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Abstract. Numerous scientific applications across a variety of fields depend on box-constrained
convex optimization. Box-constrained problems therefore continue to attract research interest. We
address box-constrained (strictly convex) problems by deriving two new quasi-Newton algorithms.
Our algorithms are positioned between the projected-gradient [J. B. Rosen, J. SIAM, 8(1), 1960,
pp. 181–217], and projected-Newton [D. P. Bertsekas, SIAM J. Cont. & Opt., 20(2), 1982, pp.
221–246] methods. We also prove their convergence under a simple Armijo step-size rule. We
provide experimental results for two particular box-constrained problems: nonnegative least squares
(NNLS), and nonnegative Kullback-Leibler (NNKL) minimization. For both NNLS and NNKL our
algorithms perform competitively against well-established methods on medium-sized problems; for
larger problems our approach frequently outperforms the competition.
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1. Introduction. The central object of study in this paper is the box-constrained
optimization problem

min
x∈Rn

f(x), s.t. l ≤ x ≤ u, (1.1)

where l and u are fixed vectors and inequalities are taken componentwise; the function
f is assumed to be twice continuously differentiable and strictly convex.

Problem (1.1) is a simple constrained optimization problem that can be solved by
numerous methods. But general purpose methods might be overkill; indeed, for sim-
ple problems they can be computationally expensive or even needlessly complicated.
These concerns motivate us to develop algorithms specifically designed for (1.1). Our
algorithms are founded upon the unconstrained BFGS and L-BFGS procedures, both
of which we adapt to our constrained setting. This adaptation is the crux of our work;
but before we describe it, we would like to position it vis-á-vis other methods.

1.1. Related Work. A basic, and perhaps obvious, approach to solve (1.1) is
the well-known projected-gradient method [23]. This method, however, frequently
suffers from slow convergence, making it unappealing when medium to high accuracy
solutions are desired. In such cases higher-order methods might be more preferable,
e.g., LBFGS-B [5]1, TRON [12], or projected-Newton [1]. LBFGS-B uses a limited amount
of additional memory to approximate the second-order information of the objective
function, while TRON uses trust-regions [15], and is usually very efficient for medium
scale problems. The projected-Newton method may be viewed as a non-trivial second-
order extension to projected-gradient.

LBFGS-B and TRON tackle constraints by explicitly distinguishing between steps
that identify active variables and steps that solve the resulting unconstrained sub-
problems. In comparison, projected-Newton makes the variable-identification step
implicit by dynamically finding active candidates at every iteration. Bertsekas noted
that such an implicit identification of active variables could lead to unstable active
sets across iterations, which in turn could adversely affect convergence [1]. Thus, to
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stabilize the projected-Newton method he developed a refined and technical proce-
dure. We avoid some of those technicalities in a quest to ease analysis and simplify
implementation. As a result, we obtain simple but efficient projected quasi-Newton
algorithms.

1.2. Summary of Remainder. The rest of this paper is organized as follows.
In §2.1 we overview our approach; in §2.2 major implementation issues are discussed;
and in §3 we prove convergence. In §4 we compare our method to several other major
approaches and show numerical results across several synthetic as well as real-life
data. Section 5 concludes the paper with an outlook to future work.

2. Algorithms and Theory. Recall that the central problem of interest is

min
x∈Rn

f(x), subject to l ≤ x ≤ u, (2.1)

where l and u are fixed vectors and inequalities are taken componentwise; f is a twice
continuously differentiable, strictly convex function.

2.1. Overview of the method. Our algorithm for solving (2.1) is inspired
by projected-gradient [23] and projected-Newton [1]. Viewed in the general light of
gradient methods [2], our method distinguishes itself in two main ways: (i) its choice
of the variables optimized at each iteration; and (ii) the gradient-scaling it uses to
compute the descent direction. Further details of the resulting iterative method follow.

At each iteration we partition the variables into two groups: free and fixed. Then,
we optimize over only the free variables while holding the fixed ones unchanged. The
fixed variables are defined as a particular subset of the active variables2, and this
subset is identified using both the gradient and second-order information.

Formally, first at iteration k, we identify the binding set

Ik
1 =

{
i
∣∣xk

i = li ∧ ∂if(xk) > 0, or xk
i = ui ∧ ∂if(xk) < 0

}
, (2.2)

where ∂if(xk) denotes the i-th component of the gradient ∇f(xk). The set Ik
1 collects

variables that satisfy the KKT conditions (1 ≤ i ≤ n):

∇f(x)− λ+ µ = 0, λi (xi − li) = 0, µi (xi − ui) = 0, and λ, µ ≥ 0,

where λ and µ are Lagrange multipliers corresponding to the ` ≤ x and x ≤ u
constraints, respectively. To see why the gradient information makes a difference
in (2.2), consider an active variable xk

i = li whose gradient component ∂if(xk) ≤ 0.
For such a variable it may be possible to decrease the objective further, if at the next
iteration we allow xk+1

i > li. Thus, it is better to leave xk
i free by not including it

in (2.2) (a similar observation holds for xk
i = ui).

Next, we refine the active variables using gradient-scaling information. To that
end, let Sk be some non-diagonal positive-definite matrix. Further let S̄k be the
matrix induced by Sk and the variables not in the binding set, i.e.,

S̄k
ij =

{
Sk

ij , if i, j /∈ Ik
1 ,

0, otherwise.

Then, we define the second index-set

Ik
2 =

{
i
∣∣xk

i = li ∧
[
S̄k∇f(xk)

]
i
> 0, or xk

i = ui ∧
[
S̄k∇f(xk)

]
i
< 0
}
. (2.3)

2Components of x that satisfy the constraints with equality.
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The set Ik
2 captures variables left free by Ik

1 , that should actually be fixed—e.g., if xk
i

is active but unbound (i.e., xk
i = li, but xk

i /∈ Ik
1 ), then as argued before, the objective

function can be potentially decreased if we let xk+1
i > li. In the presence of gradient-

scaling, however, this decrease might not happen because even though xk
i /∈ Ik

1 , the
scaled-gradient

[
S̄k∇f(xk)

]
i

is positive. Thus, at the next iteration too we should
fix xk+1

i = li. The actual fixed-set is as defined below.
Definition 2.1 (Fixed set). Given sets Ik

1 and Ik
2 identified by (2.2) and (2.3),

respectively, the fixed set Ik at iteration k is defined as the union Ik = Ik
1 ∪ Ik

2 .

2.1.1. Projected quasi-Newton Step. Having defined the fixed set we now
present the main projected quasi-Newton step. The projection part is easy and re-
quires computing PΩ(x), the orthogonal projection of x onto the set Ω = [l,u]. The
quasi-Newton part is slightly more involved as the variables not in the fixed-set Ik

influence the gradient-scaling matrix, which is given by

Ŝk
ij =

{
Sk

ij , if i, j /∈ Ik,
0, otherwise.

Finally, our projected quasi-Newton step is given by

xk+1 = PΩ

(
xk − αkŜk∇f(xk)

)
, (2.4)

where αk > 0 is a step-size.
Pseudo-code encapsulating the details described above is presented in Algorithm 1,

which we call projected quasi-Newton (PQN). Observe that in PQN an arbitrary
positive-definite matrix may be used to initialize S0, and any feasible point to ini-
tialize x0. Further notice that we have not yet specified the details of computing the
step-size αk, and of updating the matrix Sk. We now turn to these two important
steps (and some other implementation issues) in Section 2.2 below.

2.2. Implementation details. In this section we describe a line-search routine
for computing αk, and two methods for updating the gradient scaling matrix Sk.

2.2.1. Line Search. We choose the Armijo step-size rule [2, 6] for the line-
search; this rule is simple and usually works well both for unconstrained and con-
strained problems. The important difference in our implementation of Armijo is that
we restrict the computation to be over the free variables only.

More specifically, to compute the step-size, first choose an initial step γ > 0 and
some scalars τ , σ ∈ (0, 1). Then, determine the smallest non-negative integer t, for
which the sufficient-descent condition

f(xk)− f
(
PΩ

[
xk − γσtŜk∇f(xk)

])
≥ τγσt∇f(xk)T Ŝk∇f(xk), (2.5)

is satisfied. The step-size is then set to αk = γσt. In Section 3 we prove that with
this Armijo-based step-size our algorithm converges to the optimum.

2.2.2. Gradient Scaling. Now we turn to gradient scaling. To circumvent
some of the problems associated with using the full (inverse) Hessian, it is usual
to approximate it. Popular choices involve iteratively approximating the Hessian
using the Powell-Symmetric-Broyden (PSB), Davidson-Fletcher-Powell (DFP), or the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates; the latter are believed to be the
most effective in general [2, 8], so we adapt them for our algorithm.
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Algorithm 1: Projected Quasi-Newton Framework
Input: Function: f(x); vectors l,u ∈ Rn

Output: x∗ = argminl≤x≤u f(x)
Initialize k ← 0, Sk ← I, and l ≤ xk ≤ u;
repeat

Compute the first index set
Ik
1 =

{
i
∣∣xk

i = li ∧ ∂if(xk) > 0, or xk
i = ui ∧ ∂if(xk) < 0

}
;

Compute the second index set
Ik
2 =

{
i
∣∣xk

i = li ∧
[
S̄k∇f(xk)

]
i
> 0, or xk

i = ui ∧
[
S̄k∇f(xk)

]
i
< 0
}

;
Compute the fixed set Ik = Ik

1 ∪ Ik
2 ;

if Ik = ∅ or ∂if(xk) = 0 for all i ∈ Ik then
S̄k = I;
Re-compute Ik;

begin
Find appropriate value for αk using line-search;
xk+1 ← PΩ

[
xk − αkŜk∇f(xk)

]
;

end
Update gradient scaling matrix Sk to obtain Sk+1, if necessary;
Update xk+1 with (2.4);
k ← k + 1;

until Stopping criteria are met ;

Suppose Hk is the current approximation to the Hessian, and that vectors g and
s are given by the differences

g = ∇f(xk+1)−∇f(xk), and s = xk+1 − xk.

Then, the BFGS update makes a rank-two correction to Hk, and is given by

Hk+1 = Hk − H
kssTHk

sTHks
+
ggT

sTg
. (2.6)

Let Sk be the inverse of Hk. Applying the Sherman-Morrison-Woodbury formula
to (2.6) one obtains the update

Sk+1 = Sk +
(

1 +
gTSkg

sTg

)
ssT

sTg
− (SkgsT + sgTSk)

sTg
. (2.7)

The version of Alg. 1 that uses (2.7) for the gradient-scaling will be called PQN-BFGS.

Although the update of gradient scaling matrix via BFGS updates is efficient,
it can require up to O(n2) memory, which restricts its applicability to large-scale
problems. But we can also implement a limited memory BFGS (L-BFGS) [18] version,
which we call PQN-LBFGS. Here, instead of storing an actual gradient scaling matrix,
a small number of additional vectors (say M) are used to approximate the (inverse)
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Hessian. The standard L-BFGS approach is implemented using the following formula

Sk =
sT

k−1gk−1

gT
k−1gk−1

V̄ T
k−M V̄k−M + ρk−M V̄

T
k−M+1sk−Ms

T
k−M V̄k−M+1

+ ρk−M+1V̄
T

k−M+2sk−M+1s
T
k−M+1V̄k−M+2

+ · · ·
+ ρk−1sk−1s

T
k−1,

(2.8)

where S0 = I, k ≥ 1, the scalars ρk, and matrices V̄k−M are defined by

ρk = 1/(sT
k gk), V̄k−M = [Vk−M · · ·Vk−1] , and Vk = I − ρkskg

T
k .

At this point the reader might wonder how our method differs from the original
BFGS and L-BFGS methods? There are two basic differences: First, we are perform-
ing constrained optimization. Second, we actually perform the updates (2.7) and (2.8)
with respect to the first index set (2.2)—that is, both updates (2.7) and (2.8) result
in the matrix S̄k, which is then used in Algorithm 1.

3. Convergence. Let {xk} be a sequence of iterates produced by either the
PQN-BFGS or the PQN-LBFGS versions of Algorithm 1. We prove below under mild
assumptions that each accumulation point of the sequence {xk} is a stationary point
of (2.1). We begin by showing that the sequence {f(xk)} is monotonically decreasing.

Lemma 3.1 (Descent). If xk is not a stationary point of Problem (2.1), then
with xk+1 given by (2.4), there exists some constant ᾱ > 0 such that

f(xk+1) < f(xk), for all α ∈ (0, ᾱ].

Proof. By construction of the fixed set Ik, the free variables in xk must satisfy:

either li < xk
i < ui,

or xi = li ∧ ∂if(xk) ≤ 0 ∧ [Ŝk∇f(xk)]i ≤ 0,

or xi = ui ∧ ∂if(xk) ≥ 0 ∧ [Ŝk∇f(xk)]i ≥ 0.

If there are no free variables, then Ik = Ik
1 and all KKT conditions are fulfilled; but

this implies that xk is stationary, a contradiction. Thus, for a non-stationary point
xk, there exists at least one entry in xk for which ∂if(xk) 6= 0. This xk yields a
descent direction. To see how, let dk be the direction defined by

dk
i =

{
−[Ŝk∇f(xk)]i, if i /∈ Ik,
0, otherwise.

Now partition (reordering variables if necessary) all objects with respect to Ik so that

Ŝk =
[
T k 0
0 0

]
, ∇f(xk) =

[
yk

zk

]
, and dk =

[
pk

0

]
=
[
−T kyk

0

]
. (3.1)

In (3.1) the components that constitute zk belong to Ik, while those that constitute
yk,pk and T k do not. Given this partitioning we see that〈

∇f(xk),dk
〉

=
〈
yk,pk

〉
= −

〈
yk,T kyk

〉
< 0,
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where the final inequality follows because T k is positive-definite (as it is a principal
submatrix of the positive definite matrix Sk). Thus, dk is a descent direction.

Now we only need to verify that descent along dk upholds feasibility. It is easy
to check that there exists an ᾱ > 0 such that for i /∈ Ik,

li ≤ PΩ

[
xk

i + αdk
i

]
= xk

i + αdk
i ≤ ui, for all α ≤ ᾱ.

Noting that dk is zero for fixed variables, we may equivalently write

l ≤ PΩ

[
xk + αdk

]
= xk + αdk ≤ u, for all α ≤ ᾱ. (3.2)

Thus, we can finally conclude that there exists some α̂ ≤ ᾱ such that

f(xk+1) < f(xk), for all α ∈ (0, α̂].

To prove the convergence of an iterative algorithm one generally needs to show
that the sequence of iterates {xk} has an accumulation point. Since the existence of
limit points inevitably depends on the given problem instance, it is frequently assumed
as a given. For our problem, accumulation points certainly exist as we are dealing
with a continuous function over a compact domain.

To prove the main theorem, we consider the set Ω = [l,u] as the domain of
Problem 2.1 and assume the following condition:

Assumption 1. The eigenvalues of the gradient scaling matrix T k (for all k) lie
in the interval [m,M ] where 0 < m ≤M <∞.

This assumption is frequently found in convergence proofs of iterative methods,
especially when proving the so-called gradient related condition, which, in turn helps
prove convergence for several iterative descent methods (as it ensures that the search
direction remains well-defined throughout the iterations).

Lemma 3.2 (Gradient Related Condition). Let {xk} be a sequence generated
by (2.4). Then, for any subsequence {xk}k∈K that converges to a non-stationary
point, the corresponding subsequence {dk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

‖xk+1 − xk‖ <∞ (3.3)

lim sup
k→∞,k∈K

∇f(xk)Tdk < 0. (3.4)

Proof. Since {xk}k∈K is a converging sequence over a compact domain, xk+1−xk

is also bounded for all k, therefore (3.3) holds. Since dk = [−T kyk; 0] and T k is
positive-definite, under Assumption 1, the gradient-related condition (3.4) follows
immediately [2, Chapter 1].

Now we are ready to prove the main convergence theorem. Although using
Lemma 3.2, it is possible to invoke a general convergence proof for the feasible direc-
tion method (e.g. [2]), for completeness we outline a short proof.

Theorem 3.3 (Convergence). Let {xk} be a sequence of points generated by (2.4).
Then every limit point of {xk} is a stationary point of Problem (2.1).

Proof. The proof is by contradiction. Since {f(xk)} is monotonically decreasing
(Lemma 3.1), the domain Ω = [l,u] is compact, and f is continuous, we have

lim
k→∞

f(xk)− f(xk+1) = 0.
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Further, the sufficient-descent condition (2.5) implies that

f(xk)− f(xk+1) ≥ −ταk∇f(xk)Tdk, τ ∈ (0, 1), (3.5)

whereby

{αk∇f(xk)Tdk} → 0. (3.6)

Assume that a subsequence {xk}k∈K converges to a non-stationary point x̃. From (3.4)
and (3.6), we obtain {αk}k∈K → 0. Since dk is gradient related, this implies that we
have some index k1 ≥ 0 that satisfies (3.2) such that

PΩ

[
xk + αkdk

]
= xk + αkdk, for all k ∈ K, k ≥ k1.

Further, the Armijo rule (2.5) implies that there exists an index k2 satisfying

f(xk)− f
(
PΩ

[
xk +

αk

γ
dk
])

= f(xk)− f
(
xk +

αk

γ
dk
)
< −τ α

k

γ
∇f(xk)Tdk,

or equivaltently,

f(xk)− f
(
xk + α̌kdk

)
α̌k

< −τ∇f(xk)Tdk, (3.7)

for all k ∈ K, k ≥ k2 where α̌k = αk/γ.
Now let k̃ = max{k1, k2}. Since {dk}k∈K is bounded it can further be shown that

there exists a subsequence {dk}k∈K̃,K̃⊂K of {dk}k∈K such that {dk}k∈K̃ → d̃ where
d̃ is some finite vector. On the other hand, by applying the mean value theorem
to (3.7), it can be shown that there exists some {α̃k}k∈K̃,K̃⊂K such that

−∇f(xk + α̃kdk)Tdk < −τ∇f(xk)Tdk,

where α̃k ∈ [0, ᾱk], ∀k ∈ K̃, k ≥ k̃. By taking limits on both sides we obtain

−∇f(x̃)T d̃ ≤ −τ∇f(x̃)T d̃, or 0 ≤ (1− τ)∇f(x̃)T d̃, τ ∈ (0, 1),

from which it follows that ∇f(x̃)T d̃ ≥ 0, contradicting that {dk} satisfies (3.4).

4. Applications & Numerical Results. In this section we report numerical
results on two fundamental and important examples of (1.1). Performance results are
shown for different software fed with both synthetic and real-world data. The experi-
ments reveal that for several datasets, our methods are competitive to well-established
algorithms; in fact, as problem size increases our algorithms often outperform the
competition significantly.

4.1. Non-negative Least Squares. The first specific problem to which we
specialize our method is nonnegative least-squares (NNLS):

min
x∈Rn

1
2‖Ax− b‖

2
2, s.t. x ≥ 0, (4.1)

where A ∈ Rm×n, and b ∈ Rm. To fit (4.1) in our framework, we further assume that
ATA is (strictly) positive-definite whereby the problem satisfies Assumption 1. Note
that even though (4.1) is written with only lower bounds, we can easily guarantee that
the sequence of iterates {xk} generated by our algorithm is bounded. To see how, we
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first show that the initial level set L0 = {x | ‖Ax− b‖2 ≤ ‖Ax0 − b‖2} is bounded;
then since each iteration enforces descent, the sequence {xk} must be bounded as it
also belongs to this level set.

To show that L0 is bounded, consider for any x ∈ L0, the inequalities

‖Ax‖2 − ‖b‖2 ≤ ‖Ax− b‖2 ≤ ‖Ax0 − b‖2.

These inequalities yield a bound on ‖x‖2 (which implies L0 is bounded), because

σmin (A) · ‖x‖2 ≤ ‖Ax‖2 ≤ ‖Ax0 − b‖2 + ‖b‖2,
‖x‖2 ≤ σ−1

min(A) · (‖Ax0 − b‖2 + ‖b‖2) = U <∞,
(4.2)

where σmin(A) > 0 is the smallest singular value of A.
NNLS is a classical problem in scientific computing [11]; applications include

image restoration [17], vehicle dynamics control [25], and data fitting [14]. Given
its wide applicability many specialized algorithms have been developed for NNLS,
e.g., methods based on active sets such as the classic Lawson-Hanson method [11], or
its efficient modification Fast-NNLS (FNNLS) [4]. Not surprisingly, some constrained
optimization methods have also been applied to solve NNLS [3, 13]. It is interesting
to note that for large scale problems these specialized algorithms are outperformed
by modern methods such as TRON, LBFGS-B, or the methods of this paper. Curiously
this fact has not yet been widely adopted by the wider research community3.

There exist several different algorithms for solving the NNLS problem. Of these,
some are designed expressly for NNLS, while others are for general differentiable
convex minimization. Naturally, owing to the large variety of optimization methods
and software available, we cannot hope to be exhaustive in our comparisons. We
solved the NNLS problem using several different software, and out of the ones we
tried we picked the ones that performed the best. Specifically, we show results on the
following implementations:

• TRON – a trust region Newton-type method for bound constrained optimiza-
tion [12]. The underlying implementation was in FORTRAN. For convenience
we used the MTRON [19] Matlab interface.

• LBFGS-B – a limited memory BFGS algorithm extended to handle bound con-
straints [5]. Again, the underlying implementation was in FORTRAN, and
we invoked it via a Matlab interface.

• PQN-BFGS – our projected quasi-Newton implementation with the full BFGS
update; written entirely in Matlab (i.e., no MEX or C-level interface is
used),

• PQN-LBFGS – our projected L-BFGS implementation; written entirely in Mat-
lab.

We also compare our method with FNNLS, which is Bro and Jong’s improved
implementation of the Lawson-Hanson NNLS procedure [4]. FNNLS was obtained as
a Matlab implementation. We remark that the classic NNLS algorithm of Lawson
and Hanson [11], which is still available as the function lsqnonneg in Matlab, was
far too slow for all our experiments (taking several hours to make progress when other
methods were taking seconds), and hence we have not reported any results on it. For
all the subsequent experiments, whenever possible, we use ‖g(x)‖∞ to decide when

3This could be because Matlab continues to ship the antiquated lsqnonneg function, which is
an implementation of the original NNLS algorithm of [11].
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to terminate; here gi is defined as

gi(xk) =
{
∂if(xk), if i /∈ Ik,

0, otherwise.

We also note that each method also includes a different set of stopping criteria; we
leave the other criteria at their default setting.

We first show experiments on synthetic data. These experiments compare in a
controlled setting our method against others. These experiments obviously do not re-
flect the complete situation, because the behavior of the different algorithms can vary
substantially on real-world data. Nevertheless, results on synthetic data do provide
a basic performance comparison that helps place our method relative to competing
approaches. We use the following three data sets:

• P1: dense random (uniform) nonnegative matrices with varying sizes,
• P2: medium sized sparse random matrices, and
• P3: large sparse random matrices with varying sparsity.

Matrix P1-1 P1-2 P1-3 P1-4 P1-5

Size 2800× 2000 3600× 2400 4400× 2800 5200× 3200 6000× 3600
κ(A) 494 459 450 452 460

Table 4.1
The size and condition number of the test matrices A in dense data set P1.

We generated the test matrices A and vectors b corresponding to these datasets
using Matlab’s rand and sprand functions. Table 4.1 shows the number of rows and
columns in A for dataset P1, along with the associated condition numbers κ(A). The
matrices for problem set P2 were of size 12000 × 6400, and for P3 they were of size
65536×50000. We varied the sparsity in both P2 and P3. Table 4.2 lists the matrices
in these datasets. Note that by sparsity we mean the ratio of zero entries to the total
number of entries in the given matrix.

Matrix P2-1 P2-2 P2-3 P2-4 P2-5 P2-6

Sparsity 0.996 0.994 0.992 0.99 0.988 0.900

Matrix P3-1 P3-2 P3-3 P3-4 P3-5 P3-6

Sparsity 0.998 0.997 0.996 0.995 0.994 0.990
Table 4.2

The sparsity of the test matrices A in problem set P2 and P3.

Table 4.3 shows the running times of TRON, FNNLS, PQN-BFGS, LBFGS-B, and PQN-

LBFGS for the matrices in problem set P1. We remark that FNNLS requires the inputs
in the form ofATA andAT b, hence we included the time for these one-time computa-
tions while reporting results for FNNLS. On some mid-sized matrices, e.g., 2800×2000
(P1-1) and 3600 × 2400 (P1-2), TRON and FNNLS remain relatively competitive to
others. However, with increasing matrix sizes, the running time of these methods
increases drastically while that of LBFGS-B and PQN-LBFGS changes only linearly. Con-
sequently, for the largest matrix in the problem set (P1-5), PQN-LBFGS outperforms
others significantly, as revealed by Table 4.3.

1A suffix (F) denotes that the underlying implementation is in FORTRAN, while (M) denotes
Matlab. All reported results are averages over 10 runs to decrease variability.
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Method1 P1-1 P1-2 P1-3 P1-4 P1-5
TRON(F) 55.60s 8.32s 142.93s 204.09s 290.77s
f(x) 4.45e+04 1.67e+04 5.56e+04 7.64e+04 1.02e+05
‖g(x)‖∞ 1.17e-05 2.27e-04 1.69e-04 2.80e-05 4.85e-05

FNNLS(M) 9.56s 16.93s 26.89s 38.94s 60.22s
f(x) 4.45e+04 1.67e+04 5.46e+04 7.64e+04 1.02e+05
‖g(x)‖∞ 2.64e-14 5.63e-15 2.64e-14 1.50e-14 2.01e-14

PQN-BFGS(M) 71.92s 18.31s 158.56s 120.17s 112.12s
f(x) 4.45e+04 1.67e+04 5.56e+04 7.64e+04 1.02e+05
‖g(x)‖∞ 0.0018 8.49e-04 0.0022 0.0055 0.0011

LBFGS-B(F) 17.78s 3.71s 33.91s 26.41s 27.39s
f(x) 4.45e+04 1.67e+04 5.56e+04 7.64e+04 1.02e+05
‖g(x)‖∞ 9.76e-04 9.95e-04 9.28e-04 9.23e-04 9.91e-04

PQN-LBFGS(M) 8.77s 5.06s 9.24s 18.05s 17.75s
f(x) 4.45e+04 1.67e+04 5.46e+04 7.64e+04 1.02e+05
‖g(x)‖∞ 7.40e-04 7.28e-04 8.38e-04 3.72e-04 5.98e-04

Table 4.3
NNLS experiments on dataset P1. For all algorithms (except FNNLS), we used ‖g(x)‖∞ ≤ 10−3

as the main stopping criterion. In addition, we stop each method after 10,000 iteration or 20,000
seconds. Each method retains its own default stopping criteria, e.g., PQN-BFGS, LBFGS-B, and
PQN-LBFGS terminate iterations when their internal line-search fails. Finally for FNNLS we used
the default settings as it does not support the stopping criterion ‖g(x)‖∞. The best values are shown
in bold, and the red entries (lighter print in black-and-white) represent abnormal terminations.

Method1 P2-1 P2-2 P2-3 P2-4 P2-5 P2-6
TRON(F) 153.31s 2.06e+03s 2.68e+03s 3.58e+03s 4.66e+03s 1.68e+04
f(x) 1.11e+09 1.45e+09 1.51e+08 2.06e+09 1.30e+10 1.56e+12
‖g(x)‖∞ 0.077 0.050 0.174 2.75e-04 0.0053 0.371

PQN-BFGS(M) 48.93s 105.61s 144.27s 186.95s 202.21s 601.78s
f(x) 1.11e+09 1.45e+09 1.51e+08 2.06e+09 1.30e+10 1.56e+12
‖g(x)‖∞ 0.0092 0.0079 0.0092 0.0088 0.0084 0.0098

LBFGS-B(F) 0.55s 0.85s 1.35s 1.89s 2.53s 43.50s
f(x) 1.11e+09 1.45e+09 1.51e+08 2.06e+09 1.30e+10 1.56e+12
‖g(x)‖∞ 0.0086 0.0088 0.0097 0.0088 0.0091 1.15

PQN-LBFGS(M) 0.22s 0.37s 0.49s 0.75s 0.84s 18.34s
f(x) 1.11e+09 1.45e+09 1.51e+08 2.06e+09 1.30e+10 1.56e+12
‖g(x)‖∞ 0.0087 0.0099 0.0083 0.0085 0.0046 0.88

Table 4.4
NNLS experiments on dataset P2. For all algorithms, we used ‖g(x)‖∞ ≤ 10−2 as the main

stopping criterion, and as for P1, other method-specific stopping criteria are set to default. FNNLS
does not scale on this dataset.

Method1 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6
LBFGS-B(F) 0.27s 0.47s 0.48s 0.74s 0.94s 2.01s

f(x) 5.24e+07 3.46e+07 1.82e+09 1.18e+09 3.60e+09 1.13e+09
‖g(x)‖∞ 0.010 0.014 0.0057 0.012 0.0099 0.0095

PQN-LBFGS(M) 0.077s 0.13s 0.18s 0.26s 0.38s 0.68s
f(x) 5.24e+07 3.46e+07 1.82e+09 1.18e+09 3.60e+09 1.13e+09
‖g(x)‖∞ 0.008 0.0032 0.0051 0.0073 0.0054 0.008

Table 4.5
NNLS experiments on dataset P3. The main stopping criterion ‖g(x)‖∞ ≤ 10−2 for both

algorithms, other settings are same to the previous experiments. FNNLS,TRON, and PQN-BFGS do
not scale on this dataset.

In Table 4.4 we show running time comparisons analogous to those in Table 4.3,
except that the matrices used were sparse. As shown in the table, LBFGS-B and PQN-

LBFGS generally outperform others for sparse matrices, and the difference becomes
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Method1 ash958 well1850 bcspwr10 e40r5000 conf6.0-8000
TRON(F) 0.0065s 0.011s 0.32s 1.71e+03s 21.70s
f(x) 6.01e+03 4.15e-07 3.66e-07 1.26e-06 3.22e+04
‖g(x)‖∞ 9.77e-15 3.33e-10 5.10e-04 5.86e-04 1.08e-06

FNNLS(M) 0.013s 0.088s 7.03s - -
f(x) 6.01e+03 2.50e-30 6.99e-29 - -
‖g(x)‖∞ 7.99e-15 5.62e-16 3.89e-15 - -

PQN-BFGS(M) 0.007s 0.71s 240.84s 1.67e+04s -
f(x) 6.01e+03 1.27e-07 2.23e-07 0.0066 -
‖g(x)‖∞ 5.51e-05 6.80e-05 8.92e-05 0.044 -

LBFGS-B(F) 0.0044s 0.064s 1.79s 17.36s 3.82s
f(x) 6.01e+03 7.60e-07 5.72e-07 0.020 3.22e+04
‖g(x)‖∞ 8.91e-05 9.16e-05 9.99e-05 0.027 7.96e-05

PQN-LBFGS(M) 0.0097s 0.029s 0.26s 15.40s 1.90s
f(x) 6.01e+03 6.85e-07 1.48e-07 0.0091 3.22e+04
‖g(x)‖∞ 3.37e-05 7.31e-05 9.61e-05 0.009 2.68e-05

Table 4.6
NNLS experiments on real-world datasets. For all algorithms, we used ‖g(x)‖∞ ≤ 10−4 as the

main stopping criterion with other method-specific default stopping criteria. FNNLS does not scale
on the problem e40r5000 and conf6.0-8000, PQN-BFGS also fails to scale on the problem conf6.0-
8000.

starker with decreasing sparsity. However, we also observe that sparsity benefits the
TRON software, as it is claimed to take advantage of sparse problems [12].

Our next set of experiments is on dataset P3, and the result is shown in Table 4.5.
Note that only LBFGS-B and PQN-LBFGS scale to this problem set. Although both
methods perform well across all the problems, PQN-LBFGS is seen to have an edge
on LBFGS-B as it runs almost twice as fast while attaining similar objective function
values, and better satisfaction of convergence tolerance.

Finally, we experiment with five datasets drawn from real-world applications. The
datasets were obtained from the MatrixMarket2, and they arise from problems solving
least squares (ash958, well1850) and linear systems (bcspwr10, conf6.0-8000). We
impose non-negativity on the solutions to obtain NNLS problems with these matrices.

Matrix ash958 well1850 bcspwr10 e40r5000 conf6.0-8000

Size 958× 292 1850× 712 5300× 5300 17281× 17281 49152× 49152
Sparsity 0.9932 0.9934 0.9992 0.9981 0.9992

Table 4.7
The size and sparsity of some real-world data sets from the MatrixMarket.

Table 4.6 shows results on these real-world datasets; we observe somewhat dif-
ferent behaviors of the various methods. For example, TRON is competitive overall,
except on conf6.0-8000, where it is overwhelmed by LBFGS-B and PQN-LBFGS. PQN-

LBFGS resembles (as expected) characteristics of LBFGS-B, while consistently delivering
competitive results across all ranges.

4.2. KL-Divergence Minimization. Our next example of (1.1) is nonnegative
Kullback-Leibler divergence minimization (NNKL):

min
x∈Rn

f(x) =
∑

i

bi log
bi

[Ax]i
− bi + [Ax]i, s.t. x ≥ 0, (4.3)

2http://math.nist.gov/MatrixMarket
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where A ∈ Rm×n
+ (m ≤ n) is a full-rank matrix and b ∈ Rm

+ . We note here a minor
technical point: to guarantee that the Hessian has bounded eigenvalues, we actually
need to ensure that at iteration k of the algorithm, [Axk]i ≥ δ > 0. This bound can
be achieved for example by modifying the constraint to be x ≥ ε > 0. However, in
practice one can usually run the algorithm with the formulation (4.3) itself. Since
A is of full-rank, simple calculations show that lim‖x‖→∞ f(x)/‖x‖ > 0. Therefore,
f(x) has bounded sublevel sets, and (4.3) has a solution [22, Theorem 1.9]. Thus, in
particular, if we select x0 = 1, the all-ones vector, we know that the initial sublevel
set L0 = {x : f(x) ≤ f(x0)} is bounded, ensuring that the sequence of iterates {xk}
generated by our algorithm is bounded as it performs descent on each iteration.

NNKL arises as a core problem in several applications, e.g., positron emission
tomography [7], astronomical image restoration [26], and signal processing [24]. In
contrast to (4.1), the most popular algorithms for (4.3) have been based on the Expec-
tation Maximization (EM) framework [26]. Two of the most popular EM algorithms
for NNKL have been maximum-likelihood EM and ordered-subsets EM [9], where
the latter and its variants are pervasive in medical imaging. Several other related
algorithms for NNKL are summarized in [7, 21]. It turns out that for NNKL too,
optimization methods like TRON, LBFGS-B, or our methods frequently (though not
always) perform better than the essentially gradient based EM methods.

We report below results for the NNKL problem (4.3). Our first set of results
are again with synthetic data. For these experiments we simply reuse the random
matrices described in Section 4.1. We do not report the results of TRON as it takes
an inordinately long time in comparison to the other methods.

The empirical results shown in Tables 4.8, 4.9 and 4.10 are roughly in agreement
with the behavior observed for NNLS, but with a few notable exceptions. For example,
PQN-BFGS exhibits its competence against other methods for the small problem P1-1.
This competence can be accounted for by observing the Hessian of the KL-divergence
function. Unlike NNLS problems–where the Hessian is a constant, a method like
TRON is constantly required to compute a varying Hessian across iterations, whereas
PQN-BFGS updates its Hessian approximation for both NNLS and NNKL at virtually
the same cost. This efficiency combined with a more accurate Hessian results in a
greater convergence speed of PQN-BFGS as compared to the other methods. However,
the size of the given problem still plays a critical role and an increased scale makes it
infeasible to run some of the methods.

Method1 P1-1 P1-2 P1-3 P1-4 P1-5
PQN-BFGS(M) 29.2s 51.9s 67.4s 77.3s 84.4s

f(x) 5.47e-08 5.87e-08 1.75e-08 2.87e-08 1.59e-08
‖g(x)‖∞ 7.83e-06 6.82e-06 9.76e-06 7.69e-06 8.85e-06

LBFGS-B(F) 30.63s 15.57s 62.67s 72.61s 78.54s
f(x) 1.50e-09 6.48e-11 6.95e-11 2.06e-08 7.62e-12
‖g(x)‖∞ 6.14e-06 3.12e-07 2.95e-07 1.17e-05 1.58e-07

PQN-LBFGS(M) 39.90s 35.46s 42.54s 62.58s 72.36s
f(x) 2.73e-08 3.97e-08 4.07e-08 2.17e-08 1.85e-08
‖g(x)‖∞ 7.79e-06 8.59e-06 9.85e-06 6.36e-06 7.03e-06

Table 4.8
NNKL experiments on dataset P1. For all algorithms, we used ‖g(x)‖∞ ≤ 10−5 as the main

stopping criterion.

4.3. Image Deblurring examples. In Figure 4.1 we show examples of image
deblurring, where the images shown were blurred using various blur kernels, and
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Method1 P2-1 P2-2 P2-3 P2-4 P2-5 P2-6
PQN-BFGS(M) 500.36s 500.53s 62.53s 69.78s 71.85s 501.24s

f(x) 4.11e-11 1.48e-10 4.87e-12 3.95e-12 3.03e-12 1.04e-11
‖g(x)‖∞ 2.93e-07 4.36e-07 9.42e-08 8.94e-08 8.85e-08 3.26e-07

LBFGS-B(F) 2.23s 4.01s 3.41s 7.09s 5.55s 61.86s
f(x) 6.44e-13 1.16e-12 1.17e-12 6.26e-13 2.24e-12 6.54e-12
‖g(x)‖∞ 1.91e-07 1.08e-07 2.24e-07 4.00e-08 7.37e-08 1.90e-07

PQN-LBFGS(M) 10.40s 3.62s 5.86s 6.54s 4.25s 135.9s
f(x) 1.13e-12 8.10e-13 6.18e-13 9.55e-13 3.35e-12 6.14e-13
‖g(x)‖∞ 5.87e-08 8.26e-08 4.91e-08 1.06e-07 9.49e-08 5.42e-08

Table 4.9
NNKL experiments on dataset P2. For all algorithms, we used ‖g(x)‖∞ ≤ 10−7 or a maximum

running time of 500 seconds as the stopping criterion.

Method1 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6
LBFGS-B(F) 148.15s 466.92s 389.76s 490.99s 837.23s 2354.23s

f(x) 1.19e-11 3.69e-12 4.60e-11 3.58e-12 3.64e-11 5.43e-11
‖g(x)‖∞ 7.86e-08 1.22e-07 1.82e-07 1.20e-07 2.82e-07 1.70e-07

PQN-LBFGS(M) 128.54s 297.40s 242.67s 364.82s 491.50s 1169.36s
f(x) 3.21e-11 2.78e-11 2.64e-11 3.39e-11 4.51e-11 6.85e-11
‖g(x)‖∞ 9.32e-08 9.50e-08 9.99e-08 9.83e-08 7.60e-08 2.40e-07

Table 4.10
NNKL experiments on dataset P3. For both algorithms, we used ‖g(x)‖∞ ≤ 10−7 as the main

stopping criterion.

deblurred using LBFGS-B and PQN-LBFGS. The latter usually outperforms LBFGS-B, and
we show some examples where the performance difference is significant. Objective
function values are also shown to permit a quantitative comparison.

We compare the progress of the algorithms with respect to time by running both
of them for the same amount of time. We illustrate the comparison by plotting the
objective function value against the number of iterations. Naturally, the number
of iterations differs for both algorithms; but we adjust this number so that both
PQN-LBFGS and LBFGS-B run for approximately the same time. For Figures 4.2(a) and
4.2(b), an iteration of PQN-LBFGS took roughly the same time as an iteration of LBFGS-

B, while for Figures 4.2(c) and 4.2(d), LBFGS-B needed more iterations. Note that we
did not run both algorithms to completion, as that usually led to overfitting of noise
and visually less appealing results.

The moon image was obtained from [10]; the cell image is taken from the software
of [16]; the brain image is from the PET Sorteo database [20], and the image of
Haumea is a rendition obtained from Wikipedia.

5. Discussion and Future work. In this paper we proposed an algorithmic
framework for solving box-constrained convex optimization problems using quasi-
Newton methods. We presented two implementations, namely PQN-BFGS and PQN-

LBFGS3, based on the BFGS and limited-memory BFGS updates, respectively. Our
methods are simple like the popular projected gradient method, and they overcome
deficiencies such as slow convergence. We reported empirical results of our method
applied to the NNLS and the NNKL problems, showing that our Matlab software
delivers uncompromising performance both in terms of running time and accuracy,
especially for larger scale problems.

3The software can be downloaded from
http://cs.utexas.edu/users/dmkim/software/proj toolbox.tar.bz2
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Original image Blurred image PQN-LBFGS LBFGS-B

Fig. 4.1. Deblurring example using PQN-LBFGS and LBFGS-B, from top to bottom, a blurred
image of the moon, a cell, a brain, and Haumea (a dwarf planet).

We emphasize that the simplicity and ease of implementation of our methods
are two strong points that favor wide applicability. It remains, however, a subject
of future research to make further algorithmic improvements, e.g., to the line-search
step. These improvements will help to fully automate the solution without requiring
any parameter tuning.
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