
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 1

Partial Hard Thresholding
Prateek Jain, Ambuj Tewari, and Inderjit S. Dhillon

Abstract—We study iterative algorithms for compressed sens-
ing that have an “orthogonalization” step at each iteration to
keep the residual orthogonal to the span of those columns of
the measurement matrix that have been selected so far. To unify
the design and analysis of such algorithms, we propose a novel
partial hard-thresholding (PHT) operator that is similar to the
hard thresholding operator but restricts the amount by which
the support set can change in one iteration. Using the PHT
operator and its properties, we provide a general framework to
prove support recovery results for iterative algorithms employing
this operator as well as those employing the hard-thresholding
operator. Next, based on the PHT operator, we propose a novel
family of algorithms. At one end of our family of algorithms lie
well-known hard thresholding algorithms ITI [1] and HTP [2],
whereas at the other end, we get a novel algorithm that we call
Orthogonal Matching Pursuit with Replacement (OMPR). Like
the classic greedy algorithm OMP, OMPR too adds exactly one
coordinate to the support of the iterate at each iteration based
on the correlation with the current residual. However, unlike
OMP, OMPR also removes one coordinate from the support.
This simple change allows us to prove that OMPR has the best
known guarantees for sparse recovery in terms of the Restricted
Isometry Property (RIP), a condition on the measurement matrix.
In contrast, OMP is known to have very weak performance
guarantees under RIP.

Finally, we show that most of the existing “orthogonalized”
iterative algorithms such as CoSaMP, Subspace Pursuit, OMP,
can be expressed using the PHT operator. As a pleasing conse-
quence of our novel and generic results for the PHT operator,
we provide the tightest known RIP analysis of all of the above
mentioned iterative algorithms: CoSaMP, Subspace Pursuit, and
OMP.

Index Terms—compressed sensing, sparse recovery, restricted
isometry property, iterative thresholding algorithms

I. INTRODUCTION

Consider the compressed sensing setting [3], [4] where we
wish to efficiently recover a sparse vector x? ∈ Rn using a
small number m of linear measurements b = Ax? ∈ Rm.
The measurement matrix A ∈ Rm×n is often chosen from
an appropriate random matrix ensemble. Such a choice en-
sures that there are efficient recovery algorithms that will,
with high probability, recover any k-sparse vector using just
O(k log(n/k)) measurements. Candes and Tao [3] isolated a
key property of the matrix A, called the Restricted Isometry
Property (RIP), and proved that, as long as A satisfies RIP,

Prateek Jain is with Microsoft Research Bangalore, India.
Ambuj Tewari is with the Department of Statistics and Department of

Electrical Engineering & Computer Science, University of Michigan, Ann
Arbor.

Inderjit S. Dhillon is with the Department of Computer Science, University
of Texas at Austin.

Manuscript received Month DD, YYYY; revised Month DD, YYYY.
This paper was presented in part at NIPS 2011.
Copyright c©2014 IEEE. Personal use of this material is permitted. How-

ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org

the true sparse vector x? can be obtained by solving an `1-
optimization problem,

min ‖x‖1 s.t. Ax = b .

The above problem can be easily formulated as a linear
program and can therefore be solved efficiently. We recall that
a matrix A is said to satisfy RIP of order k if there is some
δk ∈ [0, 1) such that,

∀x s.t. ‖x‖0 ≤ k, (1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2 .

Here ‖x‖ is the standard Euclidean (or `2) norm of x, and ‖x‖0
is the so-called “`0-norm”: the size of supp(x), the support
of x.

Several random matrix ensembles, such as the Gaussian and
the symmetric Bernoulli ensembles, are known to satisfy the
condition δck < θ with high probability provided one chooses
m = O(ckθ2 log n

k) measurements. It has been shown [5] that
`1-minimization recovers any k-sparse vector x from measure-
ments Ax as soon as A satisfies δ2k <

√
2− 1 ≈ 0.414. This

condition has since been improved to δ2k < 0.493 [6].
Even though `1-minimization can be performed efficiently

using convex optimization techniques, it requires substantial
computation expense in large scale applications [7]: for ex-
ample, when n is in the millions. If the sparsity level k is
much smaller than n, iterative methods that solve optimization
problems involving k, instead of n, variables at each iteration,
become attractive alternatives to `1-minimization. A classic
iterative method is Orthogonal Matching Pursuit (OMP) [8],
[9] that greedily chooses elements to add to the support.
It is a natural, easy to implement, and fast method but it
unfortunately lacks strong theoretical guarantees. Indeed, it
is known that, if OMP is only run for k iterations, it cannot
recover all k-sparse vectors assuming an RIP condition of the
form δ2k < θ [10], [11]. However, Zhang [12] has shown that
OMP, if run for 30k iterations, will recover the true sparse
vector when δ31k < 1/3. The support size 31k in the RIP
condition makes it a significantly more restrictive condition
that the ones requires by other methods like `1-minimization.

Several other iterative methods, with better guarantees, have
been proposed in the literature. A partial list includes Iterative
Soft Thresholding (IST) [1], Iterative Hard Thresholding (IHT)
[13], Compressive Sampling Matching Pursuit (CoSaMP) [14],
Subspace Pursuit (SP) [15], Iterative Thresholding with In-
version (ITI) [16], and Hard Thresholding Pursuit (HTP) [2].
Following Maleki and Donoho [1], we can classify these
iterative thresholding algorithms into two major families: one-
stage and two-stage algorithms. One-stage algorithms such as
IHT, ITI, and HTP, determine the choice of the next support
and then usually solve a least squares problem on the updated
support. One-stage methods always set the support to have
size k, where k is the target sparsity level. On the other hand,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 2

two-stage algorithms like CoSaMP and SP, first enlarge the
support, solve a least squares problem on it, and subsequently
reduce the support back to the desired size k. A second least
squares problem is then solved on the reduced support. These
algorithms typically enlarge and reduce the support by k or 2k
elements. An exception is the two-stage algorithm FoBa [17]
that adds and removes single elements from the support.

Another criterion for classification of iterative methods for
sparse recovery is whether or not they keep the current residual
orthogonal to the span of the columns columns corresponding
to the current support. Such algorithms are called “fully
corrective” (or “totally corrective”) in the boosting literature
[18]. For general error criteria, fully corrective methods keep
each iterate optimal (in terms of the underlying error criterion)
over the current support set. When the objective function is the
squared error, fully corrective methods solve a least squares
problem over variables in the current support. Most of the
existing methods are indeed fully corrective: for example,
OMP, FoBa, HTP, CoSaMP, and SP. On the other hand,
Matching Pursuit is not fully-corrective. In this paper, we unify
both the presentation as well as the analysis of fully corrective
methods using two operators: a) a novel operator that we call
Partial Hard Thresholding (PHT), and b) the standard hard
thresholding operator (HT). We show that most of the existing
fully corrective methods can be obtained by combining the
PHT and HT operators appropriately. Moreover, our general
analysis for PHT and HT operators enables us to provide
recovery guarantees under RIP requirements that are the best
known so far. In particular, we are able to improve CoSaMP’s
RIP condition for sparse recovery to δ4k < 0.39. For SP, the
condition improves to δ3k < 0.39. Moreover, we also improve
OMP’s recovery condition to δ3k < 0.2.

Next, we propose and analyze a novel family of one-
stage iterative thresholding algorithms that we call Partial
Hard Thresholding (PHT). The family is parameterized by a
positive integer ` ≤ k. We denote a particular member of the
family by PHT(`). At the extreme value ` = k, we recover
the algorithm that is Maleki’s ITI or Foucart’s HTP. At the
other extreme ` = 1, we get a novel algorithm that we call
Orthogonal Matching Pursuit with Replacement (OMPR). The
name reflects the fact that OMPR can be thought of as a simple
modification of OMP: instead of simply adding an element to
the existing support, it replaces an existing support element
with a new one. Surprisingly, this simple change allows us
to give sparse recovery guarantees under the condition δ2k <
0.499. At present, this is the best δ2k based RIP condition
under which any method, including `1-minimization, is known
to provably perform sparse recovery. We note that RIP based
analysis is not the only theoretical tool to understand the
behavior of sparse recovery methods. Practical performance on
some problems might be better explained by phase transition
calculations under various random ensembles for the signal
and measurements (see, for example, [7], [19]–[21]).

An added advantage of OMPR, unlike many iterative meth-
ods, is that no careful tuning of the step-size parameter is
required under noisy settings or even when RIP does not hold.
The default step-size of 1 is always guaranteed to converge to
a local optimum of the objective function.

A. Preliminaries

For a positive integer n, we denote {1, . . . , n} by [n]. For
a size k set I ⊆ [n], Ī denotes its set complement relative to
[n]. For a matrix A ∈ Rm×n, AI denotes the m×k submatrix
of A corresponding to columns indexed by I . Similarly, for
a vector x ∈ Rn, xI ∈ Rk is the subvector corresponding to
entries of x indexed by I . We use the short hand A\b to denote
the solution of an (overdetermined) least squares problem

A\b := argmin
x

‖Ax− b‖2 .

II. PARTIAL HARD THRESHOLDING

To motivate Partial Hard Thresholding, let us look at the
one of simplest optimization algorithms, namely Projected
Gradient Descent. It generates iterates as follows

zt+1 ← xt − η∇f(xt) , (1)

xt+1 ← argmin
‖x‖0≤k

‖x− zt+1‖ , (2)

where η > 0 is a step-size parameter and the function f in
our case is

f(x) = 1
2‖Ax− b‖

2 .

The projection onto the set of k-sparse vectors is the so called
hard thresholding operator

Hk (z) := argmin
‖x‖0≤k

‖x− z‖ .

Even though the set of k-sparse vectors in Rn is non-convex,
the projection of a vector x onto it can be computed efficiently:
simply retain the top k entries of x in absolute value (and
convert the rest to zeros).

In terms of the hard thresholding operator, projected gra-
dient descent for the squared error objective can be written
as

zt+1 ← xt − ηAT (Axt − b) ,
xt+1 ← Hk

(
zt+1

)
.

This simple algorithm is called Iterative Hard Thresholding
(IHT). After the projection step, we may additionally solve a
least squares problem on the support of the new iterate giving
us the following algorithm.

zt+1 ← xt − ηAT (Axt − b) ,
yt+1 ← Hk

(
zt+1

)
,

It+1 ← supp(yt+1) ,

xt+1
It+1
← AIt+1

\b, xt+1
Īt+1
← 0 .

The last step is also sometimes referred to as an orthogo-
nalization step since it renders the residual orthogonal to the
columns of AIt+1 . This fact will be used crucially in our
analysis. The IHT algorithm with an additional least squares
step has been called Iterative Thresholding with Inversion
(ITI) by Maleki [16] and Hard Thresholding Pursuit (HTP)
by Foucart [2]. Our own preference is to call it IHT-Newton
to emphasize its close relationship with IHT. The “Newton”
suffix denotes the fact that, for the least squares objective, a
full minimization is equivalent to a Newton step. Our analysis

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 3

will assume that the least squares problems, such as the one
above, are solved exactly. In practice, of course, one would
run a few steps of an iterative procedure such as conjugate
gradient. Because these least squares problems are solved
on a small number of variables, the RIP condition ensures
that one is solving well-conditioned least squares problems
which means that these iterative least square solvers converge
linearly. We do not pursue the error analysis caused by running
an iterative solver for a finite number of steps because such
analyses can be found elsewhere (see, for example, [14,
Section 5]).

To generalize IHT-Newton, we need to generalize the hard
thresholding operator. A natural generalization is obtained by
further constraining the set onto which we project the gradient.
In addition to the sparsity contraint, we add the constraint that
the support should not loose more than ` elements relative
to the previous support. Thus, we define the partial hard
thresholding operator

PHTk (z; I, `) := argmin
‖x‖0≤k, |I\ supp(x)|≤`

‖x− z‖ . (3)

Compared to hard thresholding, the PHT operator takes two
additional arguments: an upper bound ` on the support change,
and a set I relative to which the change is measured. The
following lemma guarantees that the PHT operator can be
computed efficiently.

Lemma 1: Fix a set I ⊆ [n] of size k′ ≥ 0, a vector z ∈ Rn,
and a positive integer ` ≤ n − k′. Then y = PHTk (z; I, `)
can be computed using the following sequence of operations:

top← indices of largest1 k + `− k′ elements of zĪ ,
bot← indices of smallest ` elements of zI ,
J = supp(Hk−k′+` (zbot∪top)) ∪ (I\bot)),

yJ = zJ , yJ̄ = 0.

Algorithm 1 PHT(`)
Initialize x1 s.t. | supp(x1)| = k
I1 ← supp(x1)
for t = 1, 2, . . . do

/* Gradient Descent */
zt+1 ← xt − ηAT (Axt − b)

/* Partial Hard Thresholding */
yt+1 ← PHTk

(
zt+1; It, `

)
/* Solve a least squares problem */
It+1 ← supp(yt+1)
xt+1
It+1
← AIt+1

\b, xt+1
Īt+1
← 0

end for

Our new algorithm family PHT(`) (see Algorithm 1) is
obtained simply by replacing the hard thresholding operator
in IHT-Newton by the more general PHT operator. Since the
PHT operator becomes the hard thresholding operator for the
choice ` = k (and any choice for the set I), it is clear that the

1Here, “largest” and “smallest” refer to sorting elements according to their
absolute values.

Algorithm 2 OMP
x1 ← 0
I1 ← ∅
for t = 1, 2, . . . do

/* Gradient Descent */
zt+1 ← xt − ηAT (Axt − b)

/* Compute PHTt+1

(
zt+1; It, 1

)
*/

jt+1 ← argmaxj /∈It |z
t+1
j |

Jt+1 ← It ∪ {jt+1}
yt+1 ← Ht+1

(
zt+1
Jt+1

)
/* Solve a least squares problem */
It+1 ← supp(yt+1)
xt+1
It+1
← AIt+1

\b, xt+1
Īt+1
← 0

end for

PHT(k) algorithm is nothing but IHT-Newton (or ITI or HTP).
Choices for ` strictly smaller than k yield novel algorithms.
In particular, the choice ` = 1 at the other extreme yields a
particularly interesting algorithm. It turns out that PHT(1) is
closely connected to the classic OMP algorithm. In view of this
connection, we give it a special name: Orthogonal Matching
Pursuit with Replacement (OMPR). We now expand on the
OMPR algorithm and its connection to OMP.

A. Orthogonal Matching Pursuit with Replacement

The classic OMP algorithm is based on a very simple idea.
At each step, find a new column of A that is maximally
correlated with the current residual Axt − b. Then add that
column’s index to the current support followed by a least
squares step on the expanded support. In symbols,

jt+1 ← argmax
j /∈It

ATj (Axt − b) ,

It+1 ← It ∪ {jt+1} ,
xt+1
It+1
← AIt+1

\b, xt+1
Īt+1
← 0 .

Define the gradient descent iterate

zt+1 ← xt − ηAT (Axt − b) .

Because xt has zero entries outside the support It, we can
rewrite OMP as Algorithm 2 which highlights its connections
to the PHT family.

Now consider the PHT(1) or OMPR algorithm (see Algo-
rithm 3). The only difference between it and OMP is that, after
including the new element into the support, OMPR removes
an element using a hard thresholding operation. As a result,
the new element replaces an existing element of the support
(in general). The least squares problem in OMPR is always
solved on a support of size k. In contrast, OMP can increase
the support size beyond k if it is run for more than k iterations.

OMP is not known to enjoy strong RIP based sparse
recovery guarantees. In fact, Mo and Shen [11] show that OMP
can fail to recover a sparse vector from linear measurement if
it is only run for k iterations. This is despite the fact that A
has an RIP constant that be made arbitraily small with k. We

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 4

Algorithm 3 OMPR
Initialize x1 s.t. | supp(x1)| = k
I1 ← supp(x1)
for t = 1, 2, . . . do

/* Gradient Descent */
zt+1 ← xt − ηAT (Axt − b)

/* Compute PHTk
(
zt+1; It, 1

)
*/

jt+1 ← argmaxj /∈It |z
t+1
j |

Jt+1 ← It ∪ {jt+1}
yt+1 ← Hk

(
zt+1
Jt+1

)
/* Solve a least squares problem */
It+1 ← supp(yt+1)
xt+1
It+1
← AIt+1

\b, xt+1
Īt+1
← 0

end for

show below how OMPR is able to succeed on the example
from [11].

1) A Bad Case for OMP: Let the measurement matrix A
be given by

A =


1
k

Ik
...
1
k

0 . . . 0
√

k−1
k

 .

Let the true sparse vector be x? = (1, . . . , 1, 0)T . It is easy to
verify that A’s RIP constant of order k+1 satisfies δk+1 <

1√
k

.
At the first iteration, the residual is the measurement vector

b = Ax? itself. The correlation ATj Ax
? is 1 for all j ∈ [k+1].

Thus, OMP can select an incorrect index at the first iteration
leading to an incorrect solution at the end of k iterations. We
now show that, on the same example, OMPR is indeed able
to recover x?. Suppose, in the first k steps, OMPR selects an
incorrect support. By symmetry among the first k coordinates,
we can assume without loss of generality that the incorrect
support is Ik+1 = {2, 3, . . . , k + 1}. Solving a least squares
problem on Ik+1 gives

xk+1 = (0, k2−k
k2−k+1 , . . . ,

k2−k
k2−k+1 ,

k
k2−k+1)T .

The gradient ATA(xk+1 − x?) becomes


1
k

Ik
...
1
k

1
k . . . 1

k 1



−1
−1

k2−k+1
...
−1

k2−k+1
k

k2−k+1

 =


−k2+k
k2−k+1

0
...
0
0

 .

Note that, as expected, the gradient has zero entries on the
support Ik+1 because of the least squares step. Thus, at
iteration number k + 1 with step-size η = 1, we have

zk+2 = (k2−k
k2−k+1 , . . . ,

k2−k
k2−k+1 ,

k
k2−k+1)T .

OMPR then selects jk+2 = 1 leading to Jk+2 = Ik+1 ∪
{jk+2} = [k + 1]. Hard thresholding zk+2

Jk+2
now drops the

last entry giving

yk+2 = (k2−k
k2−k+1 , . . . ,

k2−k
k2−k+1 , 0)T .

This leads to Ik+2 becoming the correct support [k]. As a
result xk+2 = x? showing that OMPR is able to recover the
true sparse vector by solving least squares problems of size at
most k.

In the above discussion we assumed that OMP is run only
for k iterations. OMP does have an RIP analysis assuming it is
run for more than k iterations. To the best of our knowledge,
the best RIP analysis of OMP is the one by Zhang [12] where
he gives the sufficient condition δ31k < 1/3 for OMP run for
30k iterations. We now provide an RIP analysis of PHT(`) that
will show that OMPR requires a much weaker RIP condition
compared to OMP’s.

B. RIP Based Guarantees for PHT

We now present RIP based guarantees for the PHT family
of algorithms (for any general `).

We first present the guarantees for the entire PHT family,
when b = Ax?.

Theorem 2: Suppose the vector x? ∈ Rn is k-sparse. Then
PHT(`) converges to an ε approximation solution (i.e. 1

2‖Ax−
b‖2 ≤ ε) from measurements b = Ax? in O(k` log(k/ε))
iterations provided we choose a step size η that satisfies
η(1 + δ2`) < 1 and η(1− δ2k) > 1/2.
The proof of Theorem 2 can be found in Section VII-A. Note
that in the theorem above we guarantee recovery in terms of
the least squares criterion, i.e., 1

2‖Ax−Ax
?‖2 ≤ ε. However,

when δ2k < 1, this immediately implies that ‖x − x?‖ ≤
2ε/(1− δ2k).

Note that the number of iterations required increase as `
decreases. On the other hand, each individual iteration will
tend to be faster for smaller `. Also note that the condition
under which PHT(`) recovers sparse vectors becomes more
restrictive as ` increases. However, this could be an artifact of
our analysis, as in experiments, we do not see any degradation
in recovery ability as ` is increased. We do not report any
experimental results in this paper but the interested reader can
find some experimental results, especially about OMPR, in our
earlier work [22].

As mentioned above, the OMPR algorithm of the previous
section is simply PHT(1). Hence, the recovery guarantee for
OMPR is a direct corollary of Theorem 2.

Corollary 3: Suppose the vector x? ∈ Rn is k-sparse and the
matrix A satisfies δ2k < 0.499 and δ2 < 0.002. Then OMPR
converges to an ε approximate solution (i.e., 1

2‖Ax− b‖
2 ≤ ε)

from measurements b = Ax? in O(k log(k/ε)) iterations.
Beyond requiring δ2k < 0.499, there is an extra condition:

namely δ2 < 0.002. This condition is very mild: for many
random measurements, including Gaussian, with a scaling that
keeps each column have a constant Euclidean norm, the inner
product between any two columns is, with high probability,
O(1/

√
m). Taking a union bound over O(n2) pairs of columns

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 5

tells us that δ2 < 0.002 holds as soon as m > O(log n) (note
that there is no k here).

Similar to the extension of OMPR’s analysis to the noisy
case [22, Theorem 5], i.e., when b = Ax? + e, our analysis
can be easily extended to handle noise. In particular, since
our main lemma (Lemma 11) holds in the noisy case as well,
one can show that PHT(`) converges to a (C, ε) approximate
solution (i.e., 1

2‖Ax − b‖2 ≤ C
2 ‖e‖

2 + ε) in O(k` log((k +
‖e‖2)/ε)) iterations provided we choose a step size η that
satisfies η(1 + δ2`) < 1 and η(1− δ2k) > 1/2. Here C > 1 is
a constant dependent only on δ2`, δ2k.

Among different δ2k based conditions under which sparse
recovery methods, including `1-minimization, are current
known to work, OMPR’s condition is the best (i.e., weakest).
However, sufficient conditions for sparse recovery methods are
often stated using RIP constants of a higher order than 2k. It is,
in general, not possible to compare a δ2k condition with, say a
δ3k condition. Foucart [2], however, has suggested a heuristic
to compare conditions of the form δck < θ with each other.
The heuristic is based on the fact that, for various random
matrix ensembles, it takes m = O(ckθ2 log n

k) rows for the
matrix A to satisfy δck < θ. Thus, the smaller the ratio c/θ2,
the weaker the RIP condition becomes, heuristically speaking.
From this perspective, OMPR’s δ2k < 0.499 condition is
currently the best known RIP condition leading to a c/θ2 ratio
of 2/0.4992 ≈ 8.

III. TWO-STAGE HARD THRESHOLDING

Maleki and Donoho [1] pointed out that popular sparse
recovery algorithms such as CoSaMP and Subspace Pursuit
can be understood as special cases of a general family that they
called Two-Stage Thresholding (TST) algorithms. According
to their empirically observed phase transitions, TST algo-
rithms can have better sparse recovery properties compared
to simpler, single stage algorithms. As the name suggests, in
each iteration of these algorithms there are two thresholding
steps. These thresholding steps sandwich a least squares step
between them. Our Two-Stage family is essentially the same
as Maleki and Donoho’s TST except that we end the iteration
by a second least squares or orthogonalization step. This yields
the family depicted in Algorithm 4.

Note that Subspace Pursuit, as defined by its authors, does
have the second least squares step. As for CoSaMP, the version
with the second least squares step is mentioned in a section
on “Other Variants” (Section A.2 in [14]) with the remark that
“we can solve another least-squares problem in an effort to
improve the final result”. We therefore define our Two-Stage
family with the second least squares step included.

It is interesting to note the similarities and differences
between one stage algorithms, such as PHT(`), and the Two-
Stage family. The thresholding step in both kinds of algorithms
can be written in terms of the partial hard thresholding
operator and its special case, the hard thresholding operator.
Moreover, small least square problems of sizes that are small
multiples of k are solved in each iteration in either type of
algorithms. These least squares problems are guaranteed to
be well-conditioned if RIP of an appropriate order holds. The

Algorithm 4 Two-Stage(`)
repeat

/* Gradient Descent */
zt+1 ← xt − ηAT (Axt − b)

/* First thresholding */
yt+1 ← PHTk+`

(
zt+1; It, `

)
/* First least squares */
Jt+1 ← supp(yt+1)
wt+1
Jt+1
← AJt+1

\b, xt+1
J̄t+1
← 0

/* Second thresholding */
vt+1 ← Hk

(
wt+1

)
/* Second least squares */
It+1 ← supp(vt+1)
xt+1
It+1
← AIt+1\b, xt+1

Īt+1
← 0

until convergence

differences are equally obvious. Two-Stage algorithm solve
two least squares problems per iteration. Further, the first least
squares problem is of a larger size than the target sparsity level
k unlike PHT(`) where the size of the least squares problem
is always k.

Our next result gives a general performance guarantee for
the entire Two-Stage family under RIP.

Theorem 4: Suppose the vector x? ∈ Rn is k-sparse. Then
the Two-stage Hard Thresholding algorithm with replacement
size ` ≥ k recovers x? from measurements b = Ax? in
O(log k) iterations provided: δ2k+` ≤ 0.46.
The proof of Theorem 4 can be found in Section VII-B.

Since CoSaMP (with an additional least squares step at the
end of each iteration) is simply Two-Stage(2k), we immedi-
ately get the following guarantee for CoSaMP.

Corollary 5: CoSaMP [14] recovers k-sparse x? ∈ Rn from
measurements b = Ax? provided δ4k ≤ 0.46.

Similarly, we get the following guarantee for Subspace
Pursuit which is the same as our Two-Stage(k) algorithm.

Corollary 6: Subspace Pursuit [15] recovers k-sparse x? ∈
Rn from measurements b = Ax? provided δ3k ≤ 0.46.

IV. IMPROVED RIP BASED GUARANTEES FOR OMP

As we discussed above in Section II-A, the classic OMP
algorithm proceeds by iteratively adding elements to the
support of the iterate. In some papers, the description of OMP
implies that it is run only for k iterations. Unfortunately, it
is known [10], [11] that OMP, when run only for k iterations
cannot perform sparse recovery under RIP conditions of the
form δck < θ under which PHT(`), CoSaMP, and Subspace
Pursuit are all known to work. Zhang [12] settled the question
of whether OMP, when run for more than k iterations, can have
optimal sparse recovery guarantees under RIP. He showed that
running OMP for 30k iterations uniformly recovers a sparse
vector from linear measurements provided the RIP constant
of the measurement matrix satisfies δ31k < 1/3. Using the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 6

proof techniques used in the analysis of PHT(`), we are able
to further improve his RIP condition.

Theorem 7: Let x∗ ∈ {−1, 0, 1}n be a k-sparse vector. Let
b = Ax∗ and x0 = 0n. Then, OMP recovers back optimal x∗

given that following RIP condition is satisfied:

δ4k ≤ 0.2 or δ5k ≤ 0.33.

The proof of Theorem 7 can be found in Section VII-C.

V. PROOF IDEA

Our proofs exploit a structural property of the gradient
descent iterate

zt+1 = xt − ηAT (Axt − b) .

Since xt is obtained by a least squares step on the support set
It, its residual is orthogonal to the column space of AIt . Hence
we have the following structural decomposition for zt+1.

zt+1
It

= xtIt ,

zt+1
Īt

= −ηATĪt(Ax
t − b) . (4)

During the partial hard thresholding step, elements move in
and out of the support. For PHT(`) and OMP, let us define

Ft = It+1\It (found)
Lt = It\It+1 (lost)
Rt = It ∩ It+1 . (retained)

For Two-Stage(`), let us define

Ft = Jt+1\It (found)
Lt = It\Jt+1 (lost)
Rt = It ∩ Jt+1 . (retained)

Note that, for Two-Stage(`), we have It ⊆ Jt+1 by definition
and hence Lt = ∅, Rt = It.

Define the least squares objective

f(x) = 1
2‖Ax− b‖

2 .

The goal of the analysis is to show that, for any of the algo-
rithms PHT(`), OMP, or Two-Stage(`), the objective function
difference f(xt+1)− f(xt) is sufficiently negative.

Recall that, in OMP as well as both the families of algo-
rithms, namely, PHT(`), Two-Stage(`), a key step is:

yt+1 = PHTα(zt+1; It, `),

where ` = 1 for OMP. Also, recall that α = k for PHT(`),
α = k + ` for Two-Stage(`), and α = t+ 1 for OMP.

Now,

f(yt+1)− f(xt) = (yt+1 − xt)TAT (Axt − b)
+ 1/2‖A(yt+1 − xt)‖2,

≤ (yt+1 − xt)TAT (Axt − b)

+
(1 + δ|Ft|+|Lt|)

2
(‖yt+1

Ft
‖2 + ‖xtLt

‖2).

(5)

where the second inequality follows by using the fact that
yt+1
It+1∩It = xtIt+1∩It and using RIP of order |Ft|+ |Lt| (since
| supp(yt+1 − xt)| = |Ft ∪ Lt| = |Ft|+ |Lt|).

Since xtIt is obtained using least squares,

ATIt(Ax
t − b) = 0.

Thus, ATLt
(Axt − b) = 0, because Lt ⊆ It. Next, note that

yt+1
Ft

= −ηATFt
(Axt − b).

Hence,

f(yt+1)− f(xt) ≤
(

1 + δ|Ft|+|Lt|

2
− 1

η

)
‖yt+1
Ft
‖2

+
1 + δ|Ft|+|Lt|

2
‖xtLt

‖2. (6)

Hence, the goal to show descent after PHT step, we need to
show that for small enough η, ‖yt+1

Ft
‖2 is “large” and ‖xtLt

‖2
is “small”. Our proof for each of the algorithm guarantees
the same. Moreover, for Two-Stage(`), we have an extra hard
thresholding step as well, for which we need to show that
increase in the overall objective function is not large.

Our specialized analysis for each of the algorithms follows
the above mentioned proof outline, while guaranteeing that the
RIP constant is not required to be small.

VI. TOWARDS A GENERAL ANALYSIS

We first provide a general set of lemmas that are then used
appropriately to analyse each of the three algorithms: PHT(`),
Two-Stage(`), and OMP. To this end, we first introduce some
useful variables. Let I? be the support set of x?. Define the
sets

FAt = It\I? (false alarms)
MDt = I?\It (missed detections)
COt = It ∩ I? (correct detections) .

We first state two technical lemmas that we will need. These
can be found in [14].

Lemma 8: For any S ⊂ [n], we have,

‖I −ATSAS‖ ≤ δ|S|.

Lemma 9: For any S, T ⊂ [n] such that S ∩ T = ∅, we
have,

‖ATSAT ‖2 ≤ δ|S∪T |.

We will also need the following result. A similar inequality
was proved by Foucart [23] but we provide the full proof here
for completeness.

Lemma 10: Let b = Ax?, where I? = supp(x?). Also, let
x = argminsupp(x)=I ‖Ax− b‖2. Then,√
‖(x− x?)I∩I?‖2 + ‖xI\I?‖2 = ‖(x− x?)I‖

≤
δ|I∪I?|√

1− δ2
|I∪I?|

‖x?I?\I‖.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 7

Proof: A similar inequality occurs in [23] and we rewrite
the proof here. Since xI is the solution to minu ‖AIu− b‖2,

ATI (AIxI − b) = 0. (7)

In the exact case, b = Ax?. Hence,

‖(x− x?)I‖2 = [(x− x?)I 0]

[
(x− x?)I
−x?I?\I

]
. (8)

Now, using (7):

0 = [(x− x?)I 0]ATGAG

[
(x− x?)I
−x?I?\I

]
, (9)

where G = [I I?\I]. Subtracting (9) from (8) we get,

‖(x− x?)I‖2 = [(x− x?)I 0](I −ATGAG)

[
(x− x?)I
−x?I?\I

]
≤ δ2k‖(x− x?)I‖

√
‖(x− x?)I‖2 + ‖xI?\I‖2,

(10)

where the second inequality follows using Lemma 8. Lemma
follows by just rearranging terms now.

We now derive a fundamental lemma that shows that
zt+1
MDt

—elements of gradient descent iterate (zt+1) over missed
detections from previous step It—has large norm.

Lemma 11: Let b = Ax∗ + e, where e ∈ Rm is the “noise”
vector. Let f(xt) ≥ C

2 ‖e‖
2 and δ2k < 1 − 1

2Dγ , where D =
C−
√
C

(
√
C+1)2

. Let γ > 0 be any constant. Then,

γ2‖ATMDt
A(xt − x∗)‖2 − ‖xtFAt

‖2 ≥ cf(xt),

where c = 2 (
√
C+1)2

C (2γD − 1
1−δ2k) > 0.

In particular, if e = 0 (i.e., noiseless case), we have:

0 < (4γ− 2

1− δ2k
)f(xt) ≤ γ2‖ATMDt

A(xt−x∗)‖2−‖xtFAt
‖2,

where δ2k < 1− 1
2γ .

Proof: Since xtIt is the solution to the least squares
problem minx ‖AItxIt − b‖2,

ATIt(AItx
t
It − b) = 0. (11)

Now, note that

f(xt) =
1

2
‖AItxtIt − b‖

2

=
1

2
((xtIt)

TATIt(AItx
t
It − b)− b

T (AItx
t
It − b))

= −1

2
bT (AItx

t
It − b)

= −1

2
(x∗MDt

)TATMDt
(AItx

t
It − b)−

1

2
eT (AItx

t
It − b),

(12)

where the third equality follows from (11).
Now,

‖x?MDt
+ γATMDt

(AItx
t
It − b)‖

2

= ‖x?MDt
‖2 + γ2‖ATMDt

(AItx
t
It − b)‖

2

+ 2γ(ATMDt
(AItx

t
It − b))

Tx?MDt

= ‖x?MDt
‖2 + γ2‖ATMDt

(AItx
t
It − b)‖

2 − 4γf(xt)

+ 2γeT (AItx
t
It − b). (13)

Using the above equality and using ‖x?MDt
+γATMDt

(AItx
t
It
−

b)‖ ≥ 0, we have:

0 ≤ ‖x?MDt
‖2 + ‖xtFAt

‖2 − ‖xtFAt
‖2

+ γ2‖ATMDt
(AItx

t
It − b)‖

2 − 4γ

(
f(xt) +

1

2
eT (AItx

t
It − b)

)
≤ ‖x?MDt

‖2 + ‖xtFAt
‖2 + ‖xtCOt

− x?COt
‖2 − ‖xtFAt

‖2

+ γ2‖ATMDt
(AItx

t
It − b)‖

2 − 4γ

(
f(xt) +

1

2
eT (AItx

t
It − b)

)
ζ1
= ‖xt − x∗‖2 − ‖xtFAt

‖2 + γ2‖ATMDt
(AItx

t
It − b)‖

2

− 4γ

(
f(xt) +

1

2
eT (AItx

t
It − b)

)
ζ2
≤ 1

1− δ2k
‖A(xt − x∗)‖2 − ‖xtFAt

‖2

+ γ2‖ATMDt
(AItx

t
It − b)‖

2 − 4γ

(
f(xt) +

1

2
eT (AItx

t
It − b)

)
=

1

1− δ2k
‖A(xt − x∗)‖2 − ‖xtFAt

‖2

+ γ2‖ATMDt
(AItx

t
It − b)‖

2 − 4γ(1− 1√
C

)f(xt), (14)

where ζ1 follows from ‖xt − x∗‖2 = ‖x?MDt
‖2 + ‖xtFAt

‖2 +
‖xtCOt

− x?COt
‖2, ζ2 follows from RIP. The last inequality

follows from:

|eT (AItx
t
It−b)| ≤ ‖e‖‖AItx

t
It−b‖ = ‖e‖·

√
2f(xt) ≤ 2√

C
f(xt).

The last inequality above follows from the assumption that
f(xt) ≥ C

2 ‖e‖
2.

Similarly, using f(xt) ≥ C
2 ‖e‖

2, we have:

‖A(xt − x∗)‖ ≤ ‖A(xt − x∗)− e‖+ ‖e‖,

‖A(xt − x∗)‖2 ≤ 2(1 +
1√
C

)2f(xt). (15)

Using (14) and (15), we have:

2

(
2γ(1− 1√

C
)− 1

1− δ2k
(1 +

1√
C

)2

)
f(xt)

≤ γ2‖ATMDt
(AItx

t
It − b)‖

2 − ‖xtFAt
‖2.

Now, by assumption δ2k < 1 − 1
2Dγ , where D = (

√
C+1)2

C−
√
C

.

Hence, c = 2 (
√
C+1)2

C (2γD − 1
1−δ2k) > 0.

VII. GENERAL ANALYSIS

The results in the previous section allow us to quantify
progress made in a (partial) hard thresholding step. This,
in turn, permits a unified analysis of all iterative algorithms
discussed in the paper.

Lemma 12 (Hard Thresholding): Suppose wt+1 is a k′-
sparse iterate obtained as a result of solving a least squares
problem on Jt+1 = supp(wt+1). Define

vt+1 = Hk(wt+1)

where k < k′. Then, we have,

f(vt+1)− f(wt+1) ≤
(1 + δ`)δ

2
2k+`

1− δ2k+`
f(wt+1)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 8

where ` = k′ − k.
Proof: Let It+1 = supp(vt+1). As Hk is the hard

thresholding operator, we have:

‖vt+1 − wt+1‖2 ≤ ‖x? − wt+1‖2 ≤ 2

1− δ2k+`
f(wt+1).

Moreover,

f(vt+1)− f(wt+1) = (vt+1 − wt+1)TAT (Awt+1 − b)
+ 1

2‖Av
t+1 −Awt+1‖2

=
1

2
‖Avt+1 −Awt+1‖2

≤ 1 + δ`
2
‖vt+1 − wt+1‖2, (16)

where the second equation follows as wt+1 is a least squares
solution, and supports of both vt+1 and wt+1 are subsets of
Jt+1. The last inequality follows from RIP.

Furthermore, |Jt+1\It+1| = ` ≤ |Jt+1\I?|. Hence, by
definition of It+1,

‖wt+1
Jt+1\It+1

‖2 ≤ ‖wt+1
Jt+1\I?‖

2.

Using above equation and Lemma 10, we have:

‖wt+1
Jt+1\It+1

‖2 ≤
2δ2

2k+`

1− δ2k+`
f(wt+1). (17)

Lemma now follows by using (16) and (17).
In the lemma below, note that the sets Ft (found set), Lt

(lost set), and MDt (set of missed detections) are as they were
defined in Section V and Section VI above.

Lemma 13 (Partial Hard Thresholding): Suppose xt is a
k-sparse iterate obtained as a result of solving a least squares
problem on It = supp(xt). Define the gradient descent iterate

zt+1 = xt − ηAT (Axt − b)

and let

yt+1 = PHTk′
(
zt+1; It, `

)
where k′ ≥ k, ` ≤ n− k. Then, we have,

f(tt+1)− f(xt) ≤
(

1 + δ|Ft|+|Lt|

2
− 1

η

)
‖yFt
‖2

+
1 + δ|Ft|+|Lt|

2
‖xtLt

‖2.

Assume that k′ ≥ k. Also, assume that if ` > 0, then
δ2k < 1− 1/2η. Then, we have:

f(yt+1)− f(xt)

≤
(

(1 + δ|Ft|+|Lt|)(
1

2
I[` = 0] + I[` 6= 0])− 1

η

)
×

2η2(1− δ2k) min(1,
`+ k′ − k
|MDt|

)f(xt).

Note that |MDt| ≤ k.

Proof: Since f is quadratic, second-order Taylor expan-
sion is exact. Hence, we have,

f(yt+1)− f(xt) = (yt+1 − xt)TATA(xt − x?)
+ 1

2‖A(yt+1 − xt)‖2

≤ (yt+1 − xt)TATA(xt − x?)

+
1 + δ|Ft|+|Lt|

2
(‖yt+1

Ft
‖2 + ‖xtLt

‖2).

(18)

where the second inequality follows by using the fact that
yt+1
Rt

= xtRt
and using RIP of order |Ft|+ |Lt|.

Since xtIt is obtained using least squares,

ATItA(xt − x?) = 0.

Thus, ATLt
A(xt − x?) = 0, because Lt ⊆ It. Next, note that

yt+1
Ft

= −ηATFt
A(xt − x?).

Hence,

f(yt+1)− f(xt) ≤
(

1 + δ|Ft|+|Lt|

2
− 1

η

)
‖yt+1
Ft
‖2

+
1 + δ|Ft|+|Lt|

2
‖xtLt

‖2. (19)

Now, |Lt| ≤ `. Hence, if ` = 0 then, |Lt| = 0. This
observation with (19) proves the first part of the lemma. We
now consider three exhaustive cases:

1) |Ft| < `+ k′− k and |Ft| < |MDt|: Note that if ` = 0,
then |Ft| = k′ − k. Hence, this case does not apply.
Now assume ` > 0. Also, |Ft| − |Lt| = k′ − k. Hence,
|Lt| < `. Assuming δ2k < 1 − 1/2η, f(xt) > 0 and
using Lemma 11,

η2‖ATMDt
rt‖2 ≥ ‖xtFAt

‖2 + 2(2η − 1

1− δ2k
)f(xt).

Hence, if δ2k < 1− 1/2η, at least one element of MDt

will be selected in Ft and similarly at least one element
of FAt will be selected in Lt.
Let S ⊆MDt\Ft, s.t., |S| = |Ft| − |MDt ∩ Ft|. Now,

|S∪(MDt∩Ft)| = |Ft|, |(MDt\Ft)\S| = |MDt|−|Ft|.

As yFt
consists of top |Ft| elements of zt+1

MDt
, we have:

‖zt+1
S∪(MDt∩Ft)

‖2 ≤ ‖yFt
‖2. (20)

Furthermore, since |Ft| < `+k′−k, hence every element
of zt+1

MDt\Ft
is smaller in magnitude than every element

of xtFAt\Lt
, otherwise that element should have been

included in Ft. Furthermore, |MDt| − |Ft| ≤ |FAt| −
|Lt| ≤ |FAt\Lt|. Hence,

‖zt+1
(MDt\Ft)\S‖

2 ≤ ‖xtFAt\Lt
‖2 ≤ ‖xtFAt

‖2. (21)

Adding (20) and (21), we get:

‖zt+1
MDt
‖2 ≤ ‖yt+1

Ft
‖2 + ‖xtFAt

‖2. (22)

Using the above equation along with Lemma 11 with
γ = 1

1−δ2k , we get:

‖yt+1
Ft
‖2 ≥ 2η2(1− δ2k)f(xt). (23)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 9

2) |Ft| = `+ k′ − k < |MDt|: By definition of yt+1
Ft

:

‖yt+1
Ft
‖2

|Ft|
≥
‖zt+1
MDt
‖2

|MDt|
.

Hence, using Lemma 11 with η = γ and the fact that
|Ft| = `+ k′ − k:

‖yt+1
Ft
‖2 ≥ `+ k′ − k

k
2η2(1− δ2k)f(xt), (24)

as |MDt| ≤ k.
3) |Ft| ≥ |MDt|: Since, yt+1

Ft
is the top most elements of

zt+1. Hence, assuming |Ft| ≥ |MDt|,

‖yt+1
Ft
‖2 ≥ ‖zt+1

MDt
‖2.

Now, using Lemma 11 with γ = 1/(1− δ2k), we have:

‖yt+1
Ft
‖2 ≥ 2η2(1− δ2k)f(xt). (25)

Note that out of the above three cases, the condition δ2k <
1 − 1/(2η) is required only for the first case, where ` > 0
necessarily.

We now get the lemma by combining bounds for all
the three cases, i.e., (23), (24), (25) along with the above
mentioned observation.

A. Proof of PHT(`) Family
Proof of Theorem 2: Recall that for PHT(`) family, the

Partial Hard Thresholding operator is applied with k′ = k and
0 < ` ≤ k. That is, |Ft| = |Lt| ≤ `. Hence, using Lemma 13,
we have:

f(yt+1)− f(xt) ≤
(

1 + δ2` −
1

η

)
η2(1− δ2k)

`

k
f(xt),

assuming δ2k < 1−1/2η. Theorem now follows by observing
that f(xt+1) ≤ f(yt+1) and by setting η = c

1+δ2`
, where

0 < c < 1 is a constant that is close to 1.

B. Proof of Two-stage(`) Family
Proof of Theorem 4: Recall that yt+1 =

PHTk+`

(
zt+1; It, 0

)
. Hence, using Lemma 13 with

η = 1
1+δ`

, we have:

f(yt+1)− f(xt) ≤ − (1− δ2k)

(1 + δ`)
f(xt).

Using the fact that f(wt+1) ≤ f(yt+1), we have:

f(wt+1)− f(xt) ≤ − (1− δ2k)

(1 + δ`)
f(xt). (26)

Also, recall that vt+1 = Hk

(
wt+1

)
. Hence, using Lemma 12,

we have:

f(vt+1)− f(wt+1) ≤ −
(1 + δ`)δ

2
2k+`

1− δ2k+`
f(wt+1). (27)

Hence, using (26), (27), and the fact that f(xt+1) ≤ f(vt+1),
we have:

f(xt+1) ≤
(

1 +
(1 + δ`)δ

2
2k+`

1− δ2k+`

)
f(wt+1)

≤
(

1 +
(1 + δ`)δ

2
2k+`

1− δ2k+`

)
2δ2k+`

1 + δ2k+`
f(xt).

That is, if δ2k+` < .46, then,

f(xt+1) ≤ 0.991f(xt).

C. Proof of OMP

We now present a proof of OMP that holds under signifi-
cantly weaker RIP conditions than that of [12] which requires
δ31k ≤ 1/3.

Proof of Theorem 7: Recall that yt+1 =
PHTk+t+1

(
zt+1; It, 0

)
. Hence, using Lemma 13, we

have:

f(yt+1)− f(xt) ≤ −(1− δ2k+t+1)
f(xt)

|MDt|
.

Note that, (1− δ2k+t+1) f(xt)
|MDt| ≥ 0.5 · (1− δ2k+1+1)2. Hence,

f(xT) ≤ f(x0)−T
2

(1−δ2k+T)2 ≤ 1

2
(1+δ2k+T)k−T

2
(1−δ2k+T)2.

That is, we need:

T (1− δ2k+T)2 ≥ (1 + δ2k+T)k.

Setting T = 2k, we see that δ4k ≤ 0.2 satisfies the
above requirement. Similarly, setting T = 3k, we relax the
requirement to be δ5k ≤ 0.33.

ACKNOWLEDGMENT

Part of AT’s contribution to this research occurred while he
was a postdoctoral fellow at UT Austin. ISD acknowledges
support from the Moncrief Grand Challenge Award. This
research was also supported by NSF grants CCF-1564000 (for
ISD) and DMS-1612549 (for AT).

REFERENCES

[1] A. Maleki and D. Donoho, “Optimally tuned iterative reconstruction
algorithms for compressed sensing,” IEEE Journal of Selected Topics in
Signal Processing, vol. 4, no. 2, pp. 330–341, 2010.

[2] S. Foucart, “Hard thresholding pursuit: an algorithm for compressive
sensing,” SIAM Journal on Numerical Analysis, vol. 49, no. 6, pp. 2543–
2563, 2011.

[3] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
2005.

[4] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[5] E. J. Candes, “The restricted isometry property and its implications for
compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9-
10, pp. 589–592, 2008.

[6] Q. Mo and S. Li, “New bounds on the restricted isometry constant δ2k ,”
Applied and Computational Harmonic Analysis, vol. 31, no. 3, pp. 460–
468, 2011.

[7] D. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms
for compressed sensing,” Proceedings of the National Academy of
Sciences USA, vol. 106, no. 45, pp. 18 914–18 919, 2009.

[8] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in 27th Annual Asilomar Conference on Signals, Sys-
tems, and Computers, vol. 1, 1993, pp. 40–44.

[9] G. Davis, S. Mallat, and M. Avellaneda, “Greedy adaptive approxima-
tion,” Constructive Approximation, vol. 13, pp. 57–98, 1997.

[10] H. Rauhut, “On the impossibility of uniform sparse reconstruction using
greedy methods,” Sampling Theory in Signal and Image Processing,
vol. 7, no. 2, pp. 197–215, 2008.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. V, NO. N, MONTH YYYY 10

[11] Q. Mo and Y. Shen, “Remarks on the restricted isometry property in
orthogonal matching pursuit algorithm,” 2011, preprint arXiv:1101.4458.

[12] T. Zhang, “Sparse recovery with orthogonal matching pursuit under
RIP,” IEEE Transactions on Information Theory, vol. 57, no. 9, pp.
6215–6221, 2011.

[13] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and Computational Harmonic Analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[14] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, pp. 301–321, 2009.

[15] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sens-
ing signal reconstruction,” IEEE Transactions on Information Theory,
vol. 55, no. 5, pp. 2230–2249, 2009.

[16] A. Maleki, “Convergence analysis of iterative thresholding algorithms,”
in Allerton Conference on Communication, Control and Computing,
2009.

[17] T. Zhang, “Adaptive forward-backward greedy algorithm for sparse
learning with linear models,” in Advances in Neural Information Pro-
cessing Systems, 2008.

[18] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, “Linear programming
boosting via column generation,” Machine Learning, vol. 46, no. 1-3,
pp. 225–254, 2002.

[19] M. Rudelson and R. Vershynin, “On sparse reconstruction from fourier
and gaussian measurements,” Communications on Pure and Applied
Mathematics, vol. 61, no. 8, pp. 1025–1045, 2008.

[20] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The con-
vex geometry of linear inverse problems,” Foundations of Computational
mathematics, vol. 12, no. 6, pp. 805–849, 2012.

[21] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, “Living on
the edge: Phase transitions in convex programs with random data,”
Information and Inference, p. iau005, 2014.

[22] P. Jain, A. Tewari, and I. S. Dhillon, “Orthogonal matching pursuit with
replacement,” in Advances in Neural Information Processing Systems
24, 2011, pp. 1215–1223.

[23] S. Foucart, “Hard thresholding pursuit: an algorithm for compressive
sensing,” SIAM Journal on Numerical Analysis, vol. 49, no. 6, pp. 2543–
2563, 2011.

PLACE
PHOTO
HERE

Prateek Jain is a member of the Machine Learn-
ing and Optimization and the Algorithms and Data
Sciences Group at Microsoft Research, Bangalore,
India. He is also an adjunct faculty member of the
Department of Computer Science and Engineering
at the Indian Institute of Technology, Kanpur, In-
dia. His research interests are in machine learning,
large-scale (non-convex optimization), and statistical
learning theory. He is also interested in applications
of machine learning to privacy, computer vision,
text mining and natural language processing. He

completed his Ph.D. at the University of Texas at Austin under Prof. Inderjit
S. Dhillon.

PLACE
PHOTO
HERE

Ambuj Tewari is an assistant professor in the
Department of Statistics and the Department of
EECS (by courtesy) at the University of Michigan,
Ann Arbor. His is also affiliated with the Michigan
Institute for Data Science (MIDAS). He obtained his
Ph.D. under the supervision of Peter Bartlett at the
University of California at Berkeley. His research
interests lie in machine learning including statisti-
cal learning theory, online learning, reinforcement
learning and control theory, network analysis, and
optimization for machine learning. He collaborates

with scientists to seek novel applications of machine learning in mobile
health, learning analytics, and computational chemistry. His research has been
recognized with paper awards at the COLT and AISTATS conferences. He has
received an NSF CAREER award and a Sloan Research Fellowship.

PLACE
PHOTO
HERE

Inderjit S. Dhillon is the Gottesman Family Cen-
tennial Professor of Computer Science and Mathe-
matics at University of Texas at Austin, where he
is also the Director of the ICES Center for Big
Data Analytics. His main research interests are in
big data, machine learning, network analysis, linear
algebra and optimization. He received his B.Tech.
degree from the Indian Institute of Technology,
Bombay, and Ph.D. from the University of California
at Berkeley. Inderjit has received several awards,
including the ICES Distinguished Research Award,

the SIAM Outstanding Paper Prize, the Moncrief Grand Challenge Award, the
SIAM Linear Algebra Prize, the University Research Excellence Award, and
the NSF Career Award. He has published over 160 journal and conference
papers, and has served on the Editorial Board of the Journal of Machine
Learning Research, the IEEE Transactions of Pattern Analysis and Machine
Intelligence, Foundations and Trends in Machine Learning and the SIAM
Journal for Matrix Analysis and Applications. Inderjit is an ACM Fellow, an
IEEE Fellow, a SIAM Fellow and an AAAS Fellow.

