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Abstract
In this paper, we develop a family of algorithms for optimizing “superposition-
structured” or “dirty” statistical estimators for high-dimensional problems involv-
ing the minimization of the sum of a smooth loss function with a hybrid reg-
ularization. Most of the current approaches are first-order methods, including
proximal gradient or Alternating Direction Method of Multipliers (ADMM). We
propose a new family of second-order methods where we approximate the loss
function using quadratic approximation. The superposition structured regularizer
then leads to a subproblem that can be efficiently solved by alternating minimiza-
tion. We propose a general active subspace selection approach to speed up the
solver by utilizing the low-dimensional structure given by the regularizers, and
provide convergence guarantees for our algorithm. Empirically, we show that our
approach is more than 10 times faster than state-of-the-art first-order approaches
for the latent variable graphical model selection problems and multi-task learning
problems when there is more than one regularizer. For these problems, our ap-
proach appears to be the first algorithm that can extend active subspace ideas to
multiple regularizers.

1 Introduction

From the considerable amount of recent research on high-dimensional statistical estimation, it has
now become well understood that it is vital to impose structural constraints upon the statistical model
parameters for their statistically consistent estimation. These structural constraints take the form of
sparsity, group-sparsity, and low-rank structure, among others; see [18] for unified statistical views
of such structural constraints. In recent years, such “clean” structural constraints are frequently
proving insufficient, and accordingly there has been a line of work on “superposition-structured” or
“dirty model” constraints, where the model parameter is expressed as the sum of a number of param-
eter components, each of which have their own structure. For instance, [4, 6] consider the estimation
of a matrix that is neither low-rank nor sparse, but which can be decomposed into the sum of a low-
rank matrix and a sparse outlier matrix (this corresponds to robust PCA when the matrix-structured
parameter corresponds to a covariance matrix). [5] use such matrix decomposition to estimate the
structure of latent-variable Gaussian graphical models. [15] in turn use a superposition of sparse
and group-sparse structure for multi-task learning. For other recent work on such superposition-
structured models, see [1, 7, 14]. For a unified statistical view of such superposition-structured
models, and the resulting classes of M -estimators, please see [27].

Consider a general superposition-structured parameter θ̄ :=
∑k
r=1 θ

(r), where {θ(r)}kr=1 are the
parameter-components, each with their own structure. Let {R(r)(·)}kr=1 be regularization functions
suited to the respective parameter components, and let L(·) be a (typically non-linear) loss function
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that measures the goodness of fit of the superposition-structured parameter θ̄ to the data. We now
have the notation to consider a popular class of M -estimators studied in the papers above for these
superposition-structured models:

min
{θ(r)}k

r=1

{
L
(∑

r

θ(r)

)
+
∑
r

λrR(r)(θ(r))
}

:= F (θ), (1)

where {λr}kr=1 are regularization penalties. In (1), the overall regularization contribution is sepa-
rable in the individual parameter components, but the loss function term itself is not, and depends
on the sum θ̄ :=

∑k
r=1 θ

(r). Throughout the paper, we use θ̄ to denote the overall superposition-
structured parameter, and θ=[θ(1),. . . ,θ(k)] to denote the concatenation of all the parameters.

Due to the wide applicability of this class of M -estimators in (1), there has been a line of work on
developing efficient optimization methods for solving special instances of this class ofM -estimators
[14, 26], in addition to the papers listed above. In particular, due to the superposition-structure in
(1) and the high-dimensionality of the problem, this class seems naturally amenable to a proximal
gradient descent approach or the ADMM method [2, 17]; note that these are first-order methods and
are thus very scalable.

In this paper, we consider instead a proximal Newton framework to minimize the M -estimation ob-
jective in (1). Specifically, we use iterative quadratic approximations, and for each of the quadratic
subproblems, we use an alternating minimization approach to individually update each of the pa-
rameter components comprising the superposition-structure. Note that the Hessian of the loss might
be structured, as for instance with the logdet loss for inverse covariance estimation and the logistic
loss, which allows us to develop very efficient second-order methods. Even given this structure,
solving the regularized quadratic problem in order to obtain the proximal Newton direction is too
expensive due to the high dimensional setting. The key algorithmic contribution of this paper is in
developing a general active subspace selection framework for general decomposable norms, which
allows us to solve the proximal Newton steps over a significantly reduced search space. We are
able to do so by leveraging the structural properties of decomposable regularization functions in the
M -estimator in (1).

Our other key contribution is theoretical. While recent works [16, 21] have analyzed the conver-
gence of proximal Newton methods, the superposition-structure here poses a key caveat: since the
loss function term only depends on the sum of the individual parameter components, the Hessian is
not positive-definite, as is required in previous analyses of proximal Newton methods. The theoret-
ical analysis [9] relaxes this assumption by instead assuming the loss is self-concordant but again
allows at most one regularizer. Another key theoretical difficulty is our use of active subspace se-
lection, where we do not solve for the vanilla proximal Newton direction, but solve the proximal
Newton step subproblem only over a restricted subspace, which moreover varies with each step. We
deal with these issues and show super-linear convergence of the algorithm when the sub-problems
are solved exactly. We apply our algorithm to two real world applications: latent Gaussian Markov
random field (GMRF) structure learning (with low-rank + sparse structure), and multitask learning
(with sparse + group sparse structure), and demonstrate that our algorithm is more than ten times
faster than state-of-the-art methods.

Overall, our algorithmic and theoretical developments open up the state of the art but forbidding
class of M -estimators in (1) to very large-scale problems.

Outline of the paper. We begin by introducing some background in Section 2. In Section 3,
we propose our quadratic approximation framework with active subspace selection for general dirty
statistical models. We derive the convergence guarantees of our algorithm in Section 4. Finally, in
Section 5, we apply our model to solve two real applications, and show experimental comparisons
with other state-of-the-art methods.

2 Background and Applications
Decomposable norms. We consider the case where all the regularizers {R(r)}kr=1 are decompos-
able norms ‖ · ‖Ar

. A norm ‖ · ‖ is decomposable at x if there is a subspace T and a vector e ∈ T
such that the sub differential at x has the following form:

∂‖x‖r = {ρ ∈ Rn | ΠT (ρ) = e and ‖ΠT ⊥(ρ)‖∗Ar
≤ 1}, (2)

where ΠT (·) is the orthogonal projection onto T , and ‖x‖∗ := sup‖a‖≤1〈x,a〉 is the dual norm of
‖ · ‖. The decomposable norm was defined in [3, 18], and many interesting regularizers belong to
this category, including:
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• Sparse vectors: for the `1 regularizer, T is the span of all points with the same support as x.
• Group sparse vectors: suppose that the index set can be partitioned into a set of NG disjoint
groups, say G = {G1, . . . , GNG}, and define the (1,α)-group norm by ‖x‖1,α :=

∑NG
t=1 ‖xGt‖α. If

SG denotes the subset of groups where xGt 6= 0, then the subgradient has the following form:

∂‖x‖1,α := {ρ | ρ =
∑
t∈SG

xGt
/‖xGt

‖∗α +
∑
t/∈SG

mt},

where ‖mt‖∗α ≤ 1 for all t /∈ SG. Therefore, the group sparse norm is also decomposable with
T := {x | xGt

= 0 for all t /∈ SG}. (3)

• Low-rank matrices: for the nuclear norm regularizer ‖ · ‖∗, which is defined to be the sum of
singular values, the subgradient can be written as

∂‖X‖∗ = {UV T +W | UTW = 0,WV = 0, ‖W‖2 ≤ 1},
where ‖ · ‖2 is the matrix 2 norm and U, V are the left/right singular vectors of X corresponding to
non-zero singular values. The above subgradient can also be written in the decomposable form (2),
where T is defined to be span({uivTj }ki,j=1) where {ui}ki=1, {vi}ki=1 are the columns of U and V .

Applications. Next we discuss some widely used applications of superposition-structured models,
and the corresponding instances of the class of M -estimators in (1).

• Gaussian graphical model with latent variables: let Θ denote the precision matrix with corre-
sponding covariance matrix Σ = Θ−1. [5] showed that the precision matrix will have a low rank
+ sparse structure when some random variables are hidden, thus Θ = S − L can be estimated by
solving the following regularized MLE problem:

min
S,L:L�0,S−L�0

− log det(S − L) + 〈S − L,Σ〉+ λS‖S‖1 + λL trace(L). (4)

While proximal Newton methods have recently become a dominant technique for solving the `1-
regularized log-determinant problems [12, 10, 13, 19], our development is the first to apply proximal
Newton methods to solve log-determinant problems with sparse and low rank regularizers.

• Multi-task learning: given k tasks, each with sample matrix X(r) ∈ Rnr×d (nr samples in the
r-th task) and labels y(r), [15] proposes minimizing the following objective:

k∑
r=1

`(y(r), X(r)(S(r) +B(r))) + λS‖S‖1 + λB‖B‖1,∞, (5)

where `(·) is the loss function and S(r) is the r-th column of S.
• Noisy PCA: to recover a covariance matrix corrupted with sparse noise, a widely used technique
is to solve the matrix decomposition problem [6]. In contrast to the squared loss above, an exponen-
tial PCA problem [8] would use a Bregman divergence for the loss function.

3 Our proposed framework

To perform a Newton-like step, we iteratively form quadratic approximations of the smooth loss
function. Generally the quadratic subproblem will have a large number of variables and will be hard
to solve. Therefore we propose a general active subspace selection technique to reduce the problem
size by exploiting the structure of the regularizersR1, . . . ,Rk.

3.1 Quadratic Approximation

Given k sets of variables θ = [θ(1), . . . ,θ(k)], and each θ(r) ∈ Rn, let ∆(r) denote perturbation of
θ(r), and ∆ = [∆(1), . . . ,∆(k)]. We define g(θ) := L(

∑k
r=1 θ

(r)) = L(θ̄) to be the loss function,
and h(θ) :=

∑k
r=1R(r)(θ(r)) to be the regularization. Given the current estimate θ, we form the

quadratic approximation of the smooth loss function:

ḡ(θ + ∆) = g(θ) +
k∑
r=1

〈∆(r), G〉+
1
2
∆TH∆, (6)

where G = ∇L(θ̄) is the gradient of L and H is the Hessian matrix of g(θ). Note that ∇θ̄L(θ̄) =
∇θ(r)L(θ̄) for all r so we simply write∇ and refer to the gradient at θ̄ as G (and similarly for∇2).
By the chain rule, we can show that
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Lemma 1. The Hessian matrix of g(θ) is

H := ∇2g(θ) =

H · · · H
...

. . .
...

H · · · H

 , H := ∇2L(θ̄). (7)

In this paper we focus on the case where H is positive definite. When it is not, we add a small
constant ε to the diagonal of H to ensure that each block is positive definite.

Note that the full Hessian,H, will in general, not be positive definite (in fact rank(H) = rank(H)).
However, based on its special structure, we can still give convergence guarantees (along with rate of
convergence) for our algorithm. The Newton direction d is defined to be:

[d(1), . . . ,d(k)] = argmin
∆(1),...,∆(k)

ḡ(θ + ∆) +
k∑
r=1

λr‖θ(r) + ∆(r)‖Ar := QH(∆;θ). (8)

The quadratic subproblem (8) cannot be directly separated into k parts because the Hessian matrix
(7) is not a block-diagonal matrix. Also, each set of parameters has its own regularizer, so it is hard
to solve them all together. Therefore, to solve (8), we propose a block coordinate descent method.
At each iteration, we pick a variable set ∆(r) where r ∈ {1, 2, . . . , k} by a cyclic (or random) order,
and update the parameter set ∆(r) while keeping other parameters fixed. Assume ∆ is the current
solution (for all the variable sets), then the subproblem with respect to ∆(r) can be written as

∆(r) ← argmin
d∈Rn

1
2
dTHd+ 〈d, G+

∑
t:r 6=t

H∆(t)〉+ λr‖θ(r) + d‖Ar
. (9)

The subproblem (9) is just a typical quadratic problem with a specific regularizer, so there already
exist efficient algorithms for solving it for different choices of ‖ · ‖A. For the `1 norm regularizer,
coordinate descent methods can be applied to solve (9) efficiently as used in [12, 21]; (accelerated)
proximal gradient descent or projected Newton’s method can also be used, as shown in [19]. For a
general atomic norm where there might be infinitely many atoms (coordinates), a greedy coordinate
descent approach can be applied, as shown in [22].

To iterate between different groups of parameters, we have to maintain the term
∑k
r=1H∆(r) during

the Newton iteration. Directly computingH∆(r) requiresO(n2) flops; however, the Hessian matrix
often has a special structure so that H∆(r) can be computed efficiently. For example, in the inverse
covariance estimation problem H = Θ−1 ⊗ Θ−1 where Θ−1 is the current estimate of covariance,
and in the empirical risk minimization problem H = XDXT where X is the data matrix and D is
diagonal.

After solving the subproblem (8), we have to search for a suitable stepsize. We apply an Armijo
rule for line search [24], where we test the step size α = 20, 2−1, ... until the following sufficient
decrease condition is satisfied for a pre-specified σ ∈ (0, 1) (typically σ = 10−4):

F (θ + α∆) ≤ F (θ) + ασδ, δ = 〈G,∆〉+
k∑
r=1

λr‖Θr + α∆(r)‖Ar
−

k∑
r=1

λr‖θ(r)‖Ar
. (10)

3.2 Active Subspace Selection

Since the quadratic subproblem (8) contains a large number of variables, directly applying the above
quadratic approximation framework is not efficient. In this subsection, we provide a general active
subspace selection technique, which dramatically reduces the size of variables by exploiting the
structure of regularizers. A similar method has been discussed in [12] for the `1 norm and in [11]
for the nuclear norm, but it has not been generalized to all decomposable norms. Furthermore, a key
point to note is that in this paper our active subspace selection is not only a heuristic, but comes with
strong convergence guarantees that we derive in Section 4.

Given the current θ, our subspace selection approach partitions each θ(r) into S(r)
fixed and S(r)

free =
(S(r)

fixed)⊥ and then restricts the search space of the Newton direction in (8) within S(r)
free, which yields

the following quadratic approximation problem:

[d(1), . . . ,d(k)] = argmin
∆(1)∈S(1)

free ,...,∆
(k)∈S(k)

free

ḡ(θ + ∆) +
k∑
r=1

λr‖θ(r) + ∆(r)‖Ar . (11)
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Each group of parameter has its own fixed/free subspace, so we now focus on a single parameter
component θ(r). An ideal subspace selection procedure would satisfy:

Property (I). Given the current iterate θ, any updates along directions in the fixed set, for instance
as θ(r) ← θ(r) + a, a ∈ S(r)

fixed, does not improve the objective function value.
Property (II). The subspace Sfree converges to the support of the final solution in a finite number of

iterations.

Suppose given the current iterate, we first do updates along directions in the fixed set, and then do
updates along directions in the free set. Property (I) ensures that this is equivalent to ignoring updates
along directions in the fixed set in this current iteration, and focusing on updates along the free set.
As we will show in the next section, this property would suffice to ensure global convergence of our
procedure. Property (II) will be used to derive the asymptotic quadratic convergence rate.

We will now discuss our active subspace selection strategy which will satisfy both properties above.
Consider the parameter component θ(r), and its corresponding regularizer ‖ · ‖Ar

. Based on the
definition of decomposable norm in (2), there exists a subspace Tr where ΠTr

(ρ) is a fixed vector
for any subgradient of ‖ · ‖Ar

. The following proposition explores some properties of the sub-
differential of the overall objective F (θ) in (1).
Proposition 1. Consider any unit-norm vector a, with ‖a‖Ar

= 1, such that a ∈ T ⊥r .

(a) The inner-product of the sub-differential ∂θ(r)F (θ) with a satisfies:
〈a, ∂θ(r)F (θ)〉 ∈ [〈a, G〉 − λr, 〈a, G〉+ λr]. (12)

(b) Suppose |〈a, G〉| ≤ λr. Then, 0 ∈ argminσ F (θ + σa).

See Appendix 7.8 for the proof. Note that G = ∇L(θ̄) denotes the gradient of L. The proposition
thus implies that if |〈a, G〉| ≤ λr and S(r)

fixed ⊂ T ⊥r then Property (I) immediately follows. The
difficulty is that the set {a | |〈a, G〉| ≤ λr} is possibly hard to characterize, and even if we could
characterize this set, it may not be amenable enough for the optimization solvers to leverage in order
to provide a speedup. Therefore, we propose an alternative characterization of the fixed subspace:

Definition 1. Let θ(r) be the current iterate, prox(r)
λ be the proximal operator defined by

prox(r)
λ (x) = argmin

y

1
2
‖y − x‖2 + λ‖y‖Ar

,

and Tr(x) be the subspace for the decomposable norm (2) ‖ · ‖Ar
at point x. We can define the

fixed/free subset at θ(r) as:
S(r)

fixed := [T (θ(r))]⊥ ∩ [T (prox(r)
λr

(G))]⊥, S(r)
free = S(r)

fixed

⊥
. (13)

It can be shown that from the definition of the proximal operator, and Definition 1, it holds that
|〈a, G〉| < λr, so that we would have local optimality in the direction a as before. We have the
following proposition:

Proposition 2. Let S(r)
fixed be the fixed subspace defined in Definition 1. We then have:

0 = argmin
∆(r)∈S(r)

fixed

QH([0, . . . ,0,∆(r),0, . . . ,0];θ).

We will prove that Sfree as defined above converges to the final support in Section 4, as required in
Property (II) above. We will now detail some examples of the fixed/free subsets defined above.

• For `1 regularization: Sfixed = span{ei | θi = 0 and |∇iL(θ̄)| ≤ λ} where ei is the ith canonical
vector.
• For nuclear norm regularization: the selection scheme can be written as

Sfree = {UAMV TA |M ∈ Rk×k}, (14)

where UA = span(U,Ug), VA = span(V, Vg), with Θ = UΣV T is the thin SVD of Θ and Ug, Vg
are the left and right singular vectors of proxλ(Θ−∇L(Θ)). The proximal operator proxλ(·) in this
case corresponds to singular-value soft-thresholding, and can be computed by randomized SVD or
the Lanczos algorithm.
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• For group sparse regularization: in the (1, 2)-group norm case, let SG be the nonzero groups,
then the fixed groups FG can be defined by FG := {i | i /∈ SG and ‖∇LGi

(θ̄)‖ ≤ λ}, and the free
subspace will be

Sfree = {θ | θi = 0 ∀i ∈ FG}. (15)

In Figure 3 (in the appendix) that the active subspace selection can significantly improve the speed
for the block coordinate descent algorithm [20].
Algorithm 1: QUIC & DIRTY: Quadratic Approximation Framework for Dirty Statistical Mod-
els

Input : Loss function L(·), regularizers λr‖ · ‖Ar for r = 1, . . . , k, and initial iterate θ0.
Output: Sequence {θt} such that {θ̄t} converges to θ̄?.

1 for t = 0, 1, . . . do
2 Compute θ̄t ←

∑k
r=1 θ

(r)
t .

3 Compute∇L(θ̄t).
4 Compute Sfree by (13).
5 for sweep = 1, . . . , Touter do
6 for r = 1, . . . , k do
7 Solve the subproblem (9) within S(r)

free.
8 Update

∑k
r=1∇2L(θ̄t)∆(r).

9 Find the step size α by (10).
10 θ(r) ← θ(r) + α∆(r) for all r = 1, . . . , k.

4 Convergence
The recently developed theoretical analysis of proximal Newton methods [16, 21] cannot be directly
applied because (1) we have the active subspace selection step, and (2) the Hessian matrix for each
quadratic subproblem is not positive definite. We first prove the global convergence of our algorithm
when the quadratic approximation subproblem (11) is solved exactly. Interestingly, in our proof
we show that the active subspace selection can be modeled within the framework of the Block
Coordinate Gradient Descent algorithm [24] with a carefully designed Hessian approximation, and
by making this connection we are able to prove global convergence.
Theorem 1. Suppose L(·) is convex (may not be strongly convex), and the quadratic subproblem
(8) at each iteration is solved exactly, Algorithm 1 converges to the optimal solution.

The proof is in Appendix 7.1. Next we consider the case that L(θ̄) is strongly convex. Note that
even when L(θ̄) is strongly convex with respect to θ̄, L(

∑k
r=1 θ

(r)) will not be strongly convex in θ
(if k > 1) and there may exist more than one optimal solution. However, we show that all solutions
give the same θ̄ :=

∑k
r=1 θ

(r).

Lemma 2. Assume L(·) is strongly convex, and {x(r)}kr=1, {y(r)}kr=1 are two optimal solutions of
(1), then

∑k
r=1 x

(r) =
∑k
r=1 y

(r).

The proof is in Appendix 7.2. Next, we show that S(r)
free (from Definition 1) will converge to the final

support T̄ (r) for each parameter set r = 1, . . . , k. Let θ̄? be the global minimizer (which is unique
as shown in Lemma 2), and assume that we have

‖Π(T̄ (r))⊥
(
∇L(θ̄?)

)
‖∗Ar

< λr ∀r = 1, . . . , k. (16)

This is the generalization of the assumption used in earlier literature [12] where only `1 regulariza-
tion was considered. The condition is similar to strict complementary in linear programming.
Theorem 2. If L(·) is strongly convex and assumption (16) holds, then there exists a finite T > 0
such that S(r)

free = T̄ (r) ∀r = 1, . . . , k after t > T iterations.

The proof is in Appendix 7.3. Next we show that our algorithm has an asymptotic quadratic conver-
gence rate (the proof is in Appendix 7.4).
Theorem 3. Assume that∇2L(·) is Lipschitz continuous, and assumption (16) holds. If at each iter-
ation the quadratic subproblem (8) is solved exactly, and L(·) is strongly convex, then our algorithm
converges with asymptotic quadratic convergence rate.
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5 Applications
We demonstrate that our algorithm is extremely efficient for two applications: Gaussian Markov
Random Fields (GMRF) with latent variables (with sparse + low rank structure) and multi-task
learning problems (with sparse + group sparse structure).

5.1 GMRF with Latent Variables

We first apply our algorithm to solve the latent feature GMRF structure learning problem in eq (4),
where S ∈ Rp×p is the sparse part, L ∈ Rp×p is the low-rank part, and we require L = LT �
0, S = ST and Y = S − L � 0 (i.e. θ(2) = −L). In this case, L(Y ) = − log det(Y ) + 〈Σ, Y 〉,
hence

∇2L(Y ) = Y −1 ⊗ Y −1, and ∇L(Y ) = Σ− Y −1. (17)

Active Subspace. For the sparse part, the free subspace is a subset of indices {(i, j) | Sij 6=
0 or |∇ijL(Y )| ≥ λ}. For the low-rank part, the free subspace can be presented as {UAMV TA |
M ∈ Rk×k} where UA and VA are defined in (14).

Updating ∆L. To solve the quadratic subproblem (11), first we discuss how to update ∆L using
subspace selection. The subproblem is

min
∆L=U∆DUT :L+∆L�0

1
2

trace(∆LY
−1∆LY

−1)+trace((Y −1−Σ−Y −1∆SY
−1)∆L)+λL‖L+∆L‖∗,

and since ∆L is constrained to be a perturbation of L = UAMUTA so that we can write ∆L =
UA∆MU

T
A , and the subproblem becomes

min
∆M :M+∆M�0

1
2

trace(Ȳ∆M Ȳ∆M ) + trace(Σ̄∆M ) + λL trace(M + ∆M ) := q(∆M ), (18)

where Ȳ := UTAY
−1UA and Σ̄ := UTA (Y −1 − Σ − Y −1∆SY

−1)UA. Therefore the subproblem
(18) becomes a k × k dimensional problem where k � p.

To solve (18), we first check if the closed form solution exists. Note that ∇q(∆M ) = Ȳ∆M Ȳ +
Σ̄ + λLI , thus the minimizer is ∆M = −Ȳ −1(Σ̄ + λLI)Ȳ −1 if M + ∆M � 0. If not, we solve the
subproblem by the projected gradient descent method, where each step only requires O(k2) time.

Updating ∆S . The subproblem with respect to ∆S can be written as

min
∆S

1
2

vec(∆S)T (Y −1⊗Y −1) vec(∆S)+trace((Σ−Y −1−Y −1(∆L)Y −1)∆S)+λS‖S+∆S‖1,

In our implementation we apply the same coordinate descent procedure proposed in QUIC [12] to
solve this subproblem.

Results. We compare our algorithm with two state-of-the-art software packages. The LogdetPPA
algorithm was proposed in [26] and used in [5] to solve (4). The PGALM algorithm was proposed
in [17]. We run our algorithm on three gene expression datasets: the ER dataset (p = 692), the
Leukemia dataset (p = 1255), and a subset of the Rosetta dataset (p = 2000)1 For the parameters, we
use λS = 0.5, λL = 50 for the ER and Leukemia datasets, which give us low-rank and sparse results.
For the Rosetta dataset, we use the parameters suggested in LogdetPPA, with λS = 0.0313, λL =
0.1565. The results in Figure 1 shows that our algorithm is more than 10 times faster than other
algorithms. Note that in the beginning PGALM tends to produce infeasible solutions (L or S −L is
not positive definite), which is not plotted in the figures.

Our proximal Newton framework has two algorithmic components: the quadratic approximation,
and our active subspace selection. From Figure 1 we can observe that although our algorithm is
a Newton-like method, the time cost for each iteration is similar or even cheaper than other first
order methods. The reason is (1) we take advantage from active selection, and (2) the problem has
a special structure of the Hessian (17), where computing it is no more expensive than the gradient.
To delineate the contribution of the quadratic approximation to the gain in speed of convergence, we
further compare our algorithm to an alternating minimization approach for solving (4), together with
our active subspace selection. Such an alternating minimization approach would iteratively fix one
of S,L, and update the other; we defer detailed algorithmic and implementation details to Appendix
7.6 for reasons of space. The results show that by using the quadratic approximation, we get a much
faster convergence rate (see Figure 2 in Appendix 7.6).

1The full dataset has p = 6316 but the other methods cannot solve this size problem.
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(c) Rosetta dataset

Figure 1: Comparison of algorithms on the latent feature GMRF problem using gene expression
datasets. Our algorithm is much faster than PGALM and LogdetPPA.

Table 1: The comparisons on multi-task problems.

dataset number of relative Dirty Models (sparse + group sparse) Other Models
training data error QUIC & DIRTY proximal gradient ADMM Lasso Group Lasso

USPS

100 10−1 8.3% / 0.42s 8.5% / 1.8s 8.3% / 1.3 10.27% 8.36%
100 10−4 7.47% / 0.75s 7.49% / 10.8s 7.47% / 4.5s
400 10−1 2.92% / 1.01s 2.9% / 9.4s 3.0% / 3.6s 4.87% 2.93%
400 10−4 2.5% / 1.55s 2.5% / 35.8 2.5% / 11.0s

RCV1

1000 10−1 18.91% / 10.5s 18.5%/47s 18.9% / 23.8s 22.67% 20.8%
1000 10−4 18.45% / 23.1s 18.49% / 430.8s 18.5% / 259s
5000 10−1 10.54% / 42s 10.8% / 541s 10.6% / 281s 13.67% 12.25%
5000 10−4 10.27% / 87s 10.27% / 2254s 10.27% / 1191s

5.2 Multiple-task learning with superposition-structured regularizers

Next we solve the multi-task learning problem (5) where the parameter is a sparse matrix S ∈ Rd×k
and a group sparse matrix B ∈ Rd×k. Instead of using the square loss (as in [15]), we consider the
logistic loss `logistic(y, a) = log(1 + e−ya), which gives better performance as seen by comparing
Table 1 to results in [15]. Here the Hessian matrix has a special structure again: H = XDXT where
X is the data matrix and D is the diagonal matrix, and in Appendix 7.7 we have a detail description
of how to applying our algorithm to solve this problem.

Results. We follow [15] and transform multi-class problems into multi-task problems. For a
multiclass dataset with k classes and n samples, for each r = 1, . . . , k, we generate yr ∈ {0, 1}n

to be the vector such that y(k)
i = 1 if and only if the i-th sample is in class r. Our first dataset is the

USPS dataset which was first collected in [25] and subsequently widely used in multi-task papers.
On this dataset, the use of several regularizers is crucial for good performance. For example, [15]
demonstrates that on USPS, using lasso and group lasso regularizations together outperforms models
with a single regularizer. However, they only consider the squared loss in their paper, whereas we
consider a logistic loss which leads to better performance. For example, we get 7.47% error rate
using 100 samples in USPS dataset, while using the squared loss the error rate is 10.8% [15]. Our
second dataset is a larger document dataset RCV1 downloaded from LIBSVM Data, which has 53
classes and 47,236 features. We show that our algorithm is much faster than other algorithms on both
datasets, especially on RCV1 where we are more than 20 times faster than proximal gradient descent.
Here our subspace selection techniques works well because we expect that the active subspace at the
true solution is small.
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7 Appendix

7.1 Proof of Theorem 1

Proof. There are two main difficulties in proving the convergence of our algorithm, and none of
them is addressed in previous works. First, the Hessian matrix H is a block-structured matrix as
shown in (7), and unfortunately it is low-rank. Second, we have to show the convergence with the
active set selection technique.

Let H(θ) ∈ Rn×n be the Hessian ∇2L(θ̄) when L(·) is strongly convex. When it is not, as
discussed in Section 3, we set H = ∇2L(θ̄) + εI for a small constant ε > 0. Let d ∈ Rn2k

denotes the minimizer of the quadratic subproblem (8). By definition, we can easily observe that∑k
r=1 d

(r) = y where

y? := argmin
y

yTH(θ)y + 〈y,∇L(θ̄)〉+W(y), (19)

whereW(y) = miny(1),...,y(k):
Pk

r=1 y
(r)=y λr‖y(r)‖Ar

. Now (19) has a strongly convex Hessian,
and thus ifW(y) is convex then Theorem 3.1 in [16] can be used to show that the algorithm con-
verges, and thus F (

∑r
i=1 θ

(r)) converges (without active subspace selection).

To showW is convex, assume we have a, b and a(1), . . . ,a(k) are decomposition of a that attains
the minimizer ofW(a). By definition we have

W(αa+ (1− α)b) ≤
k∑
r=1

λr‖a(r) + b(r)‖Ar

≤
k∑
r=1

λr(α‖a(r)‖Ar + (1− α)‖b(r)‖Ar )

= αW(a) + (1− α)W(b).
Thus W is convex, and if we solve each quadratic approximation exactly without active subspace
selection, our algorithm converges to the global optimum.

Next we discuss the convergence of our algorithm with active subspace selection. [12] has shown
the convergence of active set selection under `1 regularization, but here the situation is different – we
can have infinite many atoms, as in group lasso or nuclear norm cases, so the original proof cannot
be applied. To analyze the active subspace selection technique, we will use the convergence proof
for Block Coordinate Gradient Descent (BCGD) in [23]. To begin, we give a quick review of the
Block Coordinate Gradient Descent (BCGD) algorithm discussed in [23].

BCGD is proposed to solve the composite functions with the following form:
argmin

x
F (x) := f(x) + P (x),

where P (x) is a convex and separable function. Here we consider x to be a p dimensional vector,
but in general x can be in any space. At the t-th iteration, BCGD chooses a subset Jt and compute
the descent direction by

dt = dJt

Ht
(x) = argmin

d

{
〈∇f(x),d〉+

1
2
dTHtd+ P (x+ d) | di = 0,∀i /∈ J

}
≡ argmin

d
QJt

Ht
(d).

(20)
After computing the descent direction dJt

H , a line search procedure is used to find the descent direc-
tion, where the largest αt is chosed by searching over 1, 1/2, 1/4, ... satisfying

F (xt + αdt) ≤ F (xt) + αtσ∆t, where ∆t = 〈∇f(xt),dt〉+ P (xt + dt)− P (xt),
and σ ∈ (0, 1) is any constant. The line search condition is exactly the same with ours in (10).

It is shown in Theorem 3.1 of [23] that when Jt is selected in a cyclic order covering all the indexes,
than BCGD converges to the global optimum for any convex function f(X).

To proof this theorem, we want to show the equivalence between our algorithm and BCGD with
one block (BCGD-1block). We first prove the convergence for the case where we only have one
regularizer, thus the problem is

argmin
x
L(x) + λ‖x‖A.
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The key idea is to carefully define the matrix Ht at each iteration, according the our subspace
selection trick. Note that in (20) the matrixHt can be any positive definite matrix instead of Hessian.
At each iteration of Algorithm 1, assume the fixed and free subspace defined in (13) are Sfixed and
Sfree. Assume dim(Sfree) = q and dim(Sfixed) = n − q, R = [r1, . . . , rq] are the orthogonal basis
for Sfree, then we can construct H̃t by

H̃t = R(RTHtR)RT +R⊥(R⊥)T . (21)

It is easy to see that H̃t is positive definite if the real Hessian∇2f(x) is positive definite. Using H̃t

as the Hessian in (20), we first consider dfree to be the minimizer of the following problem:

dfree = argmin
∆free∈Sfree

{
〈∇f(x),∆free〉+

1
2

∆free
T H̃t∆free + P (x+ ∆free)

}
,

which is the quadratic subproblem (20) within the subspace Sfree. Next we show that dfree is indeed
the optimizer of the whole quadratic subproblem (20) with the original Hessian Ht. To show this,
taking derivative of (20) with respect to a a ∈ Sfixed, the subgradient will be

∂aQH̃t
(dfree) = 〈∇L(x),a〉+ aT H̃tdfree + ∂aP (x+ dfree).

By the definition of H̃t in (21), since a ∈ span(R⊥) and dfree ∈ span)(R), we have aT H̃tdfree = 0.
Also, since a ∈ Sfixed, 〈x + dfree,a〉 = 0, thus ∂aP (x + dfree) = [−λ, λ]. Also, since a ∈ Sfixed,
|〈∇f(x),a〉| < λ. Therefore, we have

0 ∈ ∂aQH̃t
(dfree), ∀a ∈ Sfixed,

also, since dfree is the optimal solution in Sfree, the projection of subgradient to a ∈ Sfree is 0.
Therefore dfree is the minimizer of QH̃t

.

Based on the above discussion, our algorithm that computing the generalized Newton direction in
free subspace Sfree is equivalent to another BCGD-1block algorithm with H̃t as the approximated
Hessian matrix. Therefore based on Theorem 3.1 of [23], our algorithm converges to the global
optimum.

When there are more than one set of parameters, i.e., we want to solve (1) with parameter sets
θ(1), ...,θ(k). In this case, the Hessian matrix is a kn by kn matrix. For each parameter set, we
will select Sfree

(i) and Sfixed
(i), and only update on Sfree

(i). To prove the convergence, similar to the
above arguments, we can construct the approximate Hessian H̃t and show the equivalence between
BCGD-block1 with H̃t and our algorithm. H̃t can be divided into k2 blocks, each one is a n by n
matrix H̃(i,j)

t , where

H̃
(i,j)
t = R(i)(R(i))THR(j)(R(j))T + (R(i))⊥((R(j))⊥)T ,

where H = ∇2L(
∑k
i=1 θ

(r)), R(i) is the basis of Sfree
(i), and (R(i))⊥ is the basis of Sfixed

(i).
Assume dfree ∈ Rnk is the solution of (20) with the constraint that projection to Sfixed

(i) is 0 for all
i, then it is the solution for both BCGD-1block with H̃t and also the update direction produced by
Algorithm 1. Also,

aH̃tdfree = 0 ∀a ∈ {Sfixed
(1), . . . ,Sfixed

(k)},
therefore similar to the previous arguments we can show that

0 ∈ ∂aQH̃t
(dfree), ∀a ∈ {Sfixed

(1), . . . ,Sfixed
(k)},

which indicates dfree is the minimizer ofQH̃t
(d). Then we can see that the BCGD-1block algorithm

with H̃t as the Hessian matrix is equivalent to Algorithm 1 when each quadratic subproblem is
solved exactly, therefore our algorithm converges to the global optimum of (1)

7.2 Proof of Lemma 2

Proof. First, since L(·) is strongly convex,

〈∇L(x̄)−∇L(ȳ), x̄− ȳ〉 ≥ η‖x̄− ȳ‖2. (22)
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Next, by the optimal condition we know

−∇L(x̄) ∈ ∂‖x(r)‖Ar
, ∀r = 1, . . . , k

−∇L(ȳ) ∈ ∂‖y(r)‖Ar
, ∀r = 1, . . . , k.

By the convexity for each ‖ · ‖Ar ,

〈−∇L(x̄) +∇L(ȳ),x(r) − y(r)〉 ≥ 0, ∀r = 1, .., k.

Summing r from 1 to k we get 〈−∇L(x̄) +∇L(ȳ), x̄− ȳ〉 ≥ 0, and combined with (22) we have
‖x̄− ȳ‖ = 0.

7.3 Proof of Theorem 2

Proof. Since assumption (16) holds, there exists a positive constant ε such that

‖Π(T̄ (r))⊥
(
∇L(θ̄?)

)
‖∗Ar

< λr − ε ∀r = 1, . . . , k. (23)

We first focus on showing that that Sfixed will be eventually equal to (T (r))⊥. Focus on one of the
(T (r))⊥, for any unit vector (in terms of the ‖ · ‖Ar norm) a ∈ (T (r))⊥, we have

|〈a,∇L(θ̄?)〉| < λr − ε. (24)

Since the sequence generated by our algorithm converges to the global optimum (as proved in The-
orem 1), there exists a T such that

‖∇L(θ̄t)−∇L(θ̄?)‖∗Ar
< ε,

combining with (24) we have

|〈a,∇L(θ̄t)〉| ≤ |〈a,∇L(θ̄∗)〉|+ |〈a,∇L(θ̄t)−∇L(θ̄∗)〉|
< λr − ε+ ‖∇L(θ̄t)−∇L(θ̄∗)‖∗Ar

< λr (25)

for all t > T . Now we consider two cases:

1. If 〈a,θt−1〉 6= 0, then a /∈ Sfree
(r) at the t-th iteration. Since we assume subproblems are

exactly solved, and a ∈ Sfree
(r), by the optimality condition |〈∇L(θ̄t)| < λ implies that

〈θt,a〉 = 0.

2. If 〈a,θt−1〉 = 0, combined with (25) we have 〈θt,a〉 = 0.

Therefore, for all a ∈ (T (r))⊥, we have 〈θt,a〉 = 0, which implies (T (r))⊥ ⊂ Sfixed. On the other
hand, by definition (T (r)) ∩ Sfixed = φ, thus T (r) = Sfree and (T(r))⊥ = Sfixed.

7.4 Proof of Theorem 3

Proof. As shown in Theorem 2, there exists a T such that Sfree = span({a | 〈a,Θ?〉}) after t > T .

Next we show that after finite iterations the line search step size will be 1. For simplicity, let
L̄(θ) = L(

∑k
r=1 θ

(r)) and R̄(θ) =
∑k
r=1 ‖θr‖Ar

, and F (θ) = L̄(θ) + R̄(θ). Since ∇2L(θ̄)
is Lipschitz continuous, we have

L̄(θ + d) ≤ L̄(θ) + 〈∇L̄(θ),d〉+
1
2
dT∇2L̄(θ)d+

1
6
η‖d‖3.

Plug in into the objective function we have

F (θ + d) ≤ L̄(θ) + R̄(θ) + 〈∇L̄(θ),d〉+
1
2
dT∇2L̄(θ)d+

1
6
η‖d‖3 + R̄(θ + d)− R̄(θ)

≤ F (θ) + δ +
1
2
dT∇2L̄(θ)d+

1
6
η‖d‖3 (26)

To further bound (26), we first show the following Lemma:
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Lemma 3. Let d? be the optimal solution of (20), then

δ = 〈∇L̄(θ),d?〉+ R̄(θ + d?)− R̄(θ) ≤ −(d?)T∇2L̄(θ)d?.

Proof. Since d? is the optimal solution of (20), for any α < 1 we have

〈∇L̄(θ) + d?〉+
1
2

(d?)THd? + R̄(θ + dstar) ≤ 〈∇L̄(θ), αd?〉+
1
2
α2(d?)THd? + R̄(θ + αd?)

≤ α〈∇L̄(θ),d?〉+
1
2
α2(d?)THd? + αR̄(θ + d) + (1− α)R̄(θ),

where we use H to denote the exact Hessian ∇2L̄(θ) and the second inequality is by the convexity
of R̄ since we consider all the atomic norm ‖ · ‖A to be convex. Therefore

(1− α)
(
〈∇L̄(θ),d?〉+ R̄(θ + d?)− R̄(θ)

)
+

1
2

(1− α2)(d?)THd? ≤ 0.

Dividing both sides by (1− α) we get

δ +
1
2

(1− α)(d?)THd? ≤ 0,

therefore δ ≤ −(d?)THd?.

Combining Lemma 3 and (26) we get

F (θ + d?) ≤ F (θ) +
δ

2
+

1
6
η‖d?‖3.

Furthermore, considering θ in the level set, we can defineM to be the largest eigenvalue of Hessians,
and thus

F (θ + d?) ≤ F (θ) + (
1
2
− 1

6
ηM2‖d?‖)δ.

Since d → 0 as θ → θ?, we can find an ε-ball around x? such that 1
2 −

1
6ηM

2‖d?‖) > σ, and
δ < 0, thus line search will be satisfied with step size equals to 1.

Based on the above proofs, when θ is closed enough to θ?, Sfree = span({a | 〈a,θ?〉}) and the step
size α = 1. Finally we have to explore the structure of dirty model. Since we have k parameter
sets θ(1),θ(2), . . . ,θ(k), the Hessian has a block structure presented in (7). Even when ∇2L(θ) is
strongly convex, the rank of the Hessian matrix is at most O(n), while there are totally nk variables
or rows. However, our main observation is that when ∇2L(θ) is positive definite, the Hessian
H ∈ Rpk×pk has a fixed null space:

L(θ) = L([I, I, . . . , I][θ(1),θ(2), . . . ,θ(k)]T ) = L(Eθ),

where E = [I, I, . . . , I]. The null space of H is always the null space of E when L is strongly
convex itself. The following theorem (Theorem 2 in [28] can then be applied:

Lemma 4. Let F (θ) = g(θ) + h(θ) where g(θ) has a constant null space T ⊥ and is strongly
convex in the subspace T , and has Lipschitz continuous second order derivative ∇2g(θ). If we
apply a proximal Newton method (BCGD-block1 with exact Hessian and step size 1) to minimize
F (θ), then

‖zt+1 − z?‖ ≤
LH
2m
‖zt − z?‖2,

where z? = projT (θ?, zt = projT (zt), and LH is the Lipschitz constant for∇2g(θ).

In our case, projT ([θ(1), . . . ,θ(k)]T ) =
∑k
i=1 θ

(i), therefore we have

‖
k∑
i=1

θ
(i)
t+1 − θ

?‖ ≤ C‖
k∑
i=1

θ
(i)
t − θ

?‖2,

therefore θ̄ =
∑k
i=1 θ

(i) has an asymptotic convergence rate.
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7.5 Dual of latent GMRF

The problem (4) can be rewritten by

min
S,L:L�0,S−L�0

− log det(S − L) + 〈S − L,Σ〉+ max
Z:‖Z‖∞≤α

trace(ZS) + max
P :‖P‖2≤β

trace(LP ),

where ‖Z‖∞ = maxi,j |Zij | and ‖P‖2 = σ1(P ) is the induced two norm. We then interchange
min and max to get

max
Z,P :‖Z‖∞≤α,‖P‖2≤β

min
L,S,S−L�0,L�0

− log det(S − L) + 〈S − L,Σ〉+ trace(ZS) + trace(LP )

≡ g(Z,P, L, S). (27)

Assume we do not have the constraint L � 0, then the minimizer will satisfy

∇Lg(Z,P, L, S) = −(S − L)−1 + Σ + Z = 0

∇Sg(Z,P, L, S) = −(S − L)−1 − Σ + P = 0.

Therefore we have
Z = −P and S − L = (Σ + Z)−1. (28)

Combining (28) and (27) we get the dual problem

min
Σ+Z≥0

log det(Σ + Z) + p s.t. ‖Z‖∞ ≤ α, ‖Z‖2 ≤ β.

7.6 Alternating Minimization approach for latent GMRF

Another way to solve the latent GMRF problem is to directly applying an alternating minimization
scheme to solve (4). The algorithm iteratively fix one of the S,L and update the other. We can
still conduct the same active subspace selection technique mentioned in Section 3 in this algorithm.
However, this alternating minimization approach can achieve at most linear convergence rate, while
our algorithm can achieve super-linear convergence. In this section, we show the detail implemen-
tation for this algorithm — ALM(active), and show the comparison results with the Quic & Dirty
algorithm (Algorithm 1). The results in Figure 2 shows that our proximal Newton method is faster
in terms of the convergence rate.

(a) ER dataset, log scale (b) Leukemia dataset, log scale

Figure 2: Comparison between QUIC and Alternating Minimization (AM) on gene expression
datasets. Note that we implement the active subspace selection approach on both algorithm, so
two algorithms have similar speed per iteration. However, we observe that QUIC is much more
efficient in terms of final convergence rate.

7.7 Details on the implementation of our multi-task solver

We consider the multi-task learning problem. Assume we have k tasks, each with samples X(r) ∈
Rd,nr and labels y(r) ∈ Rnr . The goal of multi-task learning is to estimate the model W ∈ Rd×k,
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where each column of W , denoted by w(r), is the model for the r-th task. A dirty model has been
proposed in [15] to estimate W by S +B, where

(S,B) = argmin
S,B∈Rd×k

‖y(k) −X(k)(s(k) + b(k))‖2 + λS‖S‖1 + λB‖B‖1,2, (29)

where s(k), b(k) are the k-th column of S,B. It was shown in [15] that the combination of sparse
and group sparse regularization yields better performance both in theory and in practice.

Instead of considering the squared-loss problem in (29), we further consider optimization problem
minimizing the logistic loss:

(S,B) = argmin
S,B∈Rd×k

k∑
r=1

(
nr∑
i=1

`logistic(y
(k)
i , (s(k) + b(k))Tx(k)

i )

)
+ λS‖S‖1 + λB‖B‖1,2, (30)

where `logistic(y, a) = log(1 + e−ya). This loss function is more suitable for the classification case,
as shown in the later experiments.

Let W = S + B, and we define w(r) to be the r-th column of W , then the Hessian and gradient of
L(·) can be computed by

∇w(r)

nr∑
i=1

(σ(y(r)
i 〈w

(r),x
(r)
i 〉)− 1)y(r)

i x
(r)
i , ∇2

w(r),w(r)L(W ) = (X(r))TD(r)X(r),

where σ(a) = 1/(1+e−a) andD(r) is a diagonal matrix withD(r)
ii = σ(y(r)

i 〈w(r),x
(r)
i 〉) for all i =

1, . . . , nr. Note that the Hessian ofL(W ) is a block-diagonal matrix, so∇2
w(r),w(t)L(W ) = 0. Note

also that to form the quadratic approximation at W , we only need to compute σ(y(r)
i 〈w(r),x

(r)
i 〉)

for all i, r.

For the sparse-structured parameter component, we select a subset of variables in S to update as in
the previous example. For the group-sparse structured componentB, we select a subset of “rows” in
B to update, following (15). To solve the quadratic approximation subproblem, we again use coor-
dinate descent to minimize with respect to the sparse S component. For the group-sparse component
B, we use block coordinate descent, where each time we update variables in one group (one row)
using the trust region approach described in [20]. Since Sfree contains only a small subset of blocks,
the block coordinate descent can focus on this subset and becomes very efficient.

Algorithm. We first derive the quadratic approximation for the logistic loss function (30). Let
W = S +B, the gradient for the loss function L(W ) can be written as

∇w(r)

nr∑
i=1

(σ(y(r)
i (w(r))Tx(r)

i )− 1)y(r)
i x

(r)
i ,

where σ(a) = 1/(1 + e−a). The Hessian of L(W ) is a block-diagonal matrix, where each d × d
block corresponds to variables in one task, i.e., w(r). Let H ∈ Rkd×kd Hessian matrix, each d× d
block can be written as

∇2
w(r),w(r)L(W ) = (X(r))TD(r)X(r),

where D(r) is a diagonal matrix with D(r)
ii = σ(y(r)

i 〈w(r),x
(r)
i 〉) for all i = 1, . . . , nr.

Therefore, to form the quadratic approximation of the current solution, the only computation re-
quired is to compute σ(y(r)

i 〈w(r),x
(r)
i 〉) for all i, r.

For the lasso part, we select a subset of variables in S to update, according to the subspace selection
criterion described 3.2. For the group lasso, we select a subset of “rows” inB to update, as described
in 3.2.

For the lasso part, we apply a coordinate descent solver for solving the subproblem. Notice that for
the Lasso part each column of S forms a subproblems:

min
δ∈Rd

1
2
δTH(r)δ + g(r)δ + ‖s(r) + δ‖,

where H(r) = (X(r))TD(r)X(r) and g(r) = ∇s(r)L(W ). The k subproblems are independent to
each other, so we can solve them independently. For each subproblem, we apply the coordinate
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descent approach described in [29] to solve it. When update the coordinate δi, the key computation
is to compute the current gradient H(r)δ + g(r). Directly computing this is expensive, however, we
can maintain p = D(r)X(r)δ during the updates, and then compute H(r)δ = (X(r)

:,i )Tp, which only

takes O(‖X(r)
:,i ‖0) flops.

For solving the group lasso problem, we cannot solve each column independently because the regu-
larization is grouping each row of B. We apply a block coordinate descent method, where each time
only one row of B is updated. Let δ ∈ Rk denote the update on the i-th row of B, the subproblem
with respect to δ can be written as

1
2

k∑
r=1

γr(δj)2 + gT δ + λ‖δ + w̄‖, (31)

where w̄ is the i-th row of W ; γr = H
(r)
ii and gr = ∇Wir

L(W ) can be precomputed and will not
change during the update.

By taking the gradient of the subproblem (31), we can see that

δ = −w̄ +

{
0 if ‖g −

∑k
r=1 γrw̄

2
r‖ ≤ λ

−(Γ + λ
‖w̄+δ‖I)−1g if ‖g −

∑k
r=1 γrw̄

2
r‖ > λ.

(32)

For the second case, the closed form solution exists when Γ = I . However, this is no true in general.
Instead, we use the iterative trust-region solver proposed in [20] to solve the subproblem, where each
iteration of the Newton root finding algorithm only takes O(k) time. Therefore, the computational
bottleneck is to compute g in (31). In our case, similar to the Lasso subproblem, we can maintain
p(r) = D(r)X(r)δ(r) for each r = 1, . . . , k in memory, where δ(r) is the r-th column of change in
W . The gradient can then be computed by g = H(r)δ(r) = X(r)δ(r), therefore the time complexity
is O(n̄) for each coordinate update, where n̄ is number of nonzero for each column of X(r).

7.8 Proof of Proposition 1

To prove (a), first we expand the sub-differential

〈a, ∂θ(r)F (θ)〉 = 〈a, ∂θ(r)L(θ̄)+λr∂θ(r)‖θ(r)‖Ar
〉 = 〈a, G〉+λr〈a, ρ〉 for ρ ∈ ∂θ(r)‖θ(r)‖Ar

and now using the properties of decomposable norms, we calculate

|〈a, ρ〉| = |〈a,ΠT ⊥r ρ〉|
≤ ‖a‖Ar

‖ΠT ⊥r ρ‖
∗
Ar

≤ 1

hence 〈a, G〉+ λr〈a, ρ〉 ∈ 〈a, G〉 − λr, [〈a, G〉+ λr] and the result is shown. In fact, it is not hard
to see that every element of the set can be written as 〈a, ρ〉 for some ρ ∈ ∂θ(r)‖θ(r)‖Ar

.

To prove (b), note that the optimality condition on σ is that σ? will satisfy 0 ∈ ∂σF (θ + σ?a) and
by the chain rule, ∂σF (θ+σa) = 〈a, ∂θ(r)F (θ+σa)〉. If 〈a, G〉 ≤ λr, then by part (a) we see that
0 is in the sub-differential of ∂σF (θ) and hence σ = 0 is an optimal point. If F is strongly convex,
σ = 0 is the unique optimal point.

7.9 Proof of Proposition 2

By the definition of proximal operator, in the optimal solution −G ∈ ∂θ(r)‖proxλr
(G)‖Ar . For any

a ∈ S(r)
fixed, a ∈ T (prox(r)

λr
(G))⊥, thus |〈G,a〉| < λr. Next we consider the projection of gradient

to S(r)
fixed: let ρ = Π

S
(r)
fixed

(G), then by the previous statement we know ‖ρ‖∗ ≤ λr. Then since

ρ ∈ T (θ(r))⊥, we have ρ ∈ λr∂‖θ(r)‖Ar , therefore constrained to the subspace S(r)
fixed, 0 belongs

to the sub-gradient, which proves Proposition 2.

7.10 Active Subspace Selection for Group Lasso Regularization
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Figure 3: Comparing with/without active subspace selection technique on the RCV1 dataset on the
multi-task learning problem with group-lasso regularization and logistic loss. We choose λ = 10−3

and the final solution only has 1678 nonzero rows, while there are 22283 rows in total.
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