian manifolds. Section
5 describes the outcomes of an extensive set of numeri-
cal experiments and explains how to apply the algorithm
to other metrics. Section 6 offers some discussion and
conclusions. Appendix 7 explores how our methodology
applies to Tammes’ problem of packing on the surface of
a sphere.

Our experiments resulted in tables of packing diame-
ters. We did not store the configurations produced by the
algorithm. The Matlab code that produced these data is
available on request from jtropp@acm.caltech.edu.

These tables and figures are intended only to describe
the results of our experiments; it is likely that many of the
packing diameters could be improved with additional ef-
fort. In all cases, we present the results of calculations for
the stated problem, even if we obtained a better packing
by solving a different problem. For example, a complex
packing should always improve on the corresponding real
packing. If the numbers indicate otherwise, it just means
that the complex experiment yielded an inferior result.
As a second example, the optimal packing diameter must
not decrease as the number of points increases. When
the numbers indicate otherwise, it means that running
the algorithm with more points yielded a better result
than running it with fewer. These failures may reflect
the difficulty of various packing problems.

2. PACKING IN GRASSMANNIAN MANIFOLDS

This section introduces our notation and a simple de-
scription of the Grassmannian manifold. It presents sev-
eral natural metrics on the manifold, and it shows how
to represent a configuration of subspaces in matrix form.

2.1 Preliminaries

We work in the vector space C
d. The symbol ∗ denotes

the complex-conjugate transpose of a vector (or matrix).
We equip the vector space with its usual inner product
〈x, y〉 = y∗x.

This inner product generates the �2 norm via the for-
mula ‖x‖22 = 〈x, x〉.
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The d-dimensional identity matrix is Id; we sometimes
omit the subscript if it is unnecessary. A square matrix
is positive semidefinite when its eigenvalues are all non-
negative. We write X � 0 to indicate that X is positive
semidefinite.

A square complex matrix U is unitary if it satisfies
U∗U = I. If in addition, the entries of U are real, the
matrix is orthogonal. The unitary group U(d) can be
presented as the collection of all d × d unitary matrices
with ordinary matrix multiplication. The real orthogonal
group O(d) can be presented as the collection of all d×d
real orthogonal matrices with the usual matrix multipli-
cation.

Suppose that X is a general matrix. The Frobenius
norm is calculated as ‖X‖2F = trace X∗X, where the
trace operator sums the diagonal entries of the matrix.
The spectral norm is denoted by ‖X‖2,2; it returns the
largest singular value of X. Both these norms are unitar-
ily invariant, which means that ‖UXV ∗‖ = ‖X‖ when-
ever U and V are unitary.

2.2 Grassmannian Manifolds

The (complex) Grassmannian manifold G(K,Cd) is the
collection of all K-dimensional subspaces of C

d. This
space is isomorphic to a quotient of unitary groups:

G(K,Cd) ∼= U(d)
U(K)× U(d−K)

.

To understand the equivalence, note that each orthonor-
mal basis from C

d can be split into K vectors that span a
K-dimensional subspace and d−K vectors that span the
orthogonal complement of that subspace. To obtain a
unique representation for the subspace, it is necessary to
divide by isometries that fix the subspace and by isome-
tries that fix its complement. It is evident that G(K,Cd)
is always isomorphic to G(d−K,Cd).

Similarly, the real Grassmannian manifold G(K,Rd) is
the collection of all K-dimensional subspaces of R

d. This
space is isomorphic to a quotient of orthogonal groups:

G(K,Rd) ∼= O(d)
O(K)×O(d−K)

.

If we need to refer to the real and complex Grassmanni-
ans simultaneously, we write G(K,Fd).

In the theoretical development, we concentrate on
complex Grassmannians, since the development for the
real case is identical, except that all the matrices are
real-valued instead of complex-valued. A second reason
for focusing on the complex case is that complex pack-
ings arise naturally in wireless communications [Love et
al. 03].

When each subspace has dimension K = 1, the Grass-
mannian manifold reduces to a simpler object called a
projective space. The elements of a projective space can
be viewed as lines through the origin of a Euclidean space.
The standard notation is P

d−1(F) def= G(1,Fd). We will
spend a significant amount of attention on packings of
this manifold.

2.3 Principal Angles

Suppose that S and T are two subspaces in G(K,Cd).
These subspaces are inclined against each other by K

different principal angles. The smallest principal angle
θ1 is the minimum angle formed by a pair of unit vectors
(s1, t1) drawn from S × T . That is,

θ1 = min
(s1,t1)∈S×T

arccos 〈s1, t1〉

subject to

‖s1‖2 = 1 and ‖t1‖2 = 1.

The second principal angle θ2 is defined as the smallest
angle attained by a pair of unit vectors (s2, t2) that is
orthogonal to the first pair, i.e.,

θ2 = min
(s2,t2)∈S×T

arccos 〈s2, t2〉

subject to

‖s2‖2 = 1 and ‖t2‖2 = 1,

〈s1, s2〉 = 0 and 〈t1, t2〉 = 0.

The remaining principal angles are defined analogously.
The sequence of principal angles is nondecreasing, and
it is contained in the range [0, π/2]. We consider only
metrics that are functions of the principal angles between
two subspaces.

Let us present a more computational definition of the
principal angles [Björck and Golub 73]. Suppose that
the columns of S and T form orthonormal bases for the
subspaces S and T . More rigorously, S is a d×K matrix
that satisfies S∗S = IK and rangeS = S. The matrix T

has an analogous definition. Next we compute a singular
value decomposition of the product S∗T :

S∗T = UCV ∗,

where U and V are K ×K unitary matrices and C is a
nonnegative diagonal matrix with nonincreasing entries.
The matrix C of singular values is uniquely determined,
and its entries are the cosines of the principal angles be-
tween S and T :

ckk = cos θk k = 1, 2, . . . ,K.
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This definition of the principal angles is most convenient
numerically because singular value decompositions can
be computed efficiently with standard software. We also
note that this definition of the principal angles does not
depend on the choice of matrices S and T that represent
the two subspaces.

2.4 Metrics on Grassmannian Manifolds

Grassmannian manifolds admit many interesting metrics,
which lead to different packing problems. This section
describes some of these metrics.

1. The chordal distance between two K-dimensional
subspaces S and T is given by

distchord(S, T ) def=
√

sin2 θ1 + · · ·+ sin2 θK

=
[
K − ‖S∗T ‖2F

]1/2

. (2–1)

The values of this metric range between zero and√
K. The chordal distance is the easiest to work

with, and it also yields the most symmetric packings
[Conway et al. 96].

2. The spectral distance is

distspec(S, T ) def= mink sin θk

=
[
1− ‖S∗T ‖22,2

]1/2

. (2–2)

The values of this metric range between zero and
one. As we will see, this metric promotes a special
type of packing called an equi-isoclinic configuration
of subspaces.

3. The Fubini–Study distance is

distFS(S, T ) def= arccos
(∏

k
cos θk

)

= arccos |det S∗T | . (2–3)

This metric takes values between zero and π/2. It
plays an important role in wireless communications
[Love and Heath 05a, Love and Heath 05b].

4. The geodesic distance is

distgeo(S, T ) def=
√
θ21 + · · ·+ θ2K .

This metric takes values between zero and π
√
K/2.

From the point of view of differential geometry, the
geodesic distance is very natural, but it does not
seem to lead to very interesting packings [Conway
et al. 96], so we will not discuss it any further.

Grassmannian manifolds support several other inter-
esting metrics, some of which are listed in [Barg and No-
gin 02]. In case we are working in a projective space,
i.e., K = 1, all of these metrics reduce to the acute an-
gle between two lines or the sine thereof. Therefore, the
metrics are equivalent up to a monotonically increasing
transformation, and they promote identical packings.

2.5 Representing Configurations of Subspaces

Suppose that X = {S1, . . . ,SN} is a collection of N sub-
spaces in G(K,Cd). Let us develop a method for repre-
senting this configuration numerically. To each subspace
Sn, we associate a (nonunique) d×K matrix Xn whose
columns form an orthonormal basis for that subspace,
i.e., X∗

nXn = IK and rangeXn = Sn. Now collate these
N matrices into a d×KN configuration matrix

X
def=

[
X1 X2 . . . XN

]
.

In the sequel, we do not distinguish between the config-
uration X and the matrix X.

The Gram matrix of X is defined as the KN ×KN
matrix G = X∗X. By construction, the Gram matrix
is positive semidefinite, and its rank does not exceed d.
It is best to regard the Gram matrix as an N ×N block
matrix composed of K × K blocks, and we index it as
such. Observe that each block satisfies

Gmn = X∗
mXn.

In particular, each diagonal block Gnn is an identity ma-
trix. Meanwhile, the singular values of the off-diagonal
block Gmn equal the cosines of the principal angles be-
tween the two subspaces range Xm and rangeXn.

Conversely, let G be an N×N block matrix with each
block of size K ×K. Suppose that the matrix is positive
semidefinite, that its rank does not exceed d, and that
its diagonal blocks are identity matrices. Then we can
factor G = X∗X, where X is a d × KN configuration
matrix. That is, the columns of X form orthogonal bases
for N different K-dimensional subspaces of C

d.
As we will see, each metric on the Grassmannian

manifold leads to a measure of “magnitude” for the off-
diagonal blocks on the Gram matrix G. A configuration
solves the feasibility problem (1–1) if and only if each
off-diagonal block of its Gram matrix has sufficiently
small magnitude. So solving the feasibility problem is
equivalent to producing a Gram matrix with appropriate
properties.
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3. ALTERNATING PROJECTION FOR
CHORDAL DISTANCE

In this section, we elaborate on the idea that solving the
feasibility problem is equivalent to constructing a Gram
matrix that meets certain conditions. These conditions
fall into two categories: structural properties and spec-
tral properties. This observation leads naturally to an al-
ternating projection algorithm for solving the feasibility
problem. The algorithm alternately enforces the struc-
tural properties and the spectral properties in hope of
producing a Gram matrix that satisfies them all. This
section illustrates how this approach unfolds when dis-
tances are measured with respect to the chordal metric.
In Section 5, we describe adaptations for other metrics.

3.1 Packings with Chordal Distance

Suppose that we seek a packing of N subspaces in
G(K,Cd) equipped with the chordal distance. If X is
a configuration of N subspaces, its packing diameter is

packchord(X) def= min
m �=n

distchord(Xm,Xn)

= min
m �=n

[
K − ‖X∗

mXn‖2F
]1/2

.

Given a parameter ρ, the feasibility problem elicits a con-
figuration X that satisfies

min
m �=n

[
K − ‖X∗

mXn‖2F
]1/2

≥ ρ.

We may rearrange this inequality to obtain a simpler
condition:

max
m �=n

‖X∗
mXn‖F ≤ µ, (3–1)

where
µ =

√
K − ρ2. (3–2)

In fact, we may formulate the feasibility problem
purely in terms of the Gram matrix. Suppose that
the configuration X satisfies (3–1) with parameter µ.
Then its Gram matrix G must have the following six
properties:

1. G is Hermitian.

2. Each diagonal block of G is an identity matrix.

3. ‖Gmn‖F ≤ µ for each m �= n.

4. G is positive semidefinite.

5. G has rank d or less.

6. G has trace KN .

Some of these properties are redundant, but we have
listed them separately for reasons soon to become ap-
parent. Conversely, suppose that a matrix G satisfies
properties 1–6. Then it is always possible to factor it to
extract a configuration of N subspaces that solves (3–1).
The factorization of G = X∗X can be obtained most
easily from an eigenvalue decomposition of G.

3.2 The Algorithm

Observe that properties 1–3 are structural properties. By
this, we mean that they constrain the entries of the Gram
matrix directly. Properties 4–6, on the other hand, are
spectral properties. That is, they control the eigenval-
ues of the matrix. It is not easy to enforce structural
and spectral properties simultaneously, so we must re-
sort to half measures. Starting from an initial matrix,
our algorithm will alternately enforce properties 1–3 and
properties 4–6 in hope of reaching a matrix that satisfies
all six properties at once.

To be more rigorous, let us define the structural con-
straint set

H(µ) def=
{
H ∈ C

KN×KN : H = H∗,Hnn = IK

for n = 1, 2, . . . , N,

and ‖Hmn‖F ≤ µ for all m �= n
}
. (3–3)

Although the structural constraint set evidently depends
on the parameter µ, we will usually eliminate µ from
the notation for simplicity. We also define the spectral
constraint set

G def=
{
G ∈ C

KN×KN : G � 0, rank G ≤ d,
and trace G = KN

}
. (3–4)

Both constraint sets are closed and bounded, hence com-
pact. The structural constraint set H is convex, but the
spectral constraint set is not.

To solve the feasibility problem (3–1), we must find a
matrix that lies in the intersection of G and H. This sec-
tion states the algorithm, and the succeeding two sections
provide some implementation details.

Algorithm 3.1. (Alternating Projection.)
Input:

• A KN ×KN Hermitian matrix G(0)

• The maximum number of iterations T



Dhillon et al.: Constructing Packings in Grassmannian Manifolds via Alternating Projection 15

Ouput:

• A KN × KN matrix Gout that belongs to G and
whose diagonal blocks are identity matrices

Procedure:

1. Initialize t← 0.

2. Determine a matrix H(t) that solves

min
H∈H

∥∥H −G(t)
∥∥

F
.

3. Determine a matrix G(t+1) that solves

min
G∈G

∥∥G−H(t)
∥∥

F
.

4. Increment t.

5. If t < T , return to Step 2.

6. Define the block-diagonal matrix D = diag G(T ).

7. Return the matrix

Gout = D−1/2G(T )D−1/2.

The iterates generated by this algorithm are not guar-
anteed to converge in norm. Therefore, we have chosen to
halt the algorithm after a fixed number of steps instead
of checking the behavior of the sequence of iterates. We
discuss the convergence properties of the algorithm in the
sequel.

The scaling in the last step normalizes the diagonal
blocks of the matrix but preserves its inertia (i.e., num-
bers of negative, zero, and positive eigenvalues). Since
G(T ) is a positive semidefinite matrix with rank d or
less, the output matrix Gout shares these traits. It fol-
lows that the output matrix always admits a factorization
Gout = X∗X, where X is a d ×KN configuration ma-
trix. Property 3 is the only one of the six properties that
may be violated.

3.3 The Matrix Nearness Problems

To implement Algorithm 3.1, we must solve the matrix
nearness problems in steps 2 and 3. The first one is
straightforward.

Proposition 3.2. Let G be a Hermitian matrix. With
respect to the Frobenius norm, the unique matrix in H(µ)
nearest to G has diagonal blocks equal to the identity and
off-diagonal blocks that satisfy

Hmn =

{
Gmn if ‖Gmn‖F ≤ µ,
µGmn/ ‖Gmn‖F , otherwise.

It is rather more difficult to find a nearest matrix in
the spectral constraint set. To state the result, we define
the plus operator by the rule (x)+ = max{0, x}.

Proposition 3.3. Let H be a Hermitian matrix whose
eigenvalue decomposition is

∑KN
j=1 λjuju

∗
j with the eigen-

values arranged in nonincreasing order: λ1 ≥ λ2 ≥ · · · ≥
λKN . With respect to the Frobenius norm, a matrix in G
closest to H is given by

∑d

j=1
(λj − γ)+uju

∗
j ,

where the scalar γ is chosen such that
∑d

j=1
(λj − γ)+ = KN.

This best approximation is unique, provided that λd >

λd+1.

The nearest matrix described by this theorem can be
computed efficiently from an eigenvalue decomposition
of H. (See [Golub and Van Loan 96] for computational
details.) The value of γ is uniquely determined, but one
must solve a small root-finding problem to find it. The
bisection method is an appropriate technique, since the
plus operator is nondifferentiable. We omit the details,
which are routine.

Proof: Given a Hermitian matrix A, denote by λ(A)
the vector of eigenvalues arranged in nonincreasing order.
Then we may decompose A = U{diag λ(A)}U∗ for some
unitary matrix U .

Finding the matrix in G closest to H is equivalent to
solving the optimization problem

min
G
‖G−H‖2F

subject to

λj(G) ≥ 0 for j = 1, . . . , d,

λj(G) = 0 for j = d+ 1, . . . ,KN ,∑KN

j=1
λj(G) = KN.

First, we fix the eigenvalues of G and minimize with re-
spect to the unitary part of its eigenvalue decomposition.
In consequence of the Hoffman–Wielandt theorem [Horn
and Johnson 85], the objective function is bounded be-
low:

‖G−H‖2F ≥ ‖λ(G)− λ(H)‖22 .
Equality holds if and only if G and H are simultane-
ously diagonalizable by a unitary matrix. Therefore,
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if we decompose H = U{diag λ(H)}U∗, the objec-
tive function attains its minimal value whenever G =
U{diag λ(G)}U∗. Note that the matrix U may not be
uniquely determined.

We find the optimal vector of eigenvalues ξ for the
matrix G by solving the (strictly) convex program

min
ξ
‖ξ − λ(H)‖22

subject to

ξj ≥ 0 for j = 1, . . . , d,

ξj = 0 for j = d+ 1, . . . ,KN ,∑KN

j=1
ξj = KN.

This minimization is accomplished by an application of
Karush–Kuhn–Tucker theory [Rockafellar 70]. In short,
the top d eigenvalues of H are translated an equal
amount, and those that become negative are set to zero.
The size of the translation is chosen to fulfill the third
condition (which controls the trace of G). The entries of
the optimal ξ are nonincreasing on account of the order-
ing of λ(H).

Finally, the uniqueness claim follows from the fact
that the eigenspace associated with the top d eigenvec-
tors of H is uniquely determined if and only if λd(H) >
λd+1(H).

3.4 Choosing an Initial Configuration

The success of the algorithm depends on adequate selec-
tion of the input matrix G(0). We have found that the
following strategy is reasonably effective. It chooses ran-
dom subspaces and adds them to the initial configuration
only if they are sufficiently distant from the subspaces
that have already been chosen.

Algorithm 3.4. (Initial Configuration.)
Input:

• The ambient dimension d, the subspace dimension
K, and the number N of subspaces

• An upper bound τ on the similarity between sub-
spaces

• The maximum number T of random selections

Output:

• A KN × KN matrix G from G whose off-diagonal
blocks also satisfy ‖Gmn‖F ≤ τ

Procedure:

1. Initialize t← 0 and n← 1.

2. Increment t. If t > T , print a failure notice and stop.

3. Pick a d×K matrix Xn whose range is a uniformly
random subspace in G(K,Cd).

4. If ‖X∗
mXn‖F ≤ τ for each m = 1, . . . , n − 1, then

increment n.

5. If n ≤ N , return to step 2.

6. Form the matrix X =
[
X1 X2 . . . XN

]
.

7. Return the Gram matrix G = X∗X.

To implement step 3, we use the method developed
in [Stewart 80]. Draw a d×K matrix whose entries are
iid complex, standard normal random variables, and per-
form a QR decomposition. The first K columns of the
unitary part of the QR decomposition form an orthonor-
mal basis for a random K-dimensional subspace.

The purpose of the parameter τ is to prevent the
starting configuration X from containing blocks that are
nearly identical. The extreme case τ =

√
K places no re-

striction on the similarity between blocks. If τ is chosen
too small (or if we are unlucky in our random choices),
then this selection procedure may fail. For this reason, we
add an iteration counter to prevent the algorithm from
entering an infinite loop. We typically choose values of τ
very close to the maximum value.

3.5 Theoretical Behavior of the Algorithm

It is important to be aware that packing problems are
typically difficult to solve. Therefore, we cannot expect
that our algorithm will necessarily produce a point in the
intersection of the constraint sets. One may ask whether
we can make any guarantees about the behavior of Algo-
rithm 3.1. This turns out to be difficult. Indeed, there
is potential that an alternating projection algorithm will
fail to generate a convergent sequence of iterates [Meyer
76]. Nevertheless, it can be shown that the sequence of
iterates has accumulation points and that these accumu-
lation points satisfy a weak structural property.

In practice, the alternating projection algorithm seems
to converge, but a theoretical justification for this obser-
vation is lacking. A more serious problem is that the
algorithm frequently requires as many as five thousand
iterations before the iterates settle down. This is one of
the major weaknesses of our approach.
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For reference, we offer the best theoretical convergence
result that we know. The distance between a matrix and
a compact collection of matrices is defined as

dist(M , C) def= min
C∈C
‖M −C‖F .

It can be shown that the distance function is Lipschitz,
hence continuous.

Theorem 3.5. (Global Convergence.) Suppose that
Algorithm 3.1 generates an infinite sequence of iterates
{(G(t),H(t))}. This sequence has at least one accumula-
tion point:

• Every accumulation point lies in G ×H.

• Every accumulation point (G,H) satisfies∥∥G−H
∥∥

F
= lim

t→∞
∥∥G(t) −H(t)

∥∥
F
.

• Every accumulation point (G,H) satisfies∥∥G−H
∥∥

F
= dist(G,H) = dist(H,G).

Proof sketch: The existence of an accumulation point
follows from the compactness of the constraint sets. The
algorithm does not increase the distance between succes-
sive iterates, which is bounded below by zero. Therefore,
this distance must converge. The distance functions are
continuous, so we can take limits to obtain the remaining
assertions.

A more detailed treatment requires the machinery of
point-to-set maps, and it would not enhance our main
discussion. Please see the appendices of [Tropp et al. 05]
for additional information.

4. BOUNDS ON THE PACKING DIAMETER

To assay the quality of the packings that we produce,
it helps to have some upper bounds on the packing di-
ameter. If a configuration of subspaces has a packing
diameter close to the upper bound, that configuration
must be a nearly optimal packing. This approach allows
us to establish that many of the packings we construct
numerically have packing diameters that are essentially
optimal.

Theorem 4.1. [Conway et al. 96] The packing diameter
of N subspaces in the Grassmannian manifold G(K,Fd)
equipped with chordal distance is bounded above as

packchord(X )2 ≤ K(d−K)
d

N

N − 1
. (4–1)

If the bound is met, all pairs of subspaces are equidistant.
When F = R, the bound is attainable only if

N ≤ 1
2
d(d+ 1).

When F = C, the bound is attainable only if N ≤ d2.

The complex case is not stated in [Conway et al. 96],
but it follows from an identical argument. We refer to
(4–1) as the Rankin bound for subspace packings with re-
spect to the chordal distance. The reason for the nomen-
clature is that the result is established by embedding the
chordal Grassmannian manifold into a Euclidean sphere
and applying the classical Rankin bound for sphere pack-
ing [Rankin 47].

It is also possible to draw a corollary on packing with
respect to the spectral distance; this result is novel. A
subspace packing is said to be equi-isoclinic if all the prin-
cipal angles between all pairs of subspaces are identical
[Lemmens and Seidel 73].

Corollary 4.2. We have the following bound on the pack-
ing diameter of N subspaces in the Grassmannian man-
ifold G(K,Fd) equipped with the spectral distance:

packspec(X )2 ≤ d−K
d

N

N − 1
. (4–2)

If the bound is met, the packing is equi-isoclinic.

We refer to (4–2) as the Rankin bound for subspace
packings with respect to spectral distance.

Proof: The power mean inequality (equivalently, Hölder’s
inequality) yields

mink sin θk ≤
[
K−1

∑K

k=1
sin2 θk

]1/2

.

For angles between zero and π/2, equality holds if and
only if θ1 = · · · = θK . It follows that

packspec(X )2 ≤ K−1 packchord(X )2 ≤ d−K
d

N

N − 1
.

If the second inequality is met, then all pairs of sub-
spaces are equidistant with respect to the chordal metric.
Moreover, if the first inequality is met, then the princi-
pal angles between each pair of subspaces are constant.
Together, these two conditions imply that the packing is
equi-isoclinic.

An upper bound on the maximum number of equi-
isoclinic subspaces is available. Its authors do not believe
that it is sharp.
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Theorem 4.3. [Lemmens and Seidel 73] The maximum
number of equi-isoclinic K-dimensional subspaces of R

d

is no greater than

1
2
d(d+ 1)− 1

2
K(K + 1) + 1.

Similarly, the maximum number of equi-isoclinic K-
dimensional subspaces of C

d does not exceed

d2 −K2 + 1.

5. EXPERIMENTS

Our approach to packing is experimental rather than the-
oretical, so the real question is how Algorithm 3.1 per-
forms in practice. In principle, this question is difficult to
resolve because the optimal packing diameter is unknown
for almost all combinations of d and N . Whenever possi-
ble, we compared our results with the Rankin bound and
with the “world record” packings tabulated by N. J. A.
Sloane and his colleagues [Sloane 04a]. In many cases,
the algorithm was able to identify a nearly optimal pack-
ing. Moreover, it yields interesting results for packing
problems that have not received numerical attention.

In the next subsection, we describe detailed experi-
ments on packing in real and complex projective spaces.
Then, we move on to packings of subspaces with respect
to the chordal distance. Afterward, we study the spectral
distance and the Fubini–Study distance.

5.1 Projective Packings

Line packings are the simplest type of Grassmannian
packing, so they offer a natural starting point. Our goal
is to produce the best packing of N lines in P

d−1(F). In
the real case, Sloane’s tables allow us to determine how
much our packings fall short of the world record. In the
complex setting, there is no comparable resource, so we
must rely on the Rankin bound to gauge how well the
algorithm performs.

Let us begin with packing in real projective spaces. We
attempted to construct configurations of real lines whose
maximum absolute inner product µ fell within 10−5 of
the best value tabulated in [Sloane 04a]. For pairs (d,N)
with d = 3, 4, 5 and N = 4, 5, . . . , 25, we computed the
putatively optimal value of the feasibility parameter µ
from Sloane’s data and equation (3–2). In each of ten
trials, we constructed a starting matrix using Algorithm
3.4 with parameters τ = 0.9 and T = 10,000. (Recall
that the value of T determines the maximum number of
random subspaces that are drawn when one is trying to

construct the initial configuration.) We applied alternat-
ing projection, Algorithm 3.1, with the computed value of
µ and the maximum number of iterations T = 5000. (Our
numerical experience indicates that increasing the max-
imum number of iterations beyond 5000 does not confer
a significant benefit.) We halted the iteration in step 4
if the iterate G(t) exhibited no off-diagonal entry with
absolute value greater than µ+10−5. After ten trials, we
recorded the largest packing diameter attained, as well
as the average value of the packing diameter. We also
recorded the average number of iterations the alternat-
ing projection required per trial.

Table 1 delivers the results of this experiment. Fol-
lowing Sloane, we have reported the degrees of arc sub-
tended by the closest pair of lines. We believe that it is
easiest to interpret the results geometrically when they
are stated in this fashion. For collections of N points
in the real projective space P

d−1(R), this table lists the
best packing diameter (in degrees) and the average pack-
ing diameter (in degrees) obtained during ten random
trials of the alternating projection algorithm. The error
columns record how far our results deviate from the pu-
tative optimal packings (NJAS) reported in [Sloane 04a].
The last column gives the average number of iterations
of alternating projection per trial before the termination
condition is met.

According to the table, the best configurations pro-
duced by alternating projection consistently attain pack-
ing diameters tenths or hundredths of a degree away
from the best configurations known. The average config-
urations returned by alternating projection are slightly
worse, but they usually fall within a degree of the puta-
tive optima. Moreover, the algorithm finds certain con-
figurations with ease. For the pair (5, 16), fewer than one
thousand iterations are required on average to achieve a
packing within 0.001 degrees of optimal.

A second observation is that the alternating projection
algorithm typically performs better when the number N
of points is small. The largest errors are all clustered at
larger values of N . A corollary observation is that the
average number of iterations per trial tends to increase
with the number of points.

There are several anomalies that we would like to point
out. The most interesting pathology occurs at the pair
(d,N) = (5, 19). The best packing diameter calculated
by alternating projection is about 1.76◦ worse than the
optimal configuration, and it is also 1.76◦ worse than
the best packing diameter computed for the pair (5, 20).
From Sloane’s tables, we can see that the (putative) op-
timal packing of 19 lines in P

4(R) is actually a subset of
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Packing diameters (Degrees) Iterations
d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10

3 4 70.529 70.528 0.001 70.528 0.001 54
3 5 63.435 63.434 0.001 63.434 0.001 171
3 6 63.435 63.435 0.000 59.834 3.601 545
3 7 54.736 54.735 0.001 54.735 0.001 341
3 8 49.640 49.639 0.001 49.094 0.546 4333
3 9 47.982 47.981 0.001 47.981 0.001 2265
3 10 46.675 46.674 0.001 46.674 0.001 2657
3 11 44.403 44.402 0.001 44.402 0.001 2173
3 12 41.882 41.881 0.001 41.425 0.457 2941
3 13 39.813 39.812 0.001 39.522 0.291 4870
3 14 38.682 38.462 0.221 38.378 0.305 5000
3 15 38.135 37.934 0.201 37.881 0.254 5000
3 16 37.377 37.211 0.166 37.073 0.304 5000
3 17 35.235 35.078 0.157 34.821 0.414 5000
3 18 34.409 34.403 0.005 34.200 0.209 5000
3 19 33.211 33.107 0.104 32.909 0.303 5000
3 20 32.707 32.580 0.127 32.273 0.434 5000
3 21 32.216 32.036 0.180 31.865 0.351 5000
3 22 31.896 31.853 0.044 31.777 0.119 5000
3 23 30.506 30.390 0.116 30.188 0.319 5000
3 24 30.163 30.089 0.074 29.694 0.469 5000
3 25 29.249 29.024 0.224 28.541 0.707 5000

4 5 75.522 75.522 0.001 73.410 2.113 4071
4 6 70.529 70.528 0.001 70.528 0.001 91
4 7 67.021 67.021 0.001 67.021 0.001 325
4 8 65.530 65.530 0.001 64.688 0.842 3134
4 9 64.262 64.261 0.001 64.261 0.001 1843
4 10 64.262 64.261 0.001 64.261 0.001 803
4 11 60.000 59.999 0.001 59.999 0.001 577
4 12 60.000 59.999 0.001 59.999 0.001 146
4 13 55.465 55.464 0.001 54.390 1.074 4629
4 14 53.838 53.833 0.005 53.405 0.433 5000
4 15 52.502 52.493 0.009 51.916 0.585 5000
4 16 51.827 51.714 0.113 50.931 0.896 5000
4 17 50.887 50.834 0.053 50.286 0.601 5000
4 18 50.458 50.364 0.094 49.915 0.542 5000
4 19 49.711 49.669 0.041 49.304 0.406 5000
4 20 49.233 49.191 0.042 48.903 0.330 5000
4 21 48.548 48.464 0.084 48.374 0.174 5000
4 22 47.760 47.708 0.052 47.508 0.251 5000
4 23 46.510 46.202 0.308 45.789 0.722 5000
4 24 46.048 45.938 0.110 45.725 0.322 5000
4 25 44.947 44.739 0.208 44.409 0.538 5000

5 6 78.463 78.463 0.001 77.359 1.104 3246
5 7 73.369 73.368 0.001 73.368 0.001 1013
5 8 70.804 70.803 0.001 70.604 0.200 5000
5 9 70.529 70.528 0.001 69.576 0.953 2116
5 10 70.529 70.528 0.001 67.033 3.496 3029
5 11 67.254 67.254 0.001 66.015 1.239 4615
5 12 67.021 66.486 0.535 65.661 1.361 5000
5 13 65.732 65.720 0.012 65.435 0.297 5000
5 14 65.724 65.723 0.001 65.637 0.087 3559
5 15 65.530 65.492 0.038 65.443 0.088 5000
5 16 63.435 63.434 0.001 63.434 0.001 940
5 17 61.255 61.238 0.017 60.969 0.287 5000
5 18 61.053 61.048 0.005 60.946 0.107 5000
5 19 60.000 58.238 1.762 57.526 2.474 5000
5 20 60.000 59.999 0.001 56.183 3.817 3290
5 21 57.202 57.134 0.068 56.159 1.043 5000
5 22 56.356 55.819 0.536 55.173 1.183 5000
5 23 55.588 55.113 0.475 54.535 1.053 5000
5 24 55.228 54.488 0.740 53.926 1.302 5000
5 25 54.889 54.165 0.724 52.990 1.899 5000

TABLE 1. Packing in real projective spaces.
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Packing diameters (Degrees)
d N DHST Rankin Difference

2 3 60.00 60.00 0.00
2 4 54.74 54.74 0.00
2 5 45.00 52.24 7.24
2 6 45.00 50.77 5.77
2 7 38.93 49.80 10.86
2 8 37.41 49.11 11.69

3 4 70.53 70.53 0.00
3 5 64.00 65.91 1.90
3 6 63.44 63.43 0.00
3 7 61.87 61.87 0.00
3 8 60.00 60.79 0.79
3 9 60.00 60.00 0.00
3 10 54.73 59.39 4.66
3 11 54.73 58.91 4.18
3 12 54.73 58.52 3.79
3 13 51.32 58.19 6.88
3 14 50.13 57.92 7.79
3 15 49.53 57.69 8.15
3 16 49.53 57.49 7.95
3 17 49.10 57.31 8.21
3 18 48.07 57.16 9.09
3 19 47.02 57.02 10.00
3 20 46.58 56.90 10.32

4 5 75.52 75.52 0.00
4 6 70.88 71.57 0.68
4 7 69.29 69.30 0.01
4 8 67.78 67.79 0.01
4 9 66.21 66.72 0.51
4 10 65.71 65.91 0.19
4 11 64.64 65.27 0.63
4 12 64.24 64.76 0.52
4 13 64.34 64.34 0.00
4 14 63.43 63.99 0.56
4 15 63.43 63.69 0.26
4 16 63.43 63.43 0.00
4 17 59.84 63.21 3.37
4 18 59.89 63.02 3.12
4 19 60.00 62.84 2.84
4 20 57.76 62.69 4.93

5 6 78.46 78.46 0.00
5 7 74.52 75.04 0.51
5 8 72.81 72.98 0.16
5 9 71.24 71.57 0.33
5 10 70.51 70.53 0.02
5 11 69.71 69.73 0.02
5 12 68.89 69.10 0.21
5 13 68.19 68.58 0.39
5 14 67.66 68.15 0.50
5 15 67.37 67.79 0.43
5 16 66.68 67.48 0.80
5 17 66.53 67.21 0.68
5 18 65.87 66.98 1.11
5 19 65.75 66.77 1.02
5 20 65.77 66.59 0.82
5 21 65.83 66.42 0.60
5 22 65.87 66.27 0.40
5 23 65.90 66.14 0.23
5 24 65.91 66.02 0.11
5 25 65.91 65.91 0.00

TABLE 2. Packing in complex projective spaces.
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the best packing of 20 lines. Perhaps the fact that this
packing is degenerate makes it difficult to construct. A
similar event occurs (less dramatically) at the pair (5, 13).
The table also shows that the algorithm performs less ef-
fectively when the number of lines exceeds 20.

In complex projective spaces, this methodology does
not apply because there are no tables available. In fact,
we know of only one paper that contains numerical work
on packing in complex projective spaces, [Agrawal et al.
01], but it gives very few examples of good packings.
The only method we know for gauging the quality of a
complex line packing is to compare it against an upper
bound. The Rankin bound for projective packings, which
is derived in Section 4, states that every configuration
X of N lines in either P

d−1(R) or P
d−1(C) satisfies the

inequality

packP(X )2 ≤ (d− 1)N
d(N − 1)

.

This bound is attainable only for rare combinations of d
and N . In particular, the bound can be met in P

d−1(R)
only if N ≤ 1

2d(d + 1). In the space P
d−1(C), at-

tainment requires that N ≤ d2. Any arrangement of
lines that meets the Rankin bound must be equiangu-
lar. These optimal configurations are called equiangular
tight frames. See [Strohmer and Heath 03, Holmes and
Paulsen 04, Tropp et al. 05, Sustik et al. 07] for more
details.

We performed some ad hoc experiments to produce
configurations of complex lines with large packing diam-
eters. For each pair (d,N), we used the Rankin bound
to determine a lower limit on the feasibility parameter
µ. Starting matrices were constructed with Algorithm
3.4 using values of τ ranging between 0.9 and 1.0. (Al-
gorithm 3.4 typically fails for smaller values of τ .) For
values of the feasibility parameter between the minimal
value and twice the minimal value, we performed five
thousand iterations of Algorithm 3.1, and we recorded
the largest packing diameter attained during these trials.

Table 2 compares our results against the Rankin
bound. We see that many of the complex line config-
urations have packing diameters much smaller than the
Rankin bound, which is not surprising because the bound
is usually not attainable. Some of our configurations fall
within a thousandth of a degree of the bound, which is
essentially optimal.

In the table, we compare our best configurations
(DHST) of N points in the complex projective space
P

d−1(C) against the Rankin bound (4–1). The packing
diameter of an ensemble is measured as the acute angle
(in degrees) between the closest pair of lines. The final

column shows how far our configurations fall short of the
bound.

Table 2 contains a few oddities. In P
4(C), the best

packing diameter computed for N = 18, 19, . . . , 24 is
worse than the packing diameter for N = 25. This con-
figuration of 25 lines is an equiangular tight frame, which
means that it is an optimal packing [Tropp et al. 05, Ta-
ble 1]. It seems likely that the optimal configurations for
the preceding values of N are just subsets of the optimal
arrangement of 25 lines. As before, it may be difficult
to calculate this type of degenerate packing. A similar
event occurs less dramatically at the pair (d,N) = (4, 13)
and at the pairs (4, 17) and (4, 18).

Figure 1 compares the quality of the best real projec-
tive packings from [Sloane 04a] with the best complex
projective packings that we obtained. It is natural that
the complex packings are better than the real packings
because the real projective space can be embedded iso-
metrically into the complex projective space. But it is
remarkable how badly the real packings compare with
the complex packings. The only cases in which the real
and complex ensembles have the same packing diame-
ter occur when the real configuration meets the Rankin
bound.

5.2 The Chordal Distance

Emboldened by this success with projective packings, we
move on to packings of subspaces with respect to the
chordal distance. Once again, we are able to use Sloane’s
tables for guidance in the real case. In the complex case,
we fall back on the Rankin bound.

For each triple (d,K,N), we determined a value for
the feasibility parameter µ from the best packing diam-
eter Sloane recorded for N subspaces in G(K,Rd), along
with equation (3–2). We constructed starting points us-
ing the modified version of Algorithm 3.4 with τ =

√
K,

which represents no constraint. (We found that the alter-
nating projection performed no better with initial config-
urations generated from smaller values of τ .) Then we
executed Algorithm 3.1 with the calculated value of µ for
five thousand iterations.

Table 3 demonstrates how the best packings we ob-
tained compare with Sloane’s best packings. Many of
our real configurations attained a squared packing diam-
eter within 10−3 of the best value Sloane recorded. Our
algorithm was especially successful for smaller numbers
of subspaces, but its performance began to flag as the
number of subspaces approached 20.

Table 3 contains several anomalies. For example, our
configurations ofN = 11, 12, . . . , 16 subspaces in R

4 yield
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FIGURE 1. Real and Complex Projective Packings. These three graphs compare the packing diameters attained by
configurations in real and complex projective spaces with d = 3, 4, 5. The circles indicate the best real packings obtained
by Sloane and his colleagues [Sloane 04a]. The crosses indicate the best complex packings produced by the authors.
Rankin’s upper bound (4–1) is depicted in gray. The dashed vertical line marks the largest number of real lines for which
the Rankin bound is attainable, while the solid vertical line marks the maximum number of complex lines for which the
Rankin bound is attainable.

worse packing diameters than the configuration of 17 sub-
spaces. It turns out that this configuration of 17 sub-
spaces is optimal, and Sloane’s data show that the (pu-
tative) optimal arrangements of 11 to 16 subspaces are all

subsets of this configuration. This is the same problem
that occurred in some of our earlier experiments, and it
suggests again that our algorithm has difficulty locating
these degenerate configurations precisely.
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Squared Packing diameters

K d N DHST NJAS Difference

2 4 3 1.5000 1.5000 0.0000
2 4 4 1.3333 1.3333 0.0000
2 4 5 1.2500 1.2500 0.0000
2 4 6 1.2000 1.2000 0.0000
2 4 7 1.1656 1.1667 0.0011
2 4 8 1.1423 1.1429 0.0005
2 4 9 1.1226 1.1231 0.0004
2 4 10 1.1111 1.1111 0.0000
2 4 11 0.9981 1.0000 0.0019
2 4 12 0.9990 1.0000 0.0010
2 4 13 0.9996 1.0000 0.0004
2 4 14 1.0000 1.0000 0.0000
2 4 15 1.0000 1.0000 0.0000
2 4 16 0.9999 1.0000 0.0001
2 4 17 1.0000 1.0000 0.0000
2 4 18 0.9992 1.0000 0.0008
2 4 19 0.8873 0.9091 0.0218
2 4 20 0.8225 0.9091 0.0866

2 5 3 1.7500 1.7500 0.0000
2 5 4 1.6000 1.6000 0.0000
2 5 5 1.5000 1.5000 0.0000
2 5 6 1.4400 1.4400 0.0000
2 5 7 1.4000 1.4000 0.0000
2 5 8 1.3712 1.3714 0.0002
2 5 9 1.3464 1.3500 0.0036
2 5 10 1.3307 1.3333 0.0026
2 5 11 1.3069 1.3200 0.0131
2 5 12 1.2973 1.3064 0.0091
2 5 13 1.2850 1.2942 0.0092
2 5 14 1.2734 1.2790 0.0056
2 5 15 1.2632 1.2707 0.0075
2 5 16 1.1838 1.2000 0.0162
2 5 17 1.1620 1.2000 0.0380
2 5 18 1.1589 1.1909 0.0319
2 5 19 1.1290 1.1761 0.0472
2 5 20 1.0845 1.1619 0.0775

TABLE 3. Packing in Real Grassmannians with Chordal Distance. We compare our best configurations (DHST) of N
points in G(K,Rd) against the best packings (NJAS) reported in [Sloane 04a]. The squared packing diameter is the
squared chordal distance (2–1) between the closest pair of subspaces. The last column lists the difference between the
columns (NJAS) and (DHST).

The literature contains very few experimental results
on packing in complex Grassmannian manifolds equipped
with chordal distance. To our knowledge, the only nu-
merical work appears in two short tables from [Agrawal
et al. 01]. Therefore, we found it valuable to compare our
results against the Rankin bound for subspace packings,
which is derived in Section 4. For reference, this bound
requires that every configuration X of N subspaces in
G(K,Fd) satisfy the inequality

packchord(X )2 ≤ K(d−K)
d

N

N − 1
.

This bound cannot always be met. In particular, the
bound is attainable in the complex setting only ifN ≤ d2.
In the real setting, the bound requires N ≤ 1

2d(d + 1).
When the bound is attained, each pair of subspaces in X
is equidistant.

We performed some ad hoc experiments to construct a
table of packings in G(K,Cd) equipped with the chordal
distance. For each triple (d,K,N), we constructed ran-
dom starting points using Algorithm 3.4 with τ =

√
K

(which represents no constraint). Then we used the
Rankin bound to calculate a lower limit on the feasi-
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Squared Packing diameters

K d N DHST Rankin Difference

2 4 3 1.5000 1.5000 0.0000
2 4 4 1.3333 1.3333 0.0000
2 4 5 1.2500 1.2500 0.0000
2 4 6 1.2000 1.2000 0.0000
2 4 7 1.1667 1.1667 0.0000
2 4 8 1.1429 1.1429 0.0000
2 4 9 1.1250 1.1250 0.0000
2 4 10 1.1111 1.1111 0.0000
2 4 11 1.0999 1.1000 0.0001
2 4 12 1.0906 1.0909 0.0003
2 4 13 1.0758 1.0833 0.0076
2 4 14 1.0741 1.0769 0.0029
2 4 15 1.0698 1.0714 0.0016
2 4 16 1.0658 1.0667 0.0009
2 4 17 0.9975 1.0625 0.0650
2 4 18 0.9934 1.0588 0.0654
2 4 19 0.9868 1.0556 0.0688
2 4 20 0.9956 1.0526 0.0571

2 5 3 1.7500 1.8000 0.0500
2 5 4 1.6000 1.6000 0.0000
2 5 5 1.5000 1.5000 0.0000
2 5 6 1.4400 1.4400 0.0000
2 5 7 1.4000 1.4000 0.0000
2 5 8 1.3714 1.3714 0.0000
2 5 9 1.3500 1.3500 0.0000
2 5 10 1.3333 1.3333 0.0000
2 5 11 1.3200 1.3200 0.0000
2 5 12 1.3090 1.3091 0.0001
2 5 13 1.3000 1.3000 0.0000
2 5 14 1.2923 1.2923 0.0000
2 5 15 1.2857 1.2857 0.0000
2 5 16 1.2799 1.2800 0.0001
2 5 17 1.2744 1.2750 0.0006
2 5 18 1.2686 1.2706 0.0020
2 5 19 1.2630 1.2667 0.0037
2 5 20 1.2576 1.2632 0.0056

2 6 4 1.7778 1.7778 0.0000
2 6 5 1.6667 1.6667 0.0000
2 6 6 1.6000 1.6000 0.0000
2 6 7 1.5556 1.5556 0.0000
2 6 8 1.5238 1.5238 0.0000
2 6 9 1.5000 1.5000 0.0000
2 6 10 1.4815 1.4815 0.0000
2 6 11 1.4667 1.4667 0.0000
2 6 12 1.4545 1.4545 0.0000
2 6 13 1.4444 1.4444 0.0000
2 6 14 1.4359 1.4359 0.0000
2 6 15 1.4286 1.4286 0.0000
2 6 16 1.4221 1.4222 0.0001
2 6 17 1.4166 1.4167 0.0000
2 6 18 1.4118 1.4118 0.0000
2 6 19 1.4074 1.4074 0.0000
2 6 20 1.4034 1.4035 0.0001
2 6 21 1.3999 1.4000 0.0001
2 6 22 1.3968 1.3968 0.0001
2 6 23 1.3923 1.3939 0.0017
2 6 24 1.3886 1.3913 0.0028
2 6 25 1.3862 1.3889 0.0027

3 6 3 2.2500 2.2500 0.0000
3 6 4 2.0000 2.0000 0.0000
3 6 5 1.8750 1.8750 0.0000
3 6 6 1.8000 1.8000 0.0000
3 6 7 1.7500 1.7500 0.0000
3 6 8 1.7143 1.7143 0.0000
3 6 9 1.6875 1.6875 0.0000
3 6 10 1.6667 1.6667 0.0000
3 6 11 1.6500 1.6500 0.0000
3 6 12 1.6363 1.6364 0.0001
3 6 13 1.6249 1.6250 0.0001
3 6 14 1.6153 1.6154 0.0000
3 6 15 1.6071 1.6071 0.0000
3 6 16 1.5999 1.6000 0.0001
3 6 17 1.5936 1.5938 0.0001
3 6 18 1.5879 1.5882 0.0003
3 6 19 1.5829 1.5833 0.0004
3 6 20 1.5786 1.5789 0.0004
3 6 21 1.5738 1.5750 0.0012
3 6 22 1.5687 1.5714 0.0028
3 6 23 1.5611 1.5682 0.0070
3 6 24 1.5599 1.5652 0.0053
3 6 25 1.5558 1.5625 0.0067
3 6 26 1.5542 1.5600 0.0058
3 6 27 1.5507 1.5577 0.0070
3 6 28 1.5502 1.5556 0.0054
3 6 29 1.5443 1.5536 0.0092
3 6 30 1.5316 1.5517 0.0201
3 6 31 1.5283 1.5500 0.0217
3 6 32 1.5247 1.5484 0.0237
3 6 33 1.5162 1.5469 0.0307
3 6 34 1.5180 1.5455 0.0274
3 6 35 1.5141 1.5441 0.0300
3 6 36 1.5091 1.5429 0.0338

TABLE 4. Packing in Complex Grassmannians with Chordal Distance. We compare our best configurations (DHST) of N
points in G(K,Cd) against the Rankin bound, equation (4–1). The squared packing diameter is calculated as the squared
chordal distance (2–1) between the closest pair of subspaces. The final column shows how much the computed ensemble
deviates from the Rankin bound. When the bound is met, all pairs of subspaces are equidistant.
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Packing in G(2, F^4) with Chordal Distance
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Packing in G(2, F^5) with Chordal Distance
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Packing in G(3, F^6) with Chordal Distance
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FIGURE 2. Packing in Grassmannians with Chordal Distance. This figure shows the packing diameters of N points in
the Grassmannian G(K,Fd) equipped with the chordal distance. The circles indicate the best real packings (F = R)
obtained by Sloane and his colleagues [Sloane 04a]. The crosses indicate the best complex packings (F = C) produced
by the authors. Rankin’s upper bound (4–1) appears in gray. The dashed vertical line marks the largest number of real
subspaces for which the Rankin bound is attainable, while the solid vertical line marks the maximum number of complex
subspaces for which the Rankin bound is attainable.
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bility parameter µ. For this value of µ, we executed the
alternating projection, Algorithm 3.1, for five thousand
iterations.

The best packing diameters we obtained are listed in
Table 4. We see that there is a remarkable correspon-
dence between the squared packing diameters of our con-
figurations and the Rankin bound. Indeed, many of our
packings are within 10−4 of the bound, which means that
these configurations are essentially optimal. The algo-
rithm was less successful as N approached d2, which is
an upper bound on the number N of subspaces for which
the Rankin bound is attainable.

Figure 2 compares the packing diameters of the best
configurations in real and complex Grassmannian spaces
equipped with chordal distance. It is remarkable that
both real and complex packings almost meet the Rankin
bound for all N where it is attainable. Notice how the
real packing diameters fall off as soon as N exceeds
1
2d(d + 1). In theory, a complex configuration should
always attain a better packing diameter than the corre-
sponding real configuration because the real Grassman-
nian space can be embedded isometrically into the com-
plex Grassmannian space. The figure shows that our best
arrangements of 17 and 18 subspaces in G(2,C4) are actu-
ally slightly worse than the real arrangements calculated
by Sloane. This indicates a failure of the alternating pro-
jection algorithm.

5.3 The Spectral Distance

Next, we consider how to compute Grassmannian pack-
ings with respect to the spectral distance. This investiga-
tion requires some small modifications to the algorithm,
which are described in the next subsection. Afterward,
we provide the results of some numerical experiments.

5.3.1 Modifications to the Algorithm. To construct
packings with respect to the spectral distance, we tread
a familiar path. Suppose that we wish to produce a con-
figuration of N subspaces in G(K,Cd) with a packing
diameter ρ. The feasibility problem requires that

max
m �=n

‖X∗
mXn‖2,2 ≤ µ, (5–1)

where µ =
√

1− ρ2. This leads to the convex structural
constraint set

H(µ) def= {H ∈ C
KN×KN : H = H∗,

Hnn = I for n = 1, 2, . . . , N,

and ‖Hmn‖2,2 ≤ µ for all m �= n}.

The spectral constraint set is the same as before. The
next proposition shows how to find the matrix in H clos-
est to an initial matrix. In preparation, define the trunca-
tion operator [x]µ = min{x, µ} for numbers, and extend
it to matrices by applying it to each component.

Proposition 5.1. Let G be a Hermitian matrix. With
respect to the Frobenius norm, the unique matrix in H(µ)
nearest to G has a block identity diagonal. If the off-
diagonal block Gmn has a singular value decomposition
UmnCmnV ∗

mn, then

Hmn =

{
Gmn if ‖Gmn‖2,2 ≤ µ,
Umn[Cmn]µV ∗

mn, otherwise.

Proof: To determine the (m,n) off-diagonal block of the
solution matrix H, we must solve the optimization prob-
lem

minA
1
2
‖A−Gmn‖2F subject to ‖A‖2,2 ≤ µ.

The Frobenius norm is strictly convex and the spectral
norm is convex, so this problem has a unique solution.

Let σ(·) return the vector of decreasingly ordered sin-
gular values of a matrix. Suppose that Gmn has the sin-
gular value decomposition Gmn = U{diag σ(Gmn)}V ∗.
The constraint in the optimization problem depends
only on the singular values of A, and so the Hoffman–
Wielandt theorem for singular values [Horn and Johnson
85] allows us to check that the solution has the form
A = U{diag σ(A)}V ∗.

To determine the singular values ξ = σ(A) of the
solution, we must solve the (strictly) convex program

minξ
1
2

∥∥ξ − σ(Gmn)
∥∥ subject to ξk ≤ µ.

An easy application of Karush–Kuhn–Tucker theory
[Rockafellar 70] proves that the solution is obtained by
truncating the singular values of Gmn that exceed µ.

5.3.2 Numerical Results. To our knowledge, there are
no numerical studies of packing in Grassmannian spaces
equipped with spectral distance. To gauge the quality of
our results, we compare them against the upper bound
of Corollary 4.2. In the real or complex setting, a con-
figuration X of N subspaces in G(K,Fd) with respect to
the spectral distance must satisfy the bound

packspec(X )2 ≤ d−K
d

N

N − 1
.
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Packing in G(2, F^4) with Spectral Distance
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Packing in G(2, F^5) with Spectral Distance
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Packing in G(2, F^6) with Spectral Distance
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FIGURE 3. Packing in Grassmannians with spectral distance: This figure shows the packing diameters of N points in
the Grassmannian G(K,Fd) equipped with the spectral distance. The circles indicate the best real packings (F = R)
obtained by the authors, while the crosses indicate the best complex packings (F = C) obtained. The Rankin bound
(4–2) is depicted in gray. The dashed vertical line marks an upper bound on largest number of real subspaces for which
the Rankin bound is attainable according to Theorem 4.3.
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Squared Packing diameters
d K N Rankin R Difference C Difference

4 2 3 0.7500 0.7500 0.0000 0.7500 0.0000
4 2 4 0.6667 0.6667 0.0000 0.6667 0.0000
4 2 5 0.6250 0.5000 0.1250 0.6250 0.0000
4 2 6 0.6000 0.4286 0.1714 0.6000 0.0000
4 2 7 0.5833 0.3122 0.2712 0.5000 0.0833
4 2 8 0.5714 0.2851 0.2863 0.4374 0.1340
4 2 9 0.5625 0.2544 0.3081 0.4363 0.1262
4 2 10 0.5556 0.2606 0.2950 0.4375 0.1181

5 2 3 0.9000 0.7500 0.1500 0.7500 0.1500
5 2 4 0.8000 0.7500 0.0500 0.7500 0.0500
5 2 5 0.7500 0.6700 0.0800 0.7497 0.0003
5 2 6 0.7200 0.6014 0.1186 0.6637 0.0563
5 2 7 0.7000 0.5596 0.1404 0.6667 0.0333
5 2 8 0.6857 0.4991 0.1867 0.6060 0.0798
5 2 9 0.6750 0.4590 0.2160 0.5821 0.0929
5 2 10 0.6667 0.4615 0.2052 0.5196 0.1470

6 2 4 0.8889 0.8889 0.0000 0.8889 0.0000
6 2 5 0.8333 0.7999 0.0335 0.8333 0.0000
6 2 6 0.8000 0.8000 0.0000 0.8000 0.0000
6 2 7 0.7778 0.7500 0.0278 0.7778 0.0000
6 2 8 0.7619 0.7191 0.0428 0.7597 0.0022
6 2 9 0.7500 0.6399 0.1101 0.7500 0.0000
6 2 10 0.7407 0.6344 0.1064 0.7407 0.0000
6 2 11 0.7333 0.6376 0.0958 0.7333 0.0000
6 2 12 0.7273 0.6214 0.1059 0.7273 0.0000
6 3 3 0.7500 0.7500 0.0000 0.7500 0.0000
6 3 4 0.6667 0.5000 0.1667 0.6667 0.0000
6 3 5 0.6250 0.4618 0.1632 0.4999 0.1251
6 3 6 0.6000 0.4238 0.1762 0.5000 0.1000
6 3 7 0.5833 0.3590 0.2244 0.4408 0.1426
6 3 8 0.5714 — — 0.4413 0.1301
6 3 9 0.5625 — — 0.3258 0.2367

TABLE 5. Packing in Grassmannians with spectral distance: We compare our best real (F = R) and complex (F = C)
packings in G(K,Fd) against the Rankin bound, equation (4–2). The squared packing diameter of a configuration is
the squared spectral distance (2–2) between the closest pair of subspaces. When the Rankin bound is met, all pairs of
subspaces are equi-isoclinic. The algorithm failed to produce any configurations of eight or nine subspaces in G(3,R6)
with nontrivial packing diameters.

In the real case, the bound is attainable only if N ≤
1
2d(d+1)− 1

2K(K+1)+1, while attainment in the com-
plex case requires that N ≤ d2 −K2 + 1 [Lemmens and
Seidel 73]. When a configuration meets the bound, the
subspaces are not only equidistant but also equi-isoclinic.
That is, all principal angles between all pairs of subspaces
are identical.

We performed some limited ad hoc experiments in an
effort to produce good configurations of subspaces with
respect to the spectral distance. We constructed random
starting points using the modified version of Algorithm
3.4 with τ = 1, which represents no constraint. (Again,
we did not find that smaller values of τ improved the
performance of the alternating projection.) From the
Rankin bound, we calculated the smallest possible value
of the feasibility parameter µ. For values of µ ranging
from the minimal value to twice the minimal value, we
ran the alternating projection, Algorithm 3.1, for five

thousand iterations, and we recorded the best packing
diameters that we obtained.

Table 5 displays the results of our calculations. We
see that some of our configurations essentially meet the
Rankin bound, which means that they are equi-isoclinic.
It is clear that alternating projection also succeeds rea-
sonably well for this packing problem.

The most notable pathology in the table occurs for
configurations of eight and nine subspaces in G(3,R6). In
these cases, the algorithm always yielded arrangements
of subspaces with a zero packing diameter, which implies
that two of the subspaces intersect nontrivially. Never-
theless, we were able to construct random starting points
with a nonzero packing diameter, which means that the
algorithm is making the initial configuration worse. We
do not understand the reason for this failure.

Figure 3 makes a graphical comparison between the
real and complex subspace packings. On the whole, the
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complex packings are much better than the real packings.
For example, every configuration of subspaces in G(2,C6)
nearly meets the Rankin bound, while just two of the real
configurations achieve the same distinction. In compari-
son, it is curious how few arrangements in G(2,C5) come
anywhere near the Rankin bound.

5.4 The Fubini–Study Distance

When we approach the problem of packing in Grassman-
nian manifolds equipped with the Fubini–Study distance,
we are truly out in the wilderness. To our knowledge,
the literature contains neither experimental nor theoret-
ical treatments of this question. Moreover, we are not
presently aware of general upper bounds on the Fubini–
Study packing diameter that we might use to assay the
quality of a configuration of subspaces. Nevertheless, we
attempted a few basic experiments. The investigation
entails some more modifications to the algorithm, which
are described below. Afterward, we go over our experi-
mental results. We view this work as very preliminary.

5.4.1 Modifications to the Algorithm. Suppose that
we wish to construct a configuration of N subspaces
whose Fubini–Study packing diameter exceeds ρ. The
feasibility condition is

max
m �=n

|detX∗
mXn| ≤ µ, (5–2)

where µ = cos ρ. This leads to the structural constraint
set

H(µ) def= {H ∈ C
KN×KN : H = H∗,

Hnn = I for n = 1, 2, . . . , N,

and |detHmn| ≤ µ for all m �= n}.
Unhappily, this set is no longer convex. To produce a
nearest matrix in H, we must solve a nonlinear program-
ming problem. The following proposition describes a nu-
merically favorable formulation.

Proposition 5.2. Let G be a Hermitian matrix. Suppose
that the off-diagonal block Gmn has singular value decom-
position UmnCmnV ∗

mn. Let cmn = diag Cmn, and find a
(real) vector xmn that solves the optimization problem

min
x

1
2
‖exp(x)− cmn‖22 subject to e∗x ≤ logµ.

In Frobenius norm, a matrix H from H(µ) that is closest
to G has a block-identity diagonal and off-diagonal blocks

Hmn =

{
Gmn if |det Gmn| ≤ µ,
Umn{diag(exp xmn)}V ∗

mn otherwise.

We use exp(·) to denote the componentwise exponen-
tial of a vector. One may establish that the optimization
problem is not convex by calculating the Hessian of the
objective function.

Proof: To determine the (m,n) off-diagonal block of the
solution matrix H, we must solve the optimization prob-
lem

minA
1
2
‖A−Gmn‖2F subject to |det A| ≤ µ.

We may reformulate this problem as

minA
1
2
‖A−Gmn‖2F

subject to ∑K

k=1
log σk(A) ≤ logµ.

A familiar argument proves that the solution matrix has
the same left and right singular vectors as Gmn. To ob-
tain the singular values ξ = σ(A) of the solution, we
consider the mathematical program

minξ
1
2
‖ξ − σ(Gmn)‖22

subject to ∑K

k=1
log ξk ≤ logµ.

Change variables to complete the proof.

5.4.2 Numerical Experiments. We implemented the
modified version of Algorithm 3.1 in Matlab, using the
built-in nonlinear programming software to solve the op-
timization problem required by the proposition. For a
few triples (d,K,N), we ran one hundred to five hun-
dred iterations of the algorithm for various values of the
feasibility parameter µ. (Given the exploratory nature
of these experiments, we found that the implementation
was too slow to increase the number of iterations.)

The results appear in Table 6. For small values of N ,
we find that the packings exhibit the maximum possible
packing diameter π/2, which shows that the algorithm is
succeeding in these cases. For larger values of N , we are
unable to judge how close the packings might be from
optimal.

Figure 4 compares the quality of our real packings
against our complex packings. In each case, the com-
plex packing is at least as good as the real packing, as
we would expect. The smooth decline in the quality of
the complex packings suggests that there is some under-
lying order to the packing diameters, but it remains to
be discovered.
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Squared Packing diameters

d K N R C

2 4 3 1.0000 1.0000
2 4 4 1.0000 1.0000
2 4 5 1.0000 1.0000
2 4 6 1.0000 1.0000
2 4 7 0.8933 0.8933
2 4 8 0.8447 0.8559
2 4 9 0.8196 0.8325
2 4 10 0.8176 0.8216
2 4 11 0.7818 0.8105
2 4 12 0.7770 0.8033

2 5 3 1.0000 1.0000
2 5 4 1.0000 1.0000
2 5 5 1.0000 1.0000
2 5 6 0.9999 1.0000
2 5 7 1.0000 0.9999
2 5 8 1.0000 0.9999
2 5 9 1.0000 1.0000
2 5 10 0.9998 1.0000
2 5 11 0.9359 0.9349
2 5 12 0.9027 0.9022

TABLE 6. Packing in Grassmannians with Fubini–Study distance: Our best real packings (F = R) compared with our best
complex packings (F = C) in the space G(K,Fd). The packing diameter of a configuration is the Fubini–Study distance
(2–3) between the closest pair of subspaces. Note that we have scaled the distance by 2/π so that it ranges between zero
and one.

Packing in G(2, F^4) with Fubini-Study Distance
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FIGURE 4. Packing in Grassmannians with Fubini–Study distance: This figure shows the packing diameters of N points
in the Grassmannian G(K,Fd) equipped with the Fubini–Study distance. The circles indicate the best real packings
(F = R) obtained by the authors, while the crosses indicate the best complex packings (F = C) obtained.
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To perform large-scale experiments, it will probably
be necessary to tailor an algorithm that can solve the
nonlinear programming problems more quickly. It may
also be essential to implement the alternating projection
in a programming environment more efficient than Mat-
lab. Therefore, a detailed study of packing with respect
to the Fubini–Study distance must remain a topic for
future research.

6. DISCUSSION

6.1 Subspace Packing in Wireless Communications

Configurations of subspaces arise in several aspects of
wireless communication, especially in systems with mul-
tiple transmit and receive antennas. The intuition be-
hind this connection is that the transmitted and received
signals in a multiple antenna system are connected by a
matrix transformation, or matrix channel.

Subspace packings occur in two wireless applications:
noncoherent communication and subspace quantization.
The noncoherent application is primarily of theoretical
interest, while subspace quantization has a strong impact
on practical wireless systems. Grassmannian packings
appear in these situations due to an assumption that the
matrix channel should be modeled as a complex Gaussian
random matrix.

In the noncoherent communication problem, it has
been shown that from an information-theoretic perspec-
tive, under certain assumptions about the channel ma-
trix, the optimum transmit signal corresponds to a pack-
ing in G(K,Cd), where K corresponds to the minimum of
the number of transmit and receive antennas and d corre-
sponds to the number of consecutive samples over which
the channel is constant [Zheng and Tse 02, Hochwald and
Marzetta 00]. In other words, the number of subspaces
K is determined by the system configuration, while d is
determined by the carrier frequency and the degree of
mobility in the propagation channel.

On account of this application, several papers have
investigated the problem of finding packings in Grass-
mannian manifolds. One approach for the case of K = 1
is presented in [Hochwald and Marzetta 00]. This pa-
per proposes a numerical algorithm for finding line pack-
ings, but it does not discuss its properties or connect
it with the general subspace packing problem. Another
approach, based on discrete Fourier transform matrices,
appears in [Hochwald et al. 00]. This construction is both
structured and flexible, but it does not lead to optimal
packings. The paper [Agrawal et al. 01] studies Grass-
mannian packings in detail, and it contains an algorithm

for finding packings in the complex Grassmannian man-
ifold equipped with chordal distance. This algorithm is
quite complex: it uses surrogate functionals to solve a
sequence of relaxed nonlinear programs. The authors
tabulate several excellent chordal packings, but it is not
clear whether their method generalizes to other metrics.

The subspace quantization problem also leads to
Grassmannian packings. In multiple-antenna wireless
systems, one must quantize the dominant subspace in
the matrix communication channel. Optimal quantiz-
ers can be viewed as packings in G(K,Cd), where K

is the dimension of the subspace and d is the number
of transmit antennas. The chordal distance, the spec-
tral distance, and the Fubini–Study distance are all use-
ful in this connection [Love and Heath 05a, Love and
Heath 05b]. This literature does not describe any new
algorithms for constructing packings; it leverages results
from the noncoherent communication literature. Com-
munication strategies based on quantization via subspace
packings have been incorporated into at least one recent
standard [WirelessMAN 05].

6.2 Conclusions

We have shown that the alternating projection algorithm
can be used to solve many different packing problems.
The method is easy to understand and to implement,
even while it is versatile and powerful. In cases in which
experiments have been performed, we have often been
able to match the best packings known. Moreover, we
have extended the method to solve problems that have
not been studied numerically. Using the Rankin bounds,
we have been able to show that many of our packings
are essentially optimal. It seems clear that alternating
projection is an effective numerical algorithm for packing.

7. TAMMES’ PROBLEM

The alternating projection method can also be used to
study Tammes’ problem of packing points on a sphere
[Tammes 30]. This question has received an enormous
amount of attention over the last 75 years, and exten-
sive tables of putatively optimal packings are available
[Sloane 04b]. This section offers a brief treatment of our
work on this problem.

7.1 Modifications to the Algorithm

Suppose that we wish to produce a configuration of N
points on the unit sphere S

d−1 with a packing diameter ρ.
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The feasibility problem requires that

max
m �=n

〈xm, xn〉 ≤ µ, (7–1)

where µ =
√

1− ρ2. This leads to the convex structural
constraint set

H(µ) def= {H ∈ R
N×N : H = H∗,

hnn = 1 for n = 1, 2, . . . , N,

and − 1 ≤ hmn ≤ µ for all m �= n}.
The spectral constraint set is the same as before. The
associated matrix nearness problem is trivial to solve.

Proposition 7.1. Let G be a real symmetric matrix. With
respect to the Frobenius norm, the unique matrix in H(µ)
closest to G has a unit diagonal and off-diagonal entries
that satisfy

hmn =

⎧⎪⎨
⎪⎩
−1, gmn < −1,
gmn, −1 ≤ gmn ≤ µ,
µ, µ < gmn.

7.2 Numerical Results

Tammes’ problem has been studied for 75 years, and
many putatively optimal configurations are available.
Therefore, we attempted to produce packings whose max-
imum inner product µ fell within 10−5 of the best value
tabulated by N. J. A. Sloane and his colleagues [Sloane
04b]. This resource draws from all the experimental and
theoretical work on Tammes’ problem, and it should be
considered the gold standard.

Our experimental setup echoes the setup for real pro-
jective packings. We implemented the algorithms in Mat-
lab, and we performed the following experiment for pairs
(d,N) with d = 3, 4, 5 and N = 4, 5, . . . , 25. First, we
computed the putatively optimal maximum inner prod-
uct µ using the data from [Sloane 04b]. In each of ten
trials, we constructed a starting matrix using Algorithm
3.4 with parameters τ = 0.9 and T = 10,000. Then, we
executed the alternating projection, Algorithm 3.1, with
the calculated value of µ and the maximum number of
iterations set to T = 5000. We stopped the alternating
projection in step 4 if the iterate G(t) contained no off-
diagonal entry greater than µ+10−5 and proceeded with
step 6. After ten trials, we recorded the largest pack-
ing diameter attained, as well as the average value of the
packing diameter. We also recorded the average number
of iterations the alternating projection required during
each trial.

Table 7 provides the results of this experiment. The
most striking feature of the table is that the best config-
urations returned by alternating projection consistently
attain packing diameters that fall hundredths or thou-
sandths of a degree away from the best packing diam-
eters recorded by Sloane. If we examine the maximum
inner product in the configuration instead, the difference
is usually on the order of 10−4 or 10−5, which we ex-
pect based on our stopping criterion. The average-case
results are somewhat worse. Nevertheless, the average
configuration returned by alternating projection typically
attains a packing diameter only several tenths of a degree
away from optimal.

For collections of N points on the (d− 1)-dimensional
sphere, this table lists the best packing diameter and the
average packing diameter obtained during ten random
trials of the alternating projection algorithm. The error
columns record how far our results diverge from the pu-
tative optimal packings (NJAS) reported in [Sloane 04b].
The last column gives the average number of iterations
of alternating projection per trial.

A second observation is that the alternating projection
algorithm typically performs better when the number of
points N is small. The largest errors are all clustered at
larger values of N . A corollary observation is that the
average number of iterations per trial tends to increase
with the number of points. We believe that the explana-
tion for these phenomena is that Tammes’ problem has
a combinatorial regime, in which solutions have a great
deal of symmetry and structure, and a random regime, in
which the solutions have very little order. The algorithm
typically seems to perform better in the combinatorial
regime, although it fails for certain unusually structured
ensembles.

This claim is supported somewhat by theoretical re-
sults for d = 3. Optimal configurations have been estab-
lished only forN = 1, 2, . . . , 12 andN = 24. Of these, the
cases N = 1, 2, 3 are trivial. The cases N = 4, 6, 8, 12, 24
fall from the vertices of various well-known polyhedra.
The cases N = 5, 11 are degenerate, obtained by leaving
a point out of the solutions for N = 6, 12. The remaining
cases involve complicated constructions based on graphs
[Ericson and Zinoviev 01]. The algorithm was able to cal-
culate the known optimal configurations to a high order
of accuracy, but it generally performed slightly better for
the nondegenerate cases.

On the other hand, there is at least one case in which
the algorithm failed to match the optimal packing di-
ameter, even though the optimal configuration is highly
symmetric. The best arrangement of 24 points on S

3 lo-
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Packing diameters (Degrees) Iterations
d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10

3 4 109.471 109.471 0.001 109.471 0.001 45
3 5 90.000 90.000 0.000 89.999 0.001 130
3 6 90.000 90.000 0.000 90.000 0.000 41
3 7 77.870 77.869 0.001 77.869 0.001 613
3 8 74.858 74.858 0.001 74.858 0.001 328
3 9 70.529 70.528 0.001 70.528 0.001 814
3 10 66.147 66.140 0.007 66.010 0.137 5000
3 11 63.435 63.434 0.001 63.434 0.001 537
3 12 63.435 63.434 0.001 63.434 0.001 209
3 13 57.137 57.136 0.001 56.571 0.565 4876
3 14 55.671 55.670 0.001 55.439 0.232 3443
3 15 53.658 53.620 0.038 53.479 0.178 5000
3 16 52.244 52.243 0.001 51.665 0.579 4597
3 17 51.090 51.084 0.007 51.071 0.019 5000
3 18 49.557 49.548 0.008 49.506 0.050 5000
3 19 47.692 47.643 0.049 47.434 0.258 5000
3 20 47.431 47.429 0.002 47.254 0.177 5000
3 21 45.613 45.576 0.037 45.397 0.217 5000
3 22 44.740 44.677 0.063 44.123 0.617 5000
3 23 43.710 43.700 0.009 43.579 0.131 5000
3 24 43.691 43.690 0.001 43.689 0.002 3634
3 25 41.634 41.458 0.177 41.163 0.471 5000

4 5 104.478 104.478 0.000 104.267 0.211 2765
4 6 90.000 90.000 0.000 89.999 0.001 110
4 7 90.000 89.999 0.001 89.999 0.001 483
4 8 90.000 90.000 0.000 89.999 0.001 43
4 9 80.676 80.596 0.081 80.565 0.111 5000
4 10 80.406 80.405 0.001 77.974 2.432 2107
4 11 76.679 76.678 0.001 75.881 0.798 2386
4 12 75.522 75.522 0.001 74.775 0.748 3286
4 13 72.104 72.103 0.001 71.965 0.139 4832
4 14 71.366 71.240 0.126 71.184 0.182 5000
4 15 69.452 69.450 0.002 69.374 0.078 5000
4 16 67.193 67.095 0.098 66.265 0.928 5000
4 17 65.653 65.652 0.001 64.821 0.832 4769
4 18 64.987 64.987 0.001 64.400 0.587 4713
4 19 64.262 64.261 0.001 64.226 0.036 4444
4 20 64.262 64.261 0.001 64.254 0.008 3738
4 21 61.876 61.864 0.012 61.570 0.306 5000
4 22 60.140 60.084 0.055 59.655 0.485 5000
4 23 60.000 59.999 0.001 58.582 1.418 4679
4 24 60.000 58.209 1.791 57.253 2.747 5000
4 25 57.499 57.075 0.424 56.871 0.628 5000

5 6 101.537 101.536 0.001 95.585 5.952 4056
5 7 90.000 89.999 0.001 89.999 0.001 1540
5 8 90.000 89.999 0.001 89.999 0.001 846
5 9 90.000 89.999 0.001 89.999 0.001 388
5 10 90.000 90.000 0.000 89.999 0.001 44
5 11 82.365 82.300 0.065 81.937 0.429 5000
5 12 81.145 81.145 0.001 80.993 0.152 4695
5 13 79.207 79.129 0.078 78.858 0.349 5000
5 14 78.463 78.462 0.001 78.280 0.183 1541
5 15 78.463 78.462 0.001 77.477 0.986 1763
5 16 78.463 78.462 0.001 78.462 0.001 182
5 17 74.307 74.307 0.001 73.862 0.446 4147
5 18 74.008 74.007 0.001 73.363 0.645 3200
5 19 73.033 73.016 0.017 72.444 0.589 5000
5 20 72.579 72.579 0.001 72.476 0.104 4689
5 21 71.644 71.639 0.005 71.606 0.039 5000
5 22 69.207 68.683 0.524 68.026 1.181 5000
5 23 68.298 68.148 0.150 67.568 0.731 5000
5 24 68.023 68.018 0.006 67.127 0.896 5000
5 25 67.690 67.607 0.083 66.434 1.256 5000

TABLE 7. Packing on spheres.
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cates them at vertices of a very special polytope called
the 24-cell [Sloane 04b]. The best configuration produced
by the algorithm has a packing diameter that is worse by
1.79◦. It seems that this optimal configuration is very
difficult for the algorithm to find. Less dramatic failures
occurred at pairs (d,N) = (3, 25), (4, 14), (4, 25), (5, 22),
and (5, 23). But in each of these cases, our best packing
diverged by more than a tenth of a degree from the best
recorded.
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