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ABSTRACT
Extreme Classi�cation comprises multi-class or multi-label predic-

tion where there is a large number of classes, and is increasingly

relevant to many real-world applications such as text and image

tagging. In this se�ing, standard classi�cation methods, with com-

plexity linear in the number of classes, become intractable, while

enforcing structural constraints among classes (such as low-rank

or tree-structure) to reduce complexity o�en sacri�ces accuracy for

e�ciency. �e recent PD-Sparse method addresses this via an algo-

rithm that is sub-linear in the number of variables, by exploiting

primal-dual sparsity inherent in a speci�c loss function, namely

the max-margin loss. In this work, we extend PD-Sparse to be

e�ciently parallelized in large-scale distributed se�ings. By intro-

ducing separable loss functions, we can scale out the training, with

network communication and space e�ciency comparable to those

in one-versus-all approaches while maintaining an overall com-

plexity sub-linear in the number of classes. On several large-scale

benchmarks our proposed method achieves accuracy competitive

to the state-of-the-art while reducing the training time from days to

tens of minutes compared with existing parallel or sparse methods

on a cluster of 100 cores.
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1 INTRODUCTION
Extreme Classi�cation comprises Multiclass and Multilabel predic-

tion with a large number of classes, and has become increasingly

prevalent in real-world applications such as text and image tag-

ging, where the number of tags can easily go beyond tens or even

hundreds of thousands.

In such a se�ing, standard approaches such as one-versus-all

and one-versus-one become intractable due to their high training

and prediction complexity (that is at least linear) w.r.t. the number

of classes. On a benchmark data set with hundreds of thousand of

classes, the training time of the one-versus-all approach could take

a few months [11, 34], with a model taking hundreds of gigabytes

to store.
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Structural Constraints. Many approaches have since been pro-

posed to address this space and computational complexity by im-

posing structural constraints among the sub-models for each class,

such as embedding or hierarchy based, among others. One of the

most commonly used structural constraint is based on low-rank em-
bedding [5, 17, 36], which projects parameters of di�erent classes to

a low-dimensional subspace, and thus reduces the e�ective number

of classes. However, such a low-rank assumption could o�en be

violated in real-world data, for instance data with a power-law label

distribution, and thus leads to lower accuracy [1, 34]. One remedy

to this caveat is to �nd local embeddings instead of a global embed-
ding, which entails a much weaker structural constraint, and leads

to higher accuracy [2]. However, to �nd such local embeddings,

one needs to �nd nearest neighbors, which either leads to a high

complexity w.r.t. the number of samples, or introduces additional

dependency on the quality of clustering, which could be unstable

for high dimensional data. �us despite its superior accuracy on

some data sets, the local embedding algorithm [2] could be unsta-

ble, and moreover has many more tuning parameters than other

methods.

Another commonly used structural constraint is based on a tree

hierarchy [7, 14, 24], which �nds a tree or a forest that �lters a frac-

tion of classes as candidates at each tree node visited. �is leads to

a logarithmic prediction time w.r.t. the number of classes. However,

�nding an optimal tree that maximizes performance measure is

computationally hard; note that a greedy partitioning method could

potentially have large cumulative error due to cascading e�ects.

As a result, one o�en needs to train a large number of trees to get

reasonable performance. Moreover, in practice, a good hierarchy

might not exist in the �rst place, so that the tree-based approach

o�en has to trade accuracy for e�ciency.

Primal and Dual Sparsity. As [34] pointed out, when the number

of classes become large, the collection of model parameters is under-

determined, so that a simple structural constraint of sparsity might

be practically useful. For the speci�c max-margin loss, [34] showed

that there exists a naturally sparse solution to the Extreme Classi�-

cation problem with sub-linear number of non-zeros in both primal

and dual variables, which can be exploited to develop an estimation

algorithm with sub-linear dependency on the number of classes.

Since primal-dual sparsity is naturally satis�ed in the Extreme Clas-

si�cation se�ing, the estimation algorithm o�en leads to higher

accuracy on problems with larger number of classes. However,

the max-margin loss employed in [34] has several disadvantages:

(i) it is not separable w.r.t. classes and thus requires optimizing

parameters of all classes together, which can lead to a high memory

consumption that prohibits its application to larger problems, (ii)

the non-separability w.r.t. classes prevents a simple parallelization

scheme that the one-versus-all methods enjoy, (iii) the max-margin



loss focuses on the margin between the most confusing classes,

which as a criterion is sensitive to mis-labeling, such as missing

positive labels.

A recent work [1] shows that an one-versus-all based approach

with weight truncation (for model compression) can reduce the

training time substantially via parallelization, albeit the approach

has no theoretical guarantee on the resulting model quality. �is

leads to the question: can we develop a method that enjoys both the

parallelizability, small memory footprint of the one-versus-all tech-

nique and the sub-linear complexity of primal-dual sparse method?

In this work, we propose a greedy algorithm that enjoys both

the low runtime complexity inherent in the primal-dual sparse

approach and one-versus-all’s simple parallelization training with

small memory footprint. Our speci�c contributions are as follows:

• We show that the loss optimized by the common one-

versus-all technique also enjoys a similar primal-dual sparse
structure presented in [34] when a class-wise bias is added.

• We propose a greedy active-set algorithm that optimizes

parameters of each class separately without communica-
tion and thus enjoys both parallelizability and primal-dual

sparsity.

• We extend the analysis in [34] in two ways: (i) we bound

the number of non-zero dual variables in terms of the num-
ber of positive samples instead of the number of confusing
samples that could be growing linearly with the total num-

ber of samples for the separable loss considered; (ii) the

bound holds not only for the optimal solution but also for

any descent iterates during the optimization, which leads

to a more realistic analysis for the sub-linear complexity

of the algorithm.

• In our experiments on several benchmark data sets with

hundreds of thousands of classes, our proposed method

achieves accuracy competitive with state-of-the-art. On

a cluster of 100 cores, our method is orders of magnitude

faster than the existing parallel one-versus-all methods

and the sequential PD-Sparse.

2 PROBLEM SETUP AND BACKGROUND
We consider the standard Empirical Risk Minimization (ERM) frame-

work for Multilabel/Multiclass classi�cation, where we are given a

collection of training samples {(x i ,yi )}
N
i=1

with x i ∈ RD denoting

D-dimensional feature vectors that encode relevant information

about the instances, and yi ∈ {−1, 1}K denoting label vectors such

that yik = 1 if k is a correct label for the i-th sample and yik = −1

otherwise. We denote P (y) = {k |yk = 1} as the set of positive

labels andN (y) = {k |yk = −1} as the set of negative ones for each

sample.

Extreme Classi�cation refers to cases when K is extremely large,

sometimes as large as N . On the other hand, the number of positive

labels per sample |P (yi ) | is usually pre�y small. In Multiclass clas-

si�cation, we have |P (yi ) | = 1, and in most Mulitlabel prediction

problems, |P (yi ) | is typically in the order of tens or less than 10.

In this work we consider classi�ers h : RD → {−1, 1}K of the

form

hW (x ) = siдn(WT x + b)

whereW is a D × K matrix. Each column ofW is denoted as wk ,

which corresponds to the model parameters of k-th class. For such

linear classi�ers, given a loss function L : RK × {−1, 1}K , we are

interested in the ERM approach to classi�cation that solves the

following problem

W ∗ ∈ arд min

W ∈RD×K

N∑
i=1

L(WT x i ,yi ). (1)

2.1 Primal & Dual Sparsity
�e estimation problem (1) is said to have primal sparsity if the

solutionW ∗ has a small number of non-zeros nnz (W ∗). Interest-

ingly, for speci�c loss functions, the optimization problem could

also have dual sparsity.

[34] speci�cally considered the max-margin loss [8, 9]:

L(z,y) = max

kn ∈N (y )
max

kp ∈P (y )
(1 + zkn − zkp )+. (2)

For a given (z,y), de�ne the set of active labels as those labels k
that a�ain the maximum of (2). In other words, a label is active if

it is most confusing; note that a negative label is more confusing

if it gets a higher score, while a positive label is more confusing if

its score is lower. Le�ing ka denote the average number of active

labels ranging over the training dataset, the optimization problem

in (1) with the max-margin loss (2) is said to be dual sparse if ka is

small relative to K , which entails that only few of the dual variables

are non-zeros at a minimizer of the ERM problem. [34] showed that

this is indeed typically the case in extreme classi�cation se�ings,

and proposed a method they called PD-Sparse that exploits this fact.

[34] further show that, under the loss (2), if one has ka average

number of active labels, there exists a minimizer of the ERM prob-

lem (1) with nnz (W ∗) ≤ Nka , which can moreover be the unique

solution by augmenting the objective (1) with an arbitrarily small

`1-penalty. In other words, the dual sparsity (small ka ) implies

primal sparsity (small nnz (W ∗)) if

kw :=
nnz (W ∗)

D
≤

Nka
D
� K ,

�is results in a model of both primal and dual sparse structure as

long as DK � Nka . Note this result is signi�cant since the sparse

solution is not enforced but identi�ed. In other words, it is not a

trade-o� between accuracy and sparsity. Instead, whenDK � Nka ,

there are many more parameters than constraints in the problem

(1), and there exits a very sparse solution among the many possible

solutions.

3 FORMULATION: PRIMAL-DUAL SPARSITY
WITH SEPARABILITY

A signi�cant disadvantage of the loss (2) is that it is not separable

w.r.t. the class parameters w1, ...,wK , and therefore it requires

training all parameters W together. �is incurs a much larger

memory consumption than the one-versus-all approach even in the

presence of sparsity. �is prohibits PD-Sparse from using a simple

parallelization scheme that assigns the training of di�erent classes

to di�erent cores—a scheme that could enjoy nearly linear speedup

to even a thousand of cores in [1].
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To achieve parallelizability and space e�ciency, we consider the

following class-separable hinge loss

L(z,y) :=

K∑
k=1

`(zk ,yk ) =
K∑
k=1

max(1 − ykzk , 0) (3)

One-versus-all method can be interpreted as minimizing (3) since

min

W ∈RD×K

N∑
i=1

K∑
k=1

`(wT
k xi ,yik ) =

K∑
k=1

*.
,

N∑
i=1

`(wT
k xi ,yik )

+/
-

(4)

�e goal of this section is to show that (4) also permits a primal-dual
sparse structure similar to [34] when a bias term is added to the

parameters of each class. We �rst note that showing (3) has dual

sparsity is more di�cult, since unlike (2), it penalizes each class

separately, so there could potentially be many more active labels

for each sample as we discuss below. We thus take two di�erent

approaches to show the desired dual sparsity structure.

3.1 Dual Sparsity: Active Labels
We �rst employ an approach similar to [34], and try to establish

dual sparsity in terms of the number of active labels of each sample

i . In our case, the set of active labels are characterized as

Ci := {k | yik 〈wk ,x i 〉 ≤ 1},

that is, labels of either wrong predictions or con�dence scores

≤ 1 for a particular sample i . �is is related to the set of support

vectors of each class Sk := {i | yik 〈wk ,x i 〉 ≤ 1}. Denote ka :=
1

N
∑N
i=1
|Ci | and na := 1

K
∑K
k=1
|Sk | as the average number of

active labels and support vectors. We have

Nka = Kna .

Note when the number of active labels ka is constant, we have

na = Nka/K decreases with K , which results in the dual sparsity
when K � ka .

�e following theorem then shows that the dual sparsity also

implies a primal-sparse solution when na � D.

Theorem 3.1. Let λ > 0 be an arbitrarily small constant and

w∗ ∈ arдmin
w ∈RD

λ‖w ‖1 +
N∑
i=1

`(wT x i ,yi ). (5)

�en for {x i }Ni=1
drawn from a continuous distribution we have

dk := nnz (w∗) ≤ na . (6)

where na :=
{
i | yi 〈w∗,x i 〉 ≤ 1

}
is the number of support vectors.

Proof. Let X be an N × D feature matrix with rows {x i }Ni=1
.

Any optimal solution of (5) satis�es

λρ∗ +
N∑
i=1

α∗i x i = λρ
∗ + XTα ∗ = 0 (7)

for some ρ∗ ∈ ∂(‖w∗‖1) and α∗i ∈ ∂zi `(zi ,yi ) with zi := 〈w∗,x i 〉+
b. �en since hinge loss (and square hinge loss) has α∗i , 0 only

when yiz
∗
i ≤ 1, there are at most na non-zeros α∗i in the linear

system (7). On the other hand, the subgradient ρ∗ of ‖w∗‖1 satis�es

ρ∗ =




1 , w∗j > 0

−1 , w∗j < 0

ν , ν ∈ [−1, 1],w∗j = 0.

Let B := {j | w∗j , 0} be the indexes with non-zeros weights. �en

consider equations given by the non-zeros αi s and |B| rows in (7)

−λ siдn([w∗]B ) = XTα ∗.

It has nnz (w∗) equations and na variables, which, for a feature

matrix at general position, can be satis�ed only if

nnz (w∗) = |B| ≤ na .

A feature matrix X is always at general position if its rows {x }Ni=1

are drawn from a continuous distribution [28]. �

Note the �eorem 3.1 implies that when the number of active

labels ka is constant, both the number of non-zeros in the pri-

mal variables dk and dual variables na are proportional to
Nka
K .

However, there are several drawbacks with �eorem 3.1. First,

the loss (3) does not force ka to be small as the max-margin loss

(2) does, so in our case ka could actually increase linearly with K .

Second, �eorem 3.1 only analyzes the optimal solution (α ∗,w∗),
which cannot however guarantee the sparsity of w during the in-

termediate iterates of the training algorithm. Finally, the result (6)

holds only for a purely `1-regularized objective, which is known

to yield a non-smooth dual objective that can be hard to optimize

in a coordinate-wise fashion. In next section, we thus employ a

di�erent approach to resolve these caveats.

3.2 Dual Sparsity: Positive Examples
In this section, we take a more realistic approach which bounds

the `1-norm of primal and dual variables by the number of positive
examples of each class, which decreases as a function of K even

under the separable loss (3). Denote np as the average number of

positive samples per class, and kp as the average number of positive

labels per sample. We have

np :=

(
kp

K

)
N � N . (8)

when K is large. Note unlike the number of active labels ka , the

number of positive labels kp is a constant that does not grow withK
in most of Extreme Classi�cation problems. �erefore, the number

of positive samples per class np is decreasing with K since np =
Nkp/K .

Now consider a model that incorporates the bias term, where we

have an additional feature xi,0 = 1 for all samples, and an additional

weight wk,0 for all classes. For ease of optimization in the dual, we

consider the following `1-`2 (Elastic-Net) regularized objective :

min

w k ∈RD
F (wk ) := λ

D∑
j=1

|w jk | +
1

2

‖wk ‖
2 +

N∑
i=1

`(wT
k x i ,yik ), (9)

3



which has a dual objective of the form

min

α k ∈RN
G (αk ) :=

1

2

‖w (αk )‖
2 −

N∑
i=1

αik

s .t . w (αk ) = proxλ (X̂
Tαk ),

0 ≤ αik ≤ 1.

(10)

where X̂ is N × D matrix with rows {yikx i }
N
i=1

, and proxλ (.) is

the proximal operator of the function λ
∑D
j=1
|w j |. Note we do not

penalize bias term in the `1 regularization, sow0 = [X̂Tαk ]0. �en

the following two theorems bound the `1-norm of primal and dual

parameters respectively.

Theorem 3.2 (`1-norm of primal variables). Let ŵ = (ŵ0 =

−1, ŵ−0 = 0) be a trival solution. For any wk with F (wk ) ≤ F (ŵ ),
we have

‖wk ‖1 ≤
2nkp

λ
. (11)

where nkp is the number of positive samples of k-th class.

Proof. ŵ satis�es

F (ŵ ) =
1

2

+ nkp ≤ 2nkp

since `(−1,yik ) = 0 for yik = −1 and `(0,yik ) = 1 for yik = 1.

�en for any wk of be�er objective than ŵ ,

λ‖wk ‖1 ≤ F (wk ) ≤ F (ŵ ) ≤ 2nkp

which yields the result. �

Theorem 3.3 (`1-norm of dual variables). Any optimal solu-
tion αk of (10) satis�es

‖α ∗k ‖1 ≤ 4nkp .

Proof. Let w , α be the primal and dual variables for a par-

ticular class. By strong duality, the optimal dual objective (in its

maximization form) equals to the optimal primal objective

max

α
−G (α ) = min

w
F (w )

and therefore, any optimal solution (w∗,α ∗) satis�es

−
1

2

‖w∗‖2 +
∑
i
α∗i =

1

2

‖w∗‖2 + λ
D∑
j=1

|w∗j | +
N∑
i=1

`(〈w∗,x i 〉,yik ),

which yields the bound

‖α ∗‖1 = ‖w
∗‖2 + λ

D∑
j=1

|w∗j | +
N∑
i=1

`(〈w∗,x i 〉,yik )

≤ 2
*.
,

1

2

‖w∗‖2 + λ
D∑
j=1

|w∗j | +
N∑
i=1

`(〈w∗,x i 〉,yik )
+/
-
≤ 4nkp

where the last inequality is due to the existence of ŵ = (ŵ0 =

−1, ŵ−0 = 0) with primal objective F (ŵ ) ≤ 2nkp . �

�eorem 3.2 and 3.3 successfully bound the `1-norm of primal,

dual variables bynp = O (N /K ). Although a small `1-norm does not

imply small number of non-zeros in general, we show in the next

section that the complexity of our algorithm is determined by the

`1 norm of primal and dual variables. In particular, in Section 4.2,

we propose a random sparsi�cation procedure that �nds a sparse

approximation to wk in order to perform e�cient greedy search

of active coordinates. �e procedure is guaranteed to �nd a sparse

solution with number of non-zeros proportional to ‖wk ‖
2

1
. Further,

Section 4.3 gives an iteration complexity, and thus a bound on the

active size, proportional to ‖α ∗‖2
1
, where α ∗ is an optimal solution

of (10).

4 ALGORITHM
In this section, we propose a greedy algorithm that alternates be-

tween the search of potential support vectors and the optimization

over a small set of active samples. Note we have an objective (9)

for each class k independent of other classes, so in the following

we simply use α to denote αk and w to denote wk for a particular

class k being solved. �e algorithm will be performed for each class

independently without communication, and thus it is inherently

easy to parallelize.

4.1 A Greedy Active-Set Method
Instead of searching for the confusing labels of each sample as in

[34], we propose a greedy algorithm that optimizes (10) by looking

for active samples of each class. Note the domain of our objective

(10) has box constraints 0 ≤ αi ≤ 1 instead of simplex constraints as

in [34], so a Frank-Wolfe-based algorithm used in [34] does not lead

to sparse iterates. Here we propose a greedy active-set coordinate
descent algorithm that alternates between the greedy search of

novel active variables and the optimization over an active set.

�e objective (10) has gradient of the form

∇G (α ) = X̂Tw (α ) − 1, (12)

which can be evaluated in time O (nnz (w )n̄) if the vector w (α ) is

maintained whenever any dual coordinate αi is changed, where n̄
is an upper bound on the number of non-zero in each column of X .

On the other hand, when α is changed by ∆α , the maintenance of

w (α + ∆α ) = proxλ ‖ . ‖1 (X̂
Tα + X̂T ∆α ) (13)

requires a cost of O (nnz (∆α ) ¯d ) where
¯d is an upper bound on the

number of non-zeros for each row of X̂ . Note one can exploit the

sparsity of both X̂ and w (α ) simultaneously when computing the

gradients of all coordinates together as

∇G (α ) =
D∑
j=0

w j X̂: , j . (14)

�erefore, an e�cient algorithm exploits (14) to compute gradients

of all coordinate simultaneously while updates only a small number

of them to ensure a small nnz (∆α ). �is suggests a greedy strategy

that optimizes only coordinates αi leading to the most progress.

�e resulting algorithm is summarized in Algorithm 1, where we

perform an inner minimization over active set via Randomized Dual

Coordinate Descent (Algorithm 2) [13]. �e cost of one epoch of

Algorithm 2 over the active set isO ( |A| ¯d ). �erefore, each iteration

of Algorithm 1 has an overall cost of O (nnz (w )n̄ + |A| ¯d ). Note this

is a cost sublinear to the size of data matrix nnz (X ) if nnz (w ) � D
and nnz (α ) � N . In section 4.2 and 4.3, we give bounds on nnz (w )
and |A| that decreases with number of classes K .

4



Algorithm 1 Greedy Active-Set Algorithm

0. α = 0, b = 1, A = {i |yik = 1} and Hii = ‖x i ‖2, i ∈ [N ].

for t=1……T do
1. Compute ∇G (α ) via random sparsi�cation (Algorithm 3).

2. A ← Pick κ variables < A of largest −∇αiG (α ).
3. Minimize (10) w.r.t. coordinates in A via Algorithm 2.

4. Eliminate {i | αi = 0 & yik , 1} from A.

end for

Algorithm 2 Coordinate Descent for Acitve Subproblem

for s=1……S do
1. Draw i ∈ A uniformly at random.

2. Compute ∇iG (α ) = yi 〈w,x i 〉 − 1.

3. ∆αi ← min(max(αi − ∇iG (α )/Hii , 0),U ) − αi
4. Maintain (13) with update ∆αi .

end for

4.2 Sublinear-Time Search via Random
Sparsi�cation

Given an `1 norm bounded by (11), we show that the maximum neg-

ative gradient found in Step 2 of Algorithm 1 can be approximated

with δ precision when replacing w (α ) with its random sparsi�ed

version w̃ obtained from Algorithm 3, where the number of non-

zeros in w̃ is bounded by the square of `1-norm as stated in the

following theorem.

Theorem 4.1. Running the Random Sparsi�cation procededure 3

for R = d
2‖w ‖2

1

δ 2
e iterations gives a w̃ satisfying

nnz (w̃ ) ≤ *
,

4n2

p

λ2

+
-

1

δ2
, (15)

with
E[min

i
yi 〈w̃,x i 〉] −min

i
yi 〈w,x i 〉 ≤ δ , (16)

Proof. Since the function f (z) = mini zi is 1-Lipschitz-continuous,

we have

min

i
yi 〈w̃,x i 〉 −min

i
yi 〈w,x i 〉 ≤ |〈w̃,x i 〉 − 〈w,x i 〉|.

Taking expectation over w̃ on both sides, we have

E[min

i
yi 〈w̃,x i 〉] −min

i
yi 〈w,x i 〉 ≤ E[|〈w̃,x i 〉 − 〈w,x i 〉|]

≤

√
E[|〈w̃,x i 〉 − 〈w,x i 〉|2]

(17)

from Jensen’s inequality. Since E[〈w̃,x i 〉] = 〈w,x i 〉 by the con-

struction of w̃ in Algorithm 3, the RHS of (17) corresponds to the

square root of variance

E[min

i
〈w̃,x i 〉] ≤

√
Var [〈w̃,x i 〉] =

‖w ‖1
√
R
.

�e conclusion follows by noticing that nnz (w̃ ) ≤ R and ‖w ‖1
satis�es (11). �

Note (16) implies that the greedy coordinate î found by ap-

proximate search and the coordinate found by exact search i∗ =

Algorithm 3 Random Sparsi�cation

INPUT: a vector w ∈ RD .

0. w̃0 = 0.

for r = 1...R do
1. Draw j ∈ [D] with probability |w j |/‖w ‖1.

2. w̃ (r ) → w̃ (r−1) + siдn(w j )e j
end for
OUTPUT: w̃ :=

‖w ‖1
R w̃ (R )

arдmini yi 〈w,x i 〉 − 1 satisfy

E[∇îG (α )] ≤ ∇i∗G (α ) + 2δ (18)

�erefore, by replacing w with w̃ , we reduce the cost of gradi-

ent computation from the worst-case O (nnz (w )n̄) = O (Dn̄) to

O (nnz (w̃ )n̄) with a 2δ approximation error. In the next section, we

will show that se�ing δ = O (Nϵ̂ ) su�ces for the global conver-

gence of our Greedy Algorithm 1 to
1

N (G (α ) −G∗) ≤ ϵ̂ for some

ϵ̂ ∈ (0, 1). �erefore, we have

nnz (w̃ ) = O (
n2

p

λ2N 2ϵ̂2
) = O (

k2

p

λ2K2ϵ̂2
).

which could be much less than D in the Extreme Classi�cation

se�ing.

4.3 Convergence Analysis
In this section, we give an iteration complexity of Algorithm 1 that

depends on the `1 norm of the optimal solution α ∗. For simplicity

of the analysis, we assume that a normalized feature matrix with

‖x i ‖ ≤ 1.

Theorem 4.2. Let α ∗ be an optimal solution of (10). �e iterates
{α t }∞t=1

given by Algorithm 1 with Random Sparsi�cation tolerance
δ ≤ ϵ

4‖α ∗ ‖1 has E[G (α t )] −G (α ∗) ≤ ϵ for any iterate

t ≥
4‖α ∗‖2

1

ϵ
+
G (0) −G∗

‖α ∗‖2
1

.

Proof. Our dual objective (10) is of the form

д(α ) + h(α )

where h(α ) :=
∑N
i=1

hi (αi ) and

hi (α ) =

{
0, 0 ≤ α ≤ 1

∞, o.w .

andд(α ) = 1

2
‖w (α )‖2−

∑N
i=1

αi is smooth with Lipschitz-continuous

gradient ∇д(α ). To see this, let Bα = {j |w j (α ) , 0}. �e general-

ized Hessian of д(α ) is

∇2д(α ) = X:,BαX
T
:,Bα

which has diagonal elements ‖x i,Bα ‖
2

bounded by ‖x i ‖2 ≤ 1 and

thus a spectral norm bounded by N . �en for any coordinate i , we

have the following descent amount since the second derivative of

the smooth part of objective is bounded by ‖x i ‖2 ≤ 1.

min

η
G (α + ηei ) −G (α ) ≤ min

η
∇iG ∗ η +

1

2

η2 + hi (αi + η) (19)

where ei is an indicator vector. Note for i ∈ A, the minimizer of

RHS of (19) is 0 since the previous iteration already minimizes our

5



objective w.r.t. the active setA. And for i < A, the minimizer of the

RHS of (19) is −[−∇iG (α )]2

+/2, which corresponds to the selection

criteria at Step 2 of Algorithm 1. �erefore, at each iteration, the

coordinate î and i∗ found by the approximate and exact greedy

search respectively satisfy

E[G (α + ∆α )] −G (α ) ≤ E[min

η
G (α + ηe î )] −G (α )

≤ min

η
∇i∗G ∗ η +

1

2

η2 + hi (αi + η) + 2δη

≤ min

η
〈∇G,η〉 +

1

2

‖η‖2
1
+ h(α + η) + 2δ

∑
i
ηi

where the �rst inequality is because the update ∆α is obtained by

minimizing objective w.r.t. a working set Ar+1
containing î , and

the second, third inequalities follow from (18) and the fact that

a linear objective subject to `1 ball has minimizer at the corner

respectively. �en we use convexity to obtain a global estimate of

descent amount relative to the suboptimality G (α ) −G (α ∗):

E[G (α + ∆α )] −G (α ) (20)

≤ min

η
〈∇G,η〉 +

1

2

‖η‖2
1
+ h(α + η) + 2δ

∑
i
ηi (21)

≤ min

q∈[0,1]

q(∇G,α ∗ − α ) +
q2

2

‖α ∗‖2
1
+ 2qδ ‖α ∗‖1 (22)

≤ min

q∈[0,1]

−q(G (α ) −G (α ∗)) +
q2

2

‖α ∗‖2
1
+ 2qδ ‖α ∗‖1 (23)

where the last ineqaulity is from convexity, and the second inequal-

ity is from a restriction of optimization space to η = q(α ∗ − α )
and the fact that for i ∈ A the minimizer of (21) has ηi = 0. �en

choosing δ ≤
G (α )−G (α ∗ )

4‖α ∗ ‖1
and minimizing the RHS w.r.t. q leads to

E[G (α + ∆α )] −G (α ) ≤ −
(G (α ) −G (α ∗))2

4‖α ∗‖2
1

(24)

for iterates with G (α ) −G (α ∗) ≤ 2‖α ∗‖2
1

and has

E[G (α + ∆α )] −G (α ) ≤ −‖α ∗‖2
1
/2 (25)

for iterates with G (α ) −G (α ∗) > 2‖α ∗‖2
1
. Note the constant de-

scent amount (25) happens only in the beginning iterates when

G (α )−G (α ∗) and can happen at most 2(G (0)−G (α ∗))/‖α ∗‖2
1

times.

Considering those iterates of case (24), we have recursive relation

∆Gt+1 −∆Gt ≤ −
(∆Gt )2

4‖α ∗ ‖2
1

where ∆Gt
:= E[G (α t ) | α t−1

]−G (α ∗).

�e recursion leads to the conclusion by, for example, �eorem 1

of [26]. �

�eorem 4.2 is signi�cant when combined with �eorem 3.3,

which gives us an iteration complexity of

t =
4‖α ∗‖2

1

ϵ
≤

64n2

p

ϵ
,

and also a bound on the active size |A| ≤ κt ≤ κ
64n2

p
ϵ that depends

only on the number of positive examples. Considering the average

case where np = Nkp/K , for achieving
1

N (G (α ) −G∗) ≤ ϵ̂ ∈ (0, 1),
we have

|A| = O (
Nk2

p

K2ϵ̂
).

�en the complexity for running Algorithm 1 on all classes is:

K ∗O (nnz (w̃ )n̄ + |A| ¯d ) = O *
,

k2

pn̄

Kλ2ϵ̂2
+ nnz (X )

k2

p

Kϵ̂
+
-
,

times the number of iterations, which is a cost proportional to the

factor k2

p/K .

5 PRACTICAL ISSUES
5.1 Parallelization Architecture
�e dual objective (10) comprises independent sub-objectives for

di�erent classes, and which moreover only di�er by the set of labels

{yik }
N
i=1

. Under a shared-memory architecture each thread can

share the same copy of data matrix X . In our implementation, we

employ a two-layer parallelization with 10 computational nodes and

10 threads per node. Dynamic load balancing is performed by one

of the thread which assigns new labels to a thread once it �nishes

its current job. Usually one can enjoy a nearly linear speedup as

long as the number of parallel jobs is an order of magnitude less

than K . More sophisticated communication and load balancing can

also be achieved through distributed shared memory [10, 29] and

scheduler [19].

5.2 Loss and Regularization Variants
In practice, we found replacing the hinge loss in (9) with a square

hinge loss

`(z,y) :=
1

2

max(1 − yz, 0)2

yields a be�er performance in our empirical evaluation. One can

also introduce an additional tuning parameter τ for the `2 regular-

ization in (9), although in our experiments we found τ = 1 to be

the optimal choice out of {0.1, 1, 10} for most of the data sets.

5.3 Two-Level Sparsi�cation
�e sparsi�cation of w described in section 4.2 reduces the cost of

computing (14) fromO (nnz (X )) toO (nnz (w̃ )n̄). For some data sets,

each column of X is dense (n̄ ≈ N ), but most of entries have small

magnitude which contribute li�le to ∇G (α ). A trick to further

speed up the greedy search is to consider only entries in X with

magnitude larger than a threshold. �en by sorting each column of

X in descending order of magnitude, one can stop traversing the

sorted list once processed all entries of magnitude larger than the

threshold. �is trick improves the e�ciency of the proposed method

sign�cantly for a number of text data sets in our experiments.

6 EXPERIMENTS
In this section, we compare our proposed algorithm with state-of-

the-art approaches on multiclass and multilabel problems chosen

based on the experimental results shown in the Extreme Classi�ca-

tion Repository
1

and [1, 34]. �e compared methods are:

1
h�ps://manikvarma.github.io/downloads/XC/XMLRepository.html
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Table 1: Results and statistics for large-scale Multilabel data sets, Ntrain= number of training samples, Ntest= number of
testing samples, Ttrain = training time, Ttest = testing time, K = number of classes, D = number of features. P@k = top-k
accuracy. DiSMEC and PPDSparse are parallelized with 100 cores. We highlight the best result for each metric, except that for
Ttrain we highlight best results among single-core solvers (le� four) and parallel solvers. For all experiments, we set amemory
limit to be 100G. Experiments that exceeded limits are markedMemory Limit Exceeded (MLE).

Data Metrics FastXML PfastreXML SLEEC PDSparse DiSMEC PPDSparse
Amazon-670K Ttrain 5624s 6559s 20904s 174135s 921.9s
Ntrain=490449 P@1 (%) 33.12 32.87 35.62 43.00 43.04
Ntest=153025 P@3 (%) 28.98 29.52 31.65 MLE 38.23 38.24

D=135909 P@5 (%) 26.11 26.82 28.85 34.93 34.94
K=670091 model size 4.0G 6.3G 6.6G 8.1G 5.3G

Ttest /Ntest 1.41ms 1.98ms 6.94ms 148ms 20ms

WikiLSHTC-325K Ttrain 19160s 20070s 39000s 94343s 271407s 353s
Ntrain=1778351 P@1 (%) 50.01 57.17 58.34 60.70 64.00 64.13
Ntest=587084 P@3 (%) 32.83 37.03 36.7 39.62 42.31 42.10

D=1617899 P@5 (%) 24.13 27.19 26.45 29.20 31.40 31.14

K=325056 model size 14G 16G 650M 547M 8.1G 4.9G

Ttest /Ntest 1.02ms 1.47ms 4.85ms 3.89ms 65ms 290ms

Delicious-200K Ttrain 8832.46s 8807.51s 4838.7s 5137.4s 38814s 2869s
Ntrain=196606 P@1 (%) 48.85 26.66 47.78 37.69 44.71 45.05

Ntest=100095 P@3 (%) 42.84 23.56 42.05 30.16 38.08 38.34

D=782585 P@5 (%) 39.83 23.21 39.29 27.01 34.7 34.90

K=205443 model size 1.3G 20G 2.1G 3.8M 18G 9.4G

Ttest /Ntest 1.28ms 7.40ms 2.685ms 0.432ms 311.4ms 275ms

AmazonCat-13K Ttrain 11535s 13985s 119840s 2789s 11828s 122.8s
Ntrain=1186239 P@1 (%) 94.02 86.06 90.56 87.43 92.72 92.72

Ntest=306782 P@3 (%) 79.93 76.24 76.96 70.48 78.11 78.14

D=203882 P@5 (%) 64.90 63.65 62.63 56.70 63.40 63.41

K=13330 model size 9.7G 11G 12G 15M 2.1G 355M

Ttest /Ntest 1.21ms 1.34ms 13.36ms 0.87ms 0.20ms 1.82ms

• FastXML [24]: An e�cient and scalable tree-based algo-

rithm. We adopted parameter se�ing suggested by the

solver.

• PfastreXML [14]: An e�cient and scalable tree ensemble

based method improving upon FastXML by minimizing

propensity-scored loss at each tree node, which leads to

be�er performance on tail labels. Since all other methods

are not adjusted based on the propensity, in our experi-

ment we still measure performance via traditional top-k

accuracy.

• SLEEC [2]: A non-linear solver that 1) partitions training

sample into clusters and 2) compute local embeddings that

preserves nearest neighbor structure within each cluster.

Because of this composition of components, its perfor-

mance highly relies on its parameter se�ing. We adopted

se�ings suggested by the authors for each data set.

• PDSparse [34]: A Primal-Dual sparse method that min-

imizes a max-margin loss with `1-`2 regularization and

enjoys sublinear complexity w.r.t. the number of classes.

• DiSMEC [1]: A distributed and parallelized method that

learns one-versus-all classi�ers with heuristic model com-

pression ( weight truncation). We run this method with

100 cores using the same parallelization framework to our

solver.

• PPDsparse: �e proposed method with 100 cores (10 ma-

chines with 10 cores on each machine).

All compared solvers are available from Extreme Classi�cation

Repository
1
. Other solvers not compared in this paper are i) one-

vs-all logistic regression, one-vs-all SVM, multiclass SVM, one-vs-all
`1-regularized logistic regression, implemented in LibLinear [12], ii)

Vowpal-Wabbit [7], iii) LEML [36], iv) RobustXML [33], v) PLT [15],

vi) LPSR-NB [30]. All of these have been shown less competitive in

a number of previous papers [1, 34].

Experiments are conducted on four large-scale multilabel data

sets, four medium-scale multilabel data sets and three large-scale

multiclass data sets. We adopt data sets used by [1, 14, 24, 34] and

also that from the Extreme Classi�cation Repository
1
. Large-scale

multilabel data sets are WikiLSHTC-325K, Delicious-200K, Amazon-
670K and AmazonCat-13K. Medium-scale Multilabel data sets are

Mediamill, Bibtex, RCV1-2K and EURLex-4K. �ey can be found at

Extreme Classi�cation Repository
1
. Multiclass data sets LSHTC1,

Dmoz and aloi.bin are available
2

from authors of [34].

�e data statistics and results are shown in Table 1, 2 and 3. For all

experiments, we select our hyperparameter λ from {0.01, 0.1, 1} and

τ from {0.1, 1, 10} to maximize the heldout performance. However,

we observed that for most of data sets, τ = 1, λ = 0.01 consistently

gives the best performance. For large-scale multilabel datasets

2
h�p://www.cs.utexas.edu/∼xrhuang/PDSparse/
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Table 2: Results and statistics for small Multilabel data sets, Ntrain= number of training samples, Ntest= number of testing
samples, Ttrain = training time, Ttest = testing time, K = number of classes, D = number of features. P@k = top-k accuracy.
DiSMEC and PPDSparse are parallelized with 100 cores. We highlight the best result for each metric, except that for Ttrain we
highlight best results among single-core solvers (le� four) and parallel solvers.

Data Metrics FastXML PfastreXML SLEEC PDSparse DiSMEC PPDSparse
Mediamill Ttrain 276.4s 293.2s 9504s 23.8s 12.15s 34.1s

Ntrain=30993 P@1 (%) 84.27 84.08 87.37 83.64 84.83 84.42

Ntest=12914 P@3 (%) 67.34 67.45 72.60 66.13 67.17 67.26

D=120 P@5 (%) 53.06 53.23 58.39 50.90 52.80 52.78

K=101 model size 87M 88M 104M 20K 412K 412K

Ttest /Ntest 0.27ms 0.37ms 4.95ms 0.004ms 0.142ms 0.078ms

Bibtex Ttrain 21.68s 21.47s 296.86s 7.71s 0.203s 0.232s

Ntrain=4880 P@1 (%) 63.66 63.18 64.77 62.36 63.69 63.69

Ntest=2515 P@3 (%) 39.42 39.67 38.97 36.50 38.80 39.43

D=1836 P@5 (%) 28.60 29.47 28.50 26.50 28.30 28.67

K=159 model size 34M 37M 5.2M 20K 2.1M 2.5M

Ttest /Ntest 0.64ms 0.73ms 0.70ms 0.007ms 0.28ms 0.094ms

RCV1-2K Ttrain 4874.4s 4947.2s 85212s 709.5s 641.1s 35.0s
Ntrain=623847 P@1 (%) 91.14 89.79 91.36 90.02 90.52 91.08

Ntest=155962 P@3 (%) 73.35 72.65 73.38 71.92 72.31 72.93

D=47236 P@5 (%) 52.69 52.23 52.50 51.23 51.25 52.10

K=2456 model size 3.9G 4.1G 1.1G 1.6M 209M 23M

Ttest /Ntest 0.87ms 1.08ms 53.95ms 0.066ms 1.72ms 0.338ms

EURLex-4K Ttrain 315.9s 324.4s 4543.4s 773.2s 76.07s 9.95s
Ntrain=15539 P@1 (%) 70.86 70.33 79.15 75.90 70.61 74.61

Ntest=3809 P@3 (%) 59.06 58.61 64.09 61.16 57.56 59.56

D=5000 P@5 (%) 49.58 49.69 52.09 50.83 47.33 48.43

K=3993 model size 384M 455M 121M 25M 15M 9.5M
Ttest /Ntest 3.65ms 5.43ms 3.67ms 0.73ms 2.26ms 1.5ms

Table 3: Results and statistics for Multiclass data sets, Ntrain= number of training samples, Ntest= number of testing samples,
Ttrain = training time, Ttest = testing time, K = number of classes, D = number of features. DiSMEC and PPDSparse are par-
allelized with 100 cores. We highlight the best result for each metric, except that for Ttrain we highlight best results among
single-core solvers (le� four) and parallel solvers.

Data Metrics FastXML PfastreXML SLEEC PDSparse DiSMEC PPDSparse
aloi.bin Ttrain 1900.9s 1901.6s 16193s 139.8s 92.0s 7.05s

Ntrain=100000 accuracy (%) 95.71 93.43 93.74 96.2 96.28 96.38
Ntest=8000 model size 1.3G 1.3G 3.7G 19M 16M 14M
D=636911 Ttest /Ntest 5.05ms 5.10ms 28.00ms 0.064ms 0.02ms 0.0178ms

K=1000

LSHTC1 Ttrain 1398.2s 1422.4s 5919.3s 196.6s 298.8s 45.8s
Ntrain=88806 accuracy (%) 22.04 23.32 12.2 22.46 22.74 22.70

Ntest=5000 model size 937M 1.1G 631M 88M 142M 381M

D=347255 Ttest /Ntest 5.73ms 8.81ms 14.66ms 0.40ms 3.7ms 6.94ms

K=12294

Dmoz Ttrain 6475.1s 6619.7s 47490s 2518.9s 1972.0s 170.60s
Ntrain=345068 accuracy (%) 40.76 39.78 33.03 39.91 39.38 39.32

Ntest=38340 model size 3.5G 3.8G 1.5G 680M 369M 790M

D=833484 Ttest /Ntest 3.29ms 3.20ms 40.43ms 1.87ms 4.58ms 6.58ms

K=11947

(Table 1), we use tf-idf features with sample-wise normalization as

suggested by the author of [1].

Our experimental results con�rmed several comments from

previous work [1, 34]: 1) Among single-core solvers (PDSparse,

FastXML, PfastreXML, SLEEC), PDSparse can achieve orders of
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magnitude speed up in terms of training time without signi�cantly

downgrading performance compared to the direct one-vs-all ap-

proach (except on Delicious-200k, a data set of missing labels) .

2) Given enough computing resources, DiSMEC is able to achieve

signi�cantly higher accuracy than other approaches on some data

sets. However, their training on the largest data sets typically take

few days even with 100 cores.

From Table 1-3, we illustrate how our proposed PPDSparse

method combines the strength from both PDSparse and DiSMEC.

By adopting one-versus-all loss, PPDSparse can achieve accuracy as

good as DiSMEC on most of data sets and resolve drawbacks of the

max-margin loss used by PDSparse in three ways: (i) PPDSparse

reduces the memory requirement of PDSparse by orders of magni-

tude due to the separation of training of each class, which clears

the MLE issue of PDSparse on Amazon-670K, (ii) By embarassingly

parallelized to 100 cores, PPDSparse is orders of magnitude faster

than both PDSparse and parallel 1-vs-all (DiSMEC), (iii) the per-

formance of PPDSparse is less sensitive to data set of mislabeling.

On Delicious-200K, a data set of missing positive labels, PPDsparse

improves accuracy of PDSparse signi�cantly.

�e training of PPDSparse is consistently faster than tree-based

and local embedding methods by orders of magnitude while main-

taining a competitive accuracy on most of data sets. On Amazon-

670K and WikiLSHTC-325K, PPDSparse (and DisMEC) enjoy a

signi�cant increase in accuracy compared to tree-based approaches.

On the other hand, the prediction speed of Primal Dual sparse ap-

proaches (PPDSparse, PDSparse) are slower than tree-based meth-

ods (FastXML, PfastreXML) on problems of more than 10
5

classes,

while being comparable on medium-sized data sets of 10
3 − 10

4

classes (Table 3), presumably because tree-based methods enjoy

logarithmic-time prediction w.r.t. the number of classes.
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