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Abstract—Motivated by applications in recommendation sys-
tems and bioinformatics, we consider the problem of complet-
ing a low rank, partially observed binary matrix with graph
information. We show that the corresponding problem can be
set up in a positive and unlabeled data learning (referred to as
PU learning in literature) framework. We make connections to
convex optimization and show that existing greedy methods can
be used to solve the problem. Experiments on simulated data as
well as gene-disease associations data from bioinformatics show
that using graphs, and adapting matrix completion in the PU
learning setting, yield advantages over the standard binary matrix
completion.

I. INTRODUCTION AND PROBLEM SETUP

Matrix completion plays a key role in collaborative filtering
applications, where by modeling the target user-item prefer-
ence matrix as low rank, one encodes the prior belief that the
user and the item variables share a low dimensional subspace.
Often, additional information other than the partially observed
target matrix is available, either in the form of user and
item attributes [1] or graphs that encode pairwise relationships
between users and items [11]. In the recent past, many methods
that incorporate such additional information have been shown
to perform much better than the traditional, low rank matrix
completion [1], [19], [11] .

Recovering a low rank matrix with graph constraints arises
in several applications. In the context of recommender systems,
we may have access to social network between users, or
product co-purchasing graphs for items, or a graph that relates
music and movies by genre, release date and other attributes.
Similarly, in the context of gene-disease associations, graphs
correspond to gene regulatory networks and relationship be-
tween diseases. The goal is not only to infer the missing
entries of the matrix, but to do so in a manner that incorporates
additional constraints that the graphs may give rise to. Matrix
completion with graph information has been widely studied in
[19], [11], [18], [10], [15], and references therein, and has been
shown to outperform standard baselines that look to recover a
low rank matrix without incorporating additional information.

In this paper, we consider a modification of the problem
of recovering a graph constrained low rank matrix. Firstly, the
underlying matrix that we want to recover is binary. Secondly,
we assume that only a subset of the positive entries of the target
matrix is observed; this setting is referred to as positive and
unlabeled (PU) learning in literature. PU learning has been
studied in the context of binary classification [6] and recently
explored in collaborative filtering setting [8].

The problem of recovering a low rank binary matrix from
PU observations along with graph structured information arises
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in several applications, two of which we outline below:

1)  Gene-Disease Prediction: Discovering novel gene-
disease associations is a problem of great importance
in computational biology (see recent survey [7]).
Public gene-disease data repositories report whether
or not a gene is associated with a disease. We
have network information such as functional gene-
interaction networks and disease similarity networks
that can be used for improving predictions [2], [16],
[12]. Furthermore the repositories only report whether
a gene is associated with a disease [16].

2) Music Recommendation: In online music recom-
mender systems such as Pandora or targeted ad-
vertisements, users can only “like” or “dislike” a
song. The songs themselves might be related via a
graph, based on genre, artists, etc. Moreover, the
users might be part of a social network: information
that can very easily be obtained. Also, user clicking
on recommended articles or songs is often used as
a proxy for positive feedback, whereas there is no
explicit negative feedback.

In this paper, we first visit the problem of recovering
a binary preference matrix with graph information. We cast
the problem as a convex optimization problem. In particular,
we show that the problem can in fact be cast as an atomic
norm constrained optimization, allowing us to use methods
that have been developed specifically for this purpose [13].
Then, we suggest a modified optimization problem for the PU
learning setting when there are no negative observations. We
experimentally show that incorporating auxiliary graph infor-
mation allows for better 1-bit matrix completion performance,
in regular as well as PU settings, compared to the standard
low-rank matrix completion.

A. Problem Setup

Let M™ be the underlying real-valued matrix of size m X
n and of rank k (indicating user-item preferences or gene-
disease associations) . In many applications, we do not observe
samples directly from M *, but only from a 1-bit quantization
of its entries. Let Y € {0,1}"*" such that Y;; = 1if M* > ¢
or Y;; = 0 otherwise; we can think of M/ as a preference
score and Y;; then corresponds to thresholding the score at g.
(Alternatively, one can model M™* as a probability matrix and
define Y;; = f (MZ*J) for suitably defined f [5]). Let €2 denote
the set of observed indices of Y. The 1-bit matrix completion
problem can then be stated as follows:

- 1
M:argnll\jlniﬂpg(YfM)HzF st. | M. <7 (1)

where ||.||« is the nuclear or the trace norm defined as
IZ]l«+ = VTr(ZTZ), and is a tight convex relaxation of



the non-convex rank constraint. Pq(+) is the projection of the
matrix onto the set (2. When the observations {2 consist only of
positive associations in the PU setting, i.e. Y;; = 1,V(4,5) €
€2, formulation (1) may yield degenerate results. For example,
if Y corresponds to PU observations in (1), M = 117 is
optimal but, of course, is not interesting. Hence we consider the
following biased low rank matrix completion formulation [8]:

M = argmin o[ Po(Y — M)|[7+(1 — o) Pa(Y — M)||%
S.t. ||M||* S T (2)

where Q := {(i,5) : (i,7) € Q} is the set of unobserved
entries, and we let Y;; = 0 for (¢,j) € Q. The parameter
a € (0,1) is the bias that appropriately weighs observed and
unobserved entries. In experiments, o and 7 are estimated from
data. We obtain an estimate of the underlying binary matrix
Y by thresholding M.

Our focus is on the matrix completion setting where there
is access to graphs L* € R"™*™ and L” € R™*" that encode
pairwise relationships between the variables corresponding to
the rows and the columns of M™ respectively. While the
aforementioned trace norm constraint forces the solution to
have low rank, it completely ignores the additional information
provided by the graphs. We would thus like to consider a
different constraint than the ones in (1) and (2) that not only
yields a low rank M but also accounts for the graphs.

The rest of the paper is organized as follows: in the next
section, we show that the 1-bit matrix completion problem on
graphs can be cast as a convex program. We make connections
to atomic norms and show that recovering graph constrained
low rank matrices is equivalent to solving a weighted nuclear
norm constrained program. In Section III we show that the
problem is amenable to greedy algorithms that are orders of
magnitude more efficient than corresponding proximal point
methods. We report results on simulated as well as real-world
datasets in Section IV, and conclude the paper in Section V.

II. CONVEX FORMULATION: WEIGHTED ATOMIC NORM

In this section, we show that the problem of matrix
completion on graphs can be cast as a convex program with
an appropriate regularizer. Consider the factorization: M =
UV’ where U (resp. V) are the latent factors corresponding
to the rows (resp. columns) of matrix M. Given a graph
Gu = {Vu, &} that encodes relationships between the rows,
it is natural to assume that the stronger the weight w(qp)
between two nodes (a,b) in the graph, the more similar the
corresponding latent factors u,, up are. As a concrete example,
if two users are friends in a social network, then their features
(and hence their preference score for the same item) are likely
to be similar. One way to enforce such a constraint is to
minimize:

> wapllte —w|® =TrUTL'U) 3
(a,b)e€y

where L" is the graph Laplacian; a similar objective can be
formed for the column factors V. Noting that the low rank
constraint itself can be written as

. 1
IM]l. = inf = (Tr(@TU) + Tr(VTV))

and defining L, = L* + I (and similarly for L,), we can
formulate the problem of recovering a graph constrained low
rank matrix as

foe 1 Ty |12
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s.t. (rr(UTLU)+Tr(VTL,V)) <7

inf
U,v

The above formulation can be solved using non convex
alternating minimization methods. However, we now show that
the re-formulation (4) is closely connected to atomic norms,
and hence can be cast as a convex optimization problem.

The nuclear norm is the gauge function induced by the
atomic set: o7, = {w;h} |w;|| = |||l = 1} (see [4]).
Note that all rank-1 matrices in %7, have unit Frobenius norm.
Now, assume that the symmetric, positive definite matrix L,,
has the eigendecomposition L,, = zZ,2,ZL. Simillarly, let

L,=2,%,Z' let A=Z,%,%,and B=Z,%, >.
Consider the following “weighted” atomic set:

o = {a; = w;h] :w; = Ap;,h; = Bq;,||pi| = |la| :(g-

Clearly, each atom a in .« has non-unit Frobenius norm. We
will see that this atomic set allows for biasing of the solutions
towards certain atoms. We now define a corresponding atomic
norm:

IM|| o =inf Y lei| st. M= > ca. (6)
a; €/ a;cof

It is not hard to verify that | M| is a norm and {M :
|IM ||z < 7} is closed and convex.

The following result shows that the constraint in (4) can
be expressed as an atomic norm:

Theorelm II.1. Given 1Laplacian matrices L., L,, and A =

Z,%.2% B = Z,%, 2, and corresponding weighted atomic
set o,

1
IM|ls = jnf - SUATUBHIB VIR s M =UVT.

Proof: For all M = Y. c;a; with ||Ally = Y, |al,
where a; = Ap;ql BT, we can construct the i-th column
of U and V as

U; =/ |Ci|ApZ‘ and Vi =\ |Ci|qu.
Clearly, we have M = UVT and
AT U7 = 1BV =D e

Thus, if follows that LHS > RHS. Oh the other hand, for a
matrix M = UVT, we can construct

Ail'u,,'
P = —
b AT

Bil’l)i
1B~ wi|”

and ¢; = ||[A7lw|||B~1v;||. Clearly, we have u;,v} =
c;iAp;q; BT and M = Zl ciApiqlTBT. We also have

and gq; =

_ _ 1 . _
il = A7 || B il < 5 (| A7 | + [ B i ?)

by AM-GM inequality. Thus, we have LHS < RHS. [ ]



Theorem II.1 allows us to write (4) as the following convex
program:

. 1
M:argrri}[ngHPQ(YfM)H% st. |[M|los <7

Similarly, letting M = UV, the biased matrix completion
objective (2), under the constraint in (4), we obtain a convex
program for the corresponding PU setting as well.

III. DUAL NORM AND GREEDY ALGORITHM

The results in the previous section allow us to obtain the
dual weighted atomic norm for a matrix M:

_1 1
1M =|A"MB | = |2, 2, MZ,3,*| (8

which is a weighted spectral norm. The dual norm can be
derived as follows:

M5, = sup (a, M)
aca/

=sup (Auv’ BT, M),
u,v

=sup Tr (BUuTATM) ,
u,v

=sup u’ AT M Bw,

=|ATMB]| .

st lull = ol =1
st [luf = [lof| =1

st ull = o]l = 1

Note that we can then write

1 1
1Mo = AT MB™|. = |2i 2, 'MZ;"S3 . 9)

(8) shows that the dual atomic norm is merely the spec-
tral norm of a weighted matrix. The spectral norm can be
easily computed, by computing the leading singular values
and vectors of the weighted matrix. Note that this operation
is an order of magnitude cheaper than computing the entire
SVD; hence, using greedy methods that only involve dual norm
computations [17], [13], [14], [9] is significantly more efficient
than solving a proximal point based first order method (variants
of [3]). In this paper, we will use the method developed in [13]
for solving (7):

X = argmin |y — @ vee(X)[2 st | X[ <7 (10)

where y = vec(Pqo(Y)) and ® € [0, 1]*1*™ s the matrix
that maps vec(X) € R™" to the observations y.

Due to space limitations, we will only provide key insights
into the atom selection step of the algorithm (for details, see
[13]) which dominates the complexity of the overall method:

a) Greedy Atom Selection Step: The step that deter-
mines the computational complexity of the greedy method is
the atom selection step that solves

a = arg sup (a, Vf*) an

acal
where V f¢ is the gradient of the objective function value at
iteration ¢. Since it suffices to obtain the leading singular
values and vectors of the gradient matrix, the complexity

et
is O(n?) using power iterations, and O %Z”) using
Lanczos iterations. Proximal methods, on the other hand,

require O (ns) operations to compute the entire SVD of the
matrix and are hence much less scalable.

A. Extension to PU Learning

The greedy scheme outlined above can be extended in a
straightforward manner to handle PU samples in the training
data, by modifying the loss function as given in formulation
(2). Letting « be the bias factor as in (2), we see that:

Lpy = al|Po(Y = M)|% + (1 - )|Pa(Y — M)|%
= allys — ®12)* + (1 - a)[lyo — Boz|?
= [Voy: — Va®iz|?
+ V(1 = a)yo — /(1 — ) @oz|?

= [ly. — @z (12)

where we define y; to be the sub-vector of y that corre-
sponds to the positive (observed) examples, and ®; is the
corresponding sub matrix of ®; yg, P are defined similarly.

Finally, we let y. := [Vay{ 1-— ayOT]T, and ®, to be
the corresponding permutation of ®.

From (12), we see that the PU learning formulation can be
cast in the same way as (10), with a slight modification to the
“sensing” matrix ® and the observations y. We can use the
same greedy procedure to solve the PU version of the graph
constrained matrix completion problem:

X = argmin [y, — . vee(X)|5 st || Xl <7 .
(13)

IV. EXPERIMENTS AND RESULTS

In this section, we test our proposed methods on both
simulated and real-world data. We compare four methods:

1)  GMC : Proposed matrix completion with graph
information, (10)

2) PU-GMC : Proposed PU matrix completion with
graph information, (13)

3) MC : The standard low-rank matrix completion, (1)

4) PU-MC : PU matrix completion, (2)

The training data remains the same for all the methods:
a binary matrix with all the observed entries being positive.
The test data consists of randomly selected entries (both 0’s
and 1’s) from the binary ground-truth matrix Y. We report the
RMSE on the test data.

A. Simulated Data

We first present results on simulated data. We set m = n =
200. For both the row and the column entities, we generate
a random power law graph so that the i** node has [i%-2%]
randomly selected neighbors. We compute the matrices A, B
using these graphs, and obtain the ground truth matrix as M =
ASBT where S is a random m x n matrix of rank k = 5.
We then threshold M;; entries at O to obtain binary Y, and
subsample 25% of the entries of Y as the training set. We
further subsample a fraction 8 of the positive entries in the
training data to be revealed to the methods. The RMSE on the
test set as a function of fraction 1 — § of the positive entries
hidden is shown in Fig. 1.

An interesting point to note from Fig. 1 is that the RMSE of
PU-MC is higher than that of GMC, indicating that using graph
information can yield much better performance even when we
do not explicitly account for the fact that we observe PU data.
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Fig. 1: Comparison of different methods on simulated data.
We see that the proposed PU-GMC yields much lower RMSE
on the test set compared to the other methods.

B. Gene Disease Prediction

We now consider the problem of predicting gene-disease
associations in bioinformatics — here the data consists of
positive associations between genes and diseases (indicating
that a gene is causally linked to a disease), but no negative
associations. We report results on the widely-used OMIM
(Online Mendelian Inheritance in Man!) dataset (obtained
from [8], [16]), consisting of associations between 12331 genes
and 3215 diseases. The dataset also has a functional gene-gene
interaction network and a similarity network of diseases, which
we directly use for our graph based formulations. We use the
symmetric graph laplacian L = I — D :WD~z, where W
denotes the (weighted) gene-gene interaction network (or the
similarity network for diseases).

We only retain the genes and the diseases for which there
is at least one association known, so that the standard matrix
completion based methods can be applied. This results in a
highly sparse associations matrix of 1907 genes and 2205 dis-
eases, with 2785 non-zeros. We randomly set aside 33% of the
non-zeros as the test set, and train our model on the remaining
data. We varied 7, « over a grid: 7 € {0.01,0.1, 1,10, 100} and
a € [0.01,1].

Table I shows the RMSE on the test set, for varying
amounts of observed data. Note that as the % observed data
reduces, GMC does even better than PU-MC. This again
highlights the importance of incorporating auxiliary graph
information: we get superior performance using the standard
matrix completion with graph information, when compared to
an optimized method for PU learning but ignoring graphs.

observed positives | MC GMC | PU-MC | PU-GMC
50 % 1.4563 | 1.3210 | 1.2691 1.2370
25 % 1.3511 | 1.3005 | 1.3108 1.2901
10 % 1.3610 | 1.3205 | 1.3311 1.3004

TABLE I: Predicting gene-disease associations.

V. CONCLUSIONS

In this paper, we considered the problem of positive-
unlabeled matrix completion where additional information
about the entities in the form of graphs is known. We showed
that the resulting constraint can be cast as an atomic norm,
thus allowing us to use specialized solvers developed for this

Thttp://omim.org

purpose. Experiments on both simulated and real data served to
establish two things: a) using auxiliary graph information helps
in achieving significantly superior performance compared to
the standard methods, and b) biased matrix completion method
with graph information is useful in practice and achieves low
RMSE:s in typical PU learning settings.
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