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Abstract

We study the problem of rank aggregation
with features, where both pairwise compar-
isons and item features are available to help
the rank aggregation task. Observing that
traditional rank aggregation methods disre-
gard features, while models adapted from
learning-to-rank task are sensitive to feature
noise, we propose a general model to learn
a total ranking by balancing between com-
parisons and feature information jointly. As
a result, our proposed model takes advan-
tage of item features and is also robust to
noise. More importantly, we study the effec-
tiveness of item features in our model and
show that given sufficiently informative fea-
tures, the sample complexity of our model
can be asymptotically lower than models
based only on comparisons for deriving an
accurate ranking. The results theoretically
justify that our model can achieve efficient
learning by leveraging item feature informa-
tion. In addition, we show that the proposed
model can also be extended to two other re-
lated problems—online rank aggregation and
rank prediction of new items. Finally, exper-
iments show that our model is more effective
and robust compared to existing methods on
both synthetic and real datasets.

1 Introduction

Ranking is a fundamental problem in machine learn-
ing. Given n items with partial ranking information,
the goal of rank aggregation is to obtain a full ranking
that is consistent with most of the partial rankings.
One classical setting is to consider pairwise compar-
isons, where each partial ranking gives a list of pairwise
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preferences. This pairwise rank aggregation problem
has been shown to be important in real-world applica-
tions including ranking for sports teams [19] and rec-
ommender systems [12].

While a number of pairwise rank aggregation methods
have been proposed, many of them learn a ranking
based solely on item comparisons. Nevertheless, in
many real-world applications, knowledge about items
is also provided, and such knowledge is believed to be
related to the rank of the items as well. For instance,
when ranking sports teams, attributes of each team,
such as its coach and budget, can all be potential fac-
tors that affect its rank beside competition history.
Therefore, in this paper we focus on pairwise rank ag-
gregation with item features. Our goal is to derive a
better total ranking based on both pairwise compar-
isons and feature information.

Though most rank aggregation methods do not take
item features into consideration, several models de-
signed for other purposes can in fact be adapted to
rank aggregation if features are provided. For exam-
ple, Rank-SVM [16] also trains a model based on both
comparisons and features and can be applied to this
problem under a transductive setting. However, since
such learning-to-rank models are originally designed
to rank a list of unranked items based on their at-
tributes, they tend to learn a ranking that heavily de-
pends on item features, and as a result, they could
perform poorly if features are noisy or partially cor-
rupted, even if the comparison information is clean.

Motivated by the fact that current methods for rank
aggregation are either ignorant of features or sensi-
tive to noisy features, we propose a novel model that
better learns ranking scores from features and compar-
isons simultaneously. Furthermore, we formally ana-
lyze the effect of features and provide sample com-
plexity guarantees of our model. In particular, with
informative features, we show that our model only re-
quires o(n) comparisons—i.e. sublinear in the number
of items—to obtain an accurate ranking. We empha-
size that since Ω(n) is the sample complexity lower
bound for any aggregation method based only on com-
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parisons [11, 28], our result suggests that such Ω(n)
barrier can be asymptotically overcome by taking ad-
vantage of reasonably good features. Finally, we pro-
vide extensions of our model to show that by utilizing
item features, the proposed framework can improve
performance not only on rank aggregation but also
on two related problems—online rank aggregation and
rank prediction for new items. Our contributions can
be summarized as follows:

• We propose a new model for rank aggregation
where the ranking is estimated by balancing both
feature and pairwise comparison information.

• We formally define feature quality in the context
of ranking and show that given reasonably good
features, the sample complexity can be improved
from linear to sublinear using our model.

• We extend our model to online rank aggregation
and rank prediction of new items, and show that
our framework can be useful in these tasks by
leveraging feature information.

2 Problem Setup and Related Work

Problem Setup of Rank Aggregation with Fea-

tures. Let s ∈ R
n be a (true) score vector for a set

of n items, where si is the ranking score of item i. An
item i is regarded as better (i.e. has a higher rank)
than item j if si > sj . Let e be the all-one vector
and Y = esT − seT where each Yij = sj − si is the
score difference between item i and item j. A pairwise
comparison Pij is observed under two scenarios: 1

• For each comparison, the value of the score differ-
ence is revealed: Pij = Yij .

• For each comparison, only the sign of the rank
difference is revealed: Pij = sgn(Yij).

Let m be the number of observed comparisons, with
the set of indices SI = {(it, jt)}mt=1. Let xi ∈ R

d be the
feature of item i. The item features can be assembled
into a matrixX ∈ R

n×d, where the i-th row ofX is xT
i .

With these notations, the problem of rank aggregation
with features can be stated as follows:

Given n items, a set of observed comparisons
{Pij | (i, j) ∈ SI} and a feature matrix X, the
goal is to “recover” the ranking of s.

Evaluation Metric for Recovery. Generally, it is
impossible to recover the exact score of s with only
pairwise comparisons due to an identifiability issue. 2

However, in ranking applications, only the relative or-
der between items matters, not the exact score. Thus,
we use the standard Kendall’s Tau metric to measure

1In general, Pij can further contains some noise. We
will consider such a scenario in detail in Section 4.

2For example, if Pij = sgn(Yij), any π = (s+ c)/c′ with
c, c′ > 0 generates the identical Pij as s does.

the ranking distance between π and s:

Dkτ (π, s) =
1

N

∑

si<sj
1(πi > πj), N =

∑

1(si < sj).

Therefore, to argue the effectiveness of an algorithm,
the most ideal scenario is to show that its output π
exactly recovers the ranking of s (i.e. Dkτ (π, s) = 0)
given only a small number of observed comparisons.
However, such a goal is still too prohibitive since in
certain scenarios Ω(n2) clean comparisons are still re-
quired to achieve exact recovery [15]. To provide
non-trivial results, one popular metric is to consider
“ǫ-recovery” as an approximate recovery scheme in-
stead [15, 24, 28], where the goal is relaxed to derive
an “ǫ-accurate” ranking π such that Dkτ (π, s) < ǫ for
any chosen tolerance ǫ > 0. We will name several in-
teresting results of ǫ-recovery in the next subsection.

Related Work. Pairwise rank aggregation has re-
ceived much attention in many areas. Popular ap-
proaches include direct learning on ranking scores
[19, 28], probabilistic models [4, 20] and Markov Chain
heuristics [22]. Traditional aggregation methods are
designed to learn a total ranking based only on item-
to-item comparisons and do not consider item features.

Several feature-based ranking models can also be
adapted to rank aggregation if features are present.
A major class of such models is learning-to-rank mod-
els, which were originally built to rank a list of new
items. As examples, Rank-SVM [16], RankNet [6] and
RankRLS [23] all train a model with both features and
pairwise comparisons and can be applied to this prob-
lem under a transductive setting. However, compared
to our model, these models have no theoretical guar-
antees when adapted to rank aggregation, and they
can indeed fail to recover the underlying ranking both
in theory and practice (see Section 6 in detail). A re-
cently proposed model for dyad ranking [27] also learns
a ranking from both features and item-specific scores,
whose motivation is similar to our model. However,
the authors do not provide theoretical guarantees of
this model on dyad rank aggregation either.

One highlight of our model is its improved sample
complexity guarantee. Sample complexity analysis for
rank aggregation has received more attention recently,
where the goal is to study the number of comparisons
required to guarantee the derived ranking to be ac-
curate. For example, Gleich and Lim [12] propose a
matrix completion approach to recover the partially
observed matrix of Y , where exact recovery is guar-
anteed with high probability given an observation of
O(n log2 n) random samples. Their approach, how-
ever, is applicable only if score differences are observed.
For the more practical case Pij = sgn(Yij), recovery is
much more challenging. For example, Jamieson and
Nowak [15] show that if the ranking score of an item
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embeds the Euclidean distance to a reference point
in a vector space, any algorithm needs Ω(n2) com-
parisons to recover the exact ranking. This result is
somehow pessimistic since it implies almost all pair-
wise comparisons are needed for exact recovery. How-
ever, non-trivial complexity can indeed be achieved
if we consider approximate recovery instead. For ex-
ample, Radinsky and Ailon [24] show that O(n) com-
parisons on average suffice if ǫ-recovery is considered.
Wauthier et al. [28] also provide two algorithms that
achieve O(n) sample complexity for ǫ-recovery and
further show that the bound is tight. Compared to
those works, we show that the sample complexity for
ǫ-recovery can be further improved to be sublinear in
n by carefully incorporating informative item features
using the proposed model.

The use of features in our proposed model also shares
similarities to recent works on incorporating side infor-
mation in matrix completion [7, 8], but here the goal
is ranking recovery instead.

3 RABF Model with Item Features

We propose a rank aggregation model where the rank-
ing is learned by balancing between pairwise compar-
isons and feature information. In our framework, the
ranking score of an item i is modeled as µiw

Txi + ri,
which can be interpreted as that the score is jointly es-
timated by two parts, one is contributed from features
and one is from pure comparisons respectively, with
balancing parameters µi controlling the importance of
two information. We then solve for w and r by fitting
observed pairwise comparisons as follows:

min
r∈Rn,w∈Rd

∑

(i,j)∈SI

ℓ
(

(rj − ri) +wT (µjxj − µixi), Pij

)

+λ(‖w‖2 + ‖r‖2), (1)

where ‖ · ‖ denotes the vector ℓ2 norm, and ℓ is
some convex surrogate loss function. The underly-
ing ranking is estimated by the ranking of the vec-
tor DµXw∗ + r∗ where Dµ = diag([µ1, . . . µn]). Prob-
lem (1) is convex and can be efficiently solved by trans-
forming it to an ERM objective. Details are left in
Appendix A due to space limitations.

The choice of parameters µi is crucial in our model.
Ideally, it can be set based on feature quality of the
item i. However, in reality, feature quality of each
item is usually unknown a priori. In this case, one can
simply treat each feature equally by replacing all µi to
be a single parameter µ, and the resulting formulation
becomes equivalent to the form:

min
r,w

∑

(i,j)∈SI

ℓ
(

(rj − ri) +wT (xj − xi), Pij

)

+λw‖w‖2 + λr‖r‖2, (2)

where λw = λ/µ2 and λr = λ. As a result, we only
need to set (λw, λr) instead of µi, which can be de-
termined using cross validation in practice. Since this
scenario is more practical, we focus on problem (2)
throughout the rest of the paper. We name the pro-
posed model (2) “Rank Aggregation by Balancing Fea-
ture”, or RABF.

Connections to methods without item features.

If λw = ∞, w will be forced to zero, and RABF be-
comes an aggregation method without using any fea-
ture information. For example, the least-square based
method proposed by [19] is to consider Pij = Yij , ℓ
to be squared loss, with λr = 0. The “ranking-SVM”
model [28] is to consider Pij = sgn(Yij) and ℓ to be
hinge loss. Probabilistic models like Bradley-Terry [4]
and its variant [20] can also be described in this form,
where the loss comes from minimizing negative log-
likelihood objectives. These methods, however, disre-
gard informative features even if they are provided.

Connections to learning to rank. If λr = ∞,
RABF becomes a model where ranking scores are es-
timated by a linear function of features. For exam-
ple, RABF objective is equivalent to the objectives
of learning-to-rank models such as Rank-SVM [16],
RankNet [6] and RankRLS [23] by setting ℓ to be
hinge, logistic and squared loss respectively. One can
think of this case as adapting learning-to-rank mod-
els Rank-SVM/RankNet to rank aggregation with fea-
tures under a transductive setting, where training and
testing items are the same. However, since ranking
scores come from a linear function of features, these
models can only guarantee recovery of the true ranking
only if s is in the column space of the feature

matrix X. If features are only partially correlated
to s, the ranking obtained from these models can be
inaccurate. In real-world problems, features are usu-
ally noisy and far from linear, so adapting Rank-SVM
often results in poor performance even if most com-
parisons are observed. This issue may be resolved by
mapping features to a high dimensional space using
kernels, but we will see that empirically RABF out-
performs kernel Rank-SVM, suggesting that RABF is
better than adapting learning-to-rank models.

In brief, by balancing between (λw, λr), RABF is more
effective compared to these two classes of existing mod-
els, as it not only leverages feature information but is
also more robust to noisy features.

4 Sample Complexity Analysis

In this section, we theoretically justify the usefulness
of features in RABF model. We formally quantify the
quality of features in Section 4.3 and show that given
reasonably good features, RABF only requires sublin-
ear number of clean comparisons to achieve ǫ-recovery
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in Section 4.4. We then further generalize the results
to noisy comparison case in Section 4.5. These results
suggest that RABF is more efficient in learning accu-
rate ranking by leveraging item features. All proofs of
theorems and lemmas can be found in Appendix B.

4.1 Preliminaries

We consider the equivalent hard-constraint form of the
original RABF formulation (2) as follows:

min
θ

∑

(i,j)∈SI

ℓ(θT x̄ij , Pij), s.t. ‖w‖≤W, ‖r‖≤R, (3)

where θ = [w; r], x̄ij = [xj − xi; ej − ei] where et
denotes the unit vector on the t-th axis. Let the set of
feasible θ defined as Θ = {θ = [w; r] | ‖w‖ ≤ W, ‖r‖ ≤
R}, and the set of functions FΘ = {f : x̄→ θT x̄ | θ ∈
Θ}. Let θ∗ be the optimal solution of problem (3) and
π∗ = Xw∗ + r∗ be the output ranking scores. We also
assume that the underlying scores are bounded, i.e.
‖s‖∞ ≤ T , and d = O(1) as feature dimension does
not grow as a function of n.

For any feasible θ ∈ Θ and its corresponding ranking
score π = Xw+ r, its Kendall’s Tau distance to s can
be expressed as the following expected risk quantity:

Dkτ (π, s) ≡ R(f) = E(i,j)

[

1(sgn(f(x̄ij)) 6= sgn(Yij))
]

.

Since optimizing the non-convex 0-1 loss is hard, the
“ℓ-risk” defined on a convex surrogate ℓ is usually con-
sidered instead. For the case where comparisons are
score differences, the ℓ-risk can be defined by:

Rℓ(f) = E(i,j)

[

ℓ(f(x̄ij), Yij)
]

,

R̂ℓ(f) =
1

m

∑

(i,j)∈SI
ℓ(f(x̄ij), Yij).

The term Yij is replaced by sgn(Yij) if comparisons are
only the sign of score differences. Note that if observed
comparisons are noiseless, our RABF model is to find
θ∗ parameterizing f∗ = argminf∈FΘ

R̂ℓ(f). For clar-
ity, we will first focus on the noiseless comparison case
from now on. We will generalize the results to the
noisy comparison case in Section 4.5.

4.2 Sampling with Replacement

In our analysis, we consider that each (i, j) ∈ SI is
sampled from the distribution {1 . . . n}×{1 . . . n} uni-
formly i.i.d., i.e. randomly samplem comparisons with
replacement. It may appear that the sampling with re-
placement model is unsuitable for analysis as entries in
SI could be repetitive. However, it turns out that we
can bound the probability of RABF failing to attain ǫ-
recovery when SI is sampled from the collection of sets
of size m by the sampling with replacement model:

Proposition 1 (Reduction of Sampling Models). The
probability that RABF fails on the model where the set

of observed comparisons is uniformly sampled from the
collection of sets of size m is no greater than the prob-
ability that RABF fails on the model where m compar-
isons are sampled independently with replacement.

Here, the failure event is defined as the output ranking
fails to ǫ-recover the true ranking (i.e. Dkτ (π

∗, s) ≥ ǫ).
This proposition facilitates us to focus on the sampling
with replacement model in the following discussion.

4.3 Measuring the Quality of Features

We now quantify the quality of features using
Rademacher model complexity, a learning theoretic
tool to measure the complexity of a function class. We
show that “good features” will lead to a lower model
complexity, and as a result, a good ranking can be
guaranteed with fewer comparisons. We begin with
the following lemma to bound the expected ℓ-risk:

Lemma 1 (Bound of excess risk [2]). Let ℓ be a loss
function with Lipschitz constant Lℓ bounded by B, and
δ be a constant where 0 < δ < 1. Then, with probability
at least 1− δ, for all f ∈ FΘ we have:

Rℓ(f) ≤ R̂ℓ(f) + 2LℓESI

[

R(FΘ)
]

+ B
√

log 1/δ

2m
,

where R(FΘ) := Eσ

[

supf∈FΘ

1
m

∑

σtf(x̄itjt)
]

is the
Rademacher complexity of the function class FΘ.

Also, we introduce some definitions on features X used
in the analysis. A feature matrix X is said to be γ-
close if γ ≤ mini ‖xi‖/X , where X = maxi ‖xi‖. Let
X = UΣV T be the reduced SVD of X, and Uµ(Vµ) be
the left (right) singular vectors with singular values at
least µσ1. With above notations, the following lemma
further relates feature quality to model complexity:

Lemma 2 (Connection Between Model Complexity
and Features). Let features X be γ-close and µ ∈ (0, 1]
be a constant. By setting constraints in (3) to be:

W =

√
d

(µγX√n)‖d‖ and R = ‖r‖, (4)

where d = UµU
T
µ s and r = s − d, the expected

Rademacher complexity is bounded by:

ESI

[

R(FΘ)
]

≤
( √

2d

µγ
√
n
‖d‖+ ‖r‖

)

√

2

m
. (5)

As an explanation, d is the projection of s on the im-
portant part of feature space Uµ, and r is the resid-
ual that is not covered by Uµ. Since d = O(1), as
n goes large, the second term in (5) dominates the
model complexity to be O(‖r‖/√m). As we will see
shortly, a smaller model complexity will lead to better
guarantee, therefore a feature set can be regarded as
good if the resulting ‖r‖ is small. Such a measurement
matches the intuition of good features because smaller
‖r‖ can be accomplished if a large portion of s lies on
Uµ, i.e. much of the underlying ranking information is
contained in the informative part of feature space.
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4.4 Guarantees for Noiseless Comparisons

With the above lemmas, we can now derive the theo-
rems which guarantee the Kendall’s Tau distance be-
tween the ranking from RABF model and the true
ranking for the noiseless comparison case.

Theorem 1 (Guarantee for Pij = Yij). Let δ ∈ (0, 1)
be a constant. Suppose the following assumptions hold:

a. We observe m clean pairwise comparisons Pij = Yij

under the sampling with replacement model.
b. Feature matrix X is γ-close with bounded X .
c. The convex surrogate loss function ℓ is bounded for

each Pij, with ℓ(x, x) = 0.

Then by setting W and R as (4), with probability at
least 1− δ, the optimal π∗ from problem (3) satisfies:

Dkτ (π
∗, s) ≤ O

(

(
√
d+ ‖r‖)

√

1

m

)

+O

(

√

log 1/δ

m

)

.

Theorem 2 (Guarantee for Pij = sgn(Yij)). Let δ ∈
(0, 1) be a constant. Suppose the following assumptions
hold:

a. We observe m clean comparisons Pij=sgn(Yij) un-
der the sampling with replacement model.

b. Feature matrix X is γ-close with bounded X .
c. The convex surrogate loss ℓ is bounded for each Pij.

Then by setting W and R as (4), with probability at
least 1− δ, the optimal π∗ from problem (3) satisfies:

Dkτ (π
∗, s) ≤ O

(

R̂ℓ(f
∗)−R∗

ℓ

)

+O

(

(
√
d+‖r‖)

√

1

m

)

+O

(

√

log 1/δ

m

)

,

where R∗
ℓ = inff Rℓ(f). The sample complexity of

RABF can thus be derived as follows.

Corollary 1 (Sample Complexity for Noiseless Com-
parisons). Given any ǫ > 0 and suppose assump-
tions a-c in Theorem 1 hold. Then with sufficiently
large n, O(‖r‖2/ǫ2) comparisons are sufficient for
RABF to guarantee an ǫ-accurate ranking.

The same sample complexity can be derived for the
case Pij = sgn(Yij) provided that R̂ℓ(f

∗)−R∗
ℓ = O(ǫ).

Corollary 1 suggests that for a better feature set (i.e.
smaller ‖r‖), fewer comparisons are required to achieve
an ǫ-accurate ranking. In particular, if feature quality
is sufficiently good such that ‖r‖2 = o(n), the sample
complexity becomes only sublinear to the number of
items. To show the scenario is realistic, we provide
two concrete instances for such a scenario as follows.

Theorem 3 (Example Scenarios for Sublinear Sample
Complexity). Let X⋆ ∈ R

n×d be a feature set where
s ∈ col(X⋆) and d = O(1). Suppose now O(log n)
items are corrupted in either of the following scenarios:

1. Each corrupted item i has perturbed feature
x⋆
i + ∆xi, where ∆xi are Subgaussian variables,
‖∆xi‖∞ ≤ ξ with a constant ξ.

good features bad features
Method (‖r‖2 = o(n)) (‖r‖2 = O(n))

RABF o(n) O(n)
Comparison only O(n) (and also Ω(n))

Rank-SVM Cannot recover unless s ∈ col(X)

Table 1: Sample complexity of various methods. We
see that RABF is the only one that not only always
recovers the ranking with enough samples but also
achieve sublinear complexity provided good features.

2. Each corrupted item i has shuffled feature x⋆
j from

another corrupted item j.

Then, given such a corrupted feature matrix X,
O(log n) comparisons are sufficient for RABF to guar-
antee an ǫ-accurate ranking.

Comparisons with Other Models. We highlight
the strength of our result by comparing to other
methods. First, for methods without features, it has
been shown that any algorithm based only on com-
parisons requires at least Ω(n) comparisons for ǫ-
recovery [11, 28]. Compared to them, our RABF
model has sample complexity at most O(n) since
‖r‖ ≤ ‖s‖ = O(

√
n), suggesting that RABF is at

least as good as any method based purely on com-
parisons. Note that it is reasonable to meet the Ω(n)
lower bound even if given features, as in an extreme
case where X is a random matrix, the given infor-
mation is same as the case where only comparisons
are given. However, in practice, features are expected
to be informative, and our results show that we can
asymptotically improve sample complexity by leverag-
ing informative features using RABF model.

On the other hand, methods adapted from learning-
to-rank usually cannot even guarantee recoverability
if s does not perfectly lie in the feature space (see dis-
cussions in Section 3). Thus, given a general feature
set, the true ranking s may be infeasible, in which case
the recovery may not be attained even if all n2 clean
comparisons are observed. Compared to them, true
ranking is always feasible in RABF given any feature
set and an ǫ-accurate ranking is guaranteed with O(n)
comparisons. The above comparisons are summarized
in Table 1 and will also be empirically supported in
Section 6.1.

4.5 Guarantees for Noisy Comparisons

So far, our analysis focuses on the case where compar-
isons are clean. We now further show that RABF can
also achieve efficient learning even if comparisons are
noisy. We consider a standard “flip-sign model” [5, 28]
where each observed comparison may be corrupted by
flip-sign noise as Pij = −sgn(Yij) with probability ρc
or remain clean as Pij = sgn(Yij) otherwise, where
ρc ∈ [0, 0.5) is the comparison noise level. Then, the
following theorem shows that we can still obtain an
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accurate ranking efficiently from the RABF model:

Theorem 4 (Sample Complexity for Noisy Com-
parisons). Let X be a γ-close feature set, and each
Pij is now observed under the flip-sign model with
ρc ∈ [0, 0.5). Then by solving RABF model with
squared loss, O(‖r‖2/((1− 2ρc)

2ǫ2)) comparisons suf-
fice to guarantee an ǫ-accurate ranking.

The theorem shows that in noisy comparison case,
RABF can achieve ǫ-recovery with the same order of
sample complexity (w.r.t. n) as in noiseless case, and
the extra price to pay is a 1/(1 − 2ρc)

2 factor. Thus,
given a fixed noise level ρc, sublinear sample complex-
ity can still be achieved provided informative enough
features (i.e. ‖r‖2 = o(n)). It suggests that by lever-
aging features, RABF model can also learn the under-
lying ranking efficiently in noisy comparison case.

5 Extensions

In this section, we turn our attention to another two
related problems—online rank aggregation and rank
prediction of new items. Though settings and goals of
these problems seem to be different from rank aggre-
gation, we show that by extending the RABF model,
we can also approach these problems more effectively
by leveraging item features.

5.1 Online Rank Aggregation with Features

The online rank aggregation problem is widely consid-
ered in modern rating systems, e.g. Glicko [13] and
TrueSkill [14]. The problem can be stated as follows.
Given n items and a feature matrix X, the learner
can only observe a single comparison Pij at each time
stamp t : 1 ≤ t ≤ T and is asked to output an estimate
ranking of s at time T . The problem is at least as hard
as (batch) rank aggregation, since by a reduction, it
can be shown that Ω(n) is still the lower bound for any
method based only on online comparisons. However,
it is not clear if such a Ω(n) barrier can be also tackled
by making use of features as in the batch setting.

We propose an online extension of RABF to achieve
sublinear sample complexity for online rank aggrega-
tion. The core concept is to solve the RABF model by
performing a stochastic gradient update on (w, r) for
each Pij observed at time t. By doing so, we can fur-
ther prove that online-RABF only requires O(‖r‖2/ǫ2)
online comparisons to output an ǫ-accurate ranking,
which again implies that given good features such that
‖r‖2 = o(n), a sublinear number of samples suffices.
See Appendix C for detailed algorithm and theoretical
analysis and Section 6.2 for experimental results.

5.2 Rank Prediction of New Items

We now consider another different task—rank predic-
tion of new items. Suppose in the training phase we

Pij = Yij Pij = sgn(Yij)
Comparisons only LS, SVP MLE, BRE

Features and RABF-SQ∗ RABF-LOG∗, RankNet

comparisons MR RankSVM, Rank-KSVM

Table 2: Setting of each rank aggregation method.
Starred methods are instances of our RABF model (2).

are given the feature matrix X of n items and a set of
comparisons between these items, and in the testing
phase, we are given another new item where only its
feature xnew is available. The task is to predict the
rank of that new item among the seen items given in
the training phase.

As an advantage of leveraging feature information, our
model could be extended to this problem by first de-
riving a ranking of training items using RABF model
and predicting the ranking score of the new item sim-
ply by wTxnew. The rank of wTxnew in sorted Xw+r

will be the predicted rank of the new item. This can
be viewed as treating the new item having 0 compar-
ison score (so rnew = 0) as a priori and only using its
feature score to decide its ranking score.

Readers may notice that feature-based models like
Rank-SVM could also be adapted to this problem in
a similar way, and it is natural to ask what is the ad-
vantage of adapting RABF rather than other feature-
based models. Indeed, it may appear that RABF is
no better than other feature-based methods for rank
prediction since there is no comparison information for
new items that RABF can leverage. However, interest-
ingly, we found that RABF outperforms Rank-SVM if
features are noisy (see Section 6.2). To explain the re-
sult, note that the rank of new item is decided by the
rank of its predicted score among scores of training
items, so how accurate the model recovers the rank-
ing of training items also influences the performance.
Thus, since RABF better recovers the ranking of train-
ing items when features are noisy, it will also rank new
items more accurately in such cases.

6 Experiments

We first conduct experiments on rank aggregation on
both synthetic and real datasets in Section 6.1. We
show that proposed RABF model is effective in two
aspects: 1) it is more robust to noisy information, and
2) it needs fewer comparisons to obtain a good ranking.
In Section 6.2, we conduct experiments on online rank
aggregation and rank prediction for new items, show-
ing that the extensions of RABF also improve perfor-
mance on these problems by leveraging item features.

6.1 Experiments on rank aggregation

Experiment setup. We select two representatives of
the RABF model. For Pij = Yij , we consider RABF-
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SQ as ℓ(t, y) = (t − y)2 to be squared loss, and for
Pij = sgn(Yij), we consider RABF-LOG as ℓ(t, y) =
log(1+e−ty) to be logistic loss. We compare our meth-
ods with other methods including: aggregation with
least squares (LS) [19] and nuclear norm minimization
(SVP) [12], a variant of Bradley-Terry model (MLE)
[20], Balanced Rank Estimation (BRE) [28], method
of manifold regularization (MR) [9], and Rank-SVM
(Rank-SVM) [16], kernel Rank-SVM (Rank-KSVM),
RankNet (RankNet) [6] adapted to rank aggregation.
Settings of each method are summarized in Table 2.
Due to limited space, we only display the plots for
Pij = sgn(Yij). Results for Pij = Yij are similar and
can be seen in Appendix E. Parameters of each model
are selected via cross validation with parameter set
{10k}3k=−2 and all results are averaged with 10 trials.

Synthetic datasets. Our synthetic datasets were
created as follows. We generated a true ranking score
vector s ∈ R

n and uniformly sampled m clean compar-
isons Pij from Y . We also constructed a feature ma-
trix X⋆ ∈ R

n×50 whose top-30 singular vectors span
s. We then added noise to comparisons and features
as follows. For each observed Pij , we flipped its sign
as a noisy comparison with probability ρc. For fea-
ture matrix X⋆, we select each row to be a corrupted
item with probability ρf , and all selected rows were
randomly shuffled to form a noisy feature set X.

First, we compare all methods under various feature
quality. We fix n = 1000, m = 5n, ρc = 0.1 and
vary ρf from 0 to 1. We apply each method to es-
timate a ranking and plot its Kendall’s Tau to s in
Figure 1a. In Figure 1a, we can see that when ρf is
small, Rank-SVM is more effective than methods with-
out features since X contains much information of s.
However, as ρf increases, performance of Rank-SVM
quickly drops since features become misleading, while
methods based only on comparisons will not be influ-
enced. Rank-KSVM uses nonlinear Gaussian kernel
to avoid fitting a linear combination of poor features,
but when feature quality is good, it works worse than
Rank-SVM because of overfitting. On the other hand,
both RABF-LOG and RABF-SQ are the all-time win-
ners under different quality of features. They make
use of good features when ρf is small and are also ro-
bust to bad features by learning a ranking mainly from
comparisons when ρf is large. The results show that
RABF combines advantages of two classes of methods.

We next compare all methods under different compar-
ison quality. We fix n = 1000, m = 5n, ρf = 0.25 and
vary ρc from 0 to 0.5. The results of different methods
are shown in Figure 1b. We observe that RABF-LOG
and RABF-SQ also perform the best among all meth-
ods under each noise level. This shows that RABF is
also less sensitive to noisy comparisons.

Finally, we also conduct experiments to show that
given good features, RABF requires much fewer (i.e.
sublinear) number of samples to achieve ǫ-recovery as
an empirically support of theoretical results. The re-
sults are left in Appendix D due to limited space.

Real-world datasets. We now show the effective-
ness of RABF on real-world datasets where features
are typically noisy. We first consider the Forbes rank-
ing of the world’s biggest public companies, in which
experts ranked the top-2000 global companies in 2014
based on mixed performance factors. For each com-
pany, we also collected its features xi ∈ R

152 corre-
lated to its rank, such as its country, industry, and
financial indices. To conduct the experiment, we ran-
domly sampled m clean comparisons from underlying
true ranking with various m, and applied each method
to estimate the ranking list given feature set X and m
comparisons. The results are shown in Figure 1c. We
can observe that RABF achieves the best Kendall’s
Tau given the same number of comparisons.

Finally, we consider an application of ranking sports
teams. We consider an NBA matchup dataset [3],
where 30 teams had m = 1144 matchups in 2008-
2009 regular season. For each team, a 13-dimensional
feature vector is also collected from the team’s perfor-
mance last season, such as the total points, assists and
rebounds the team made. Apparently, these features
should be only partially correlated to team ranking
since each team may make some upgrades during the
off-season. The goal is to take both matchup results
and team features to produce a good ranking of teams.

The experiment is conducted as follows. We take the
first m/k games in the season as training comparisons
to derive a team ranking π and evaluate the ranking
by using π to predict winning teams on the remaining
m(k− 1)/k games. For each remaining game, we sim-
ply predict the team with the higher rank wins, and
a good ranking should result in higher accuracy (or
lower error rate). Note that the best ranking πopt for
prediction is the ranking based on teams’ winning per-
centage in the remaining games. Thus, we evaluate the
ranking π using the following relative error criterion:

Rel-err(π) = Acc achieved by πopt−Acc achieved by π.

The results are shown in Figure 1d. We see that RABF
generally achieves lower error compared to others. In
particular, RABF-LOG performs the best when the
training games are few (i.e. larger k), suggesting that
a good ranking can be derived with fewer comparisons.

6.2 Experiments for online rank aggregation

and rank prediction of new items

We now show that the extensions of RABF model also
improve performance on online rank aggregation and
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Figure 1: Performance of proposed RABF models on rank aggregation (1a∼1d), online rank aggregation (1e)
and rank prediction of new items (1f). These experiments show the effectiveness of the RABF model for various
ranking problems by leveraging item features.

rank prediction of new items. Details of the extensions
of RABF are stated in Section 5.

Online rank aggregation. We first compare the
online extension of RABF-LOG (oRABF-LOG) with
two state-of-the-art online rank aggregation methods,
Glicko2 [13] and TrueSkill [14]. We consider synthetic
datasets where n = 1000, ρc = 0.1, with ρf from 0.05
to 0.95. 3 We online update all methods given a com-
parison at each time and plot their performance versus
number of online comparisons T in Figure 1e. We first
observe that the performance of Glicko2 and TrueSkill
are almost identical as Kendall’s Tau drops linearly
when T increases. On the other hand, oRABF-LOG
performs at least as good as Glicko2 and TrueSkill even
when features are noisy (ρf ≥ 0.75), and the perfor-
mance is significantly improved when features become
informative. In particular, with reasonably good fea-
tures (ρf ≤ 0.25), oRABF-LOG is able to output a
ranking with bounded Dkτ after only sublinear num-
ber of online comparisons are seen. This experiment
shows the effectiveness and sublinear sample complex-
ity of online RABF model described in Section 5.1.

Rank prediction of new items. Finally, we show
that the RABF model is also useful for rank predic-
tion of new items as stated in Section 5.2. We consider
synthetic datasets where n = 1000, m = 10n, ρc = 0
and ρf from 0 to 1. For each ρf , we randomly select

3Note that Glicko2 and TrueSkill will not be influenced
by ρf as they only take pairwise comparisons into account.

an item i (with feature xi = xnew) as the testing new
item, and the other 999 items as given items for train-
ing. We train both RABF-LOG and Rank-SVM on
seen items, use the obtained models to predict score of
the testing item (which is wTxnew) and evaluate the
prediction using the following pairwise error metric:

1/(n−1)∑j 6=i1
[

sgn(sj−si) 6=sgn(wTxj+rj−wTxnew)
]

.

We repeat the procedure 100 times for each ρf and
plot the average pairwise error in Figure 1f. We ob-
serve that while RABF-LOG and Rank-SVM perform
similarly with good features, RABF-LOG gives better
prediction when features become noisy. As explained
in Section 5.2, the performance will be influenced not
only by the prediction of the new item but also by the
recovered ranking of seen items. Thus, RABF achieves
lower error rate when features are noisy because it can
estimate the ranking of seen items more accurately in
such a case (also see Figure 1a for support).

7 Conclusions

We propose a new RABF model to exploit item fea-
tures for rank aggregation problem. The effect of fea-
tures is analyzed and an improved sample complexity
of the model is derived with the aid of features. The
model is also shown to be advantageous on online rank
aggregation and predicting rank of new items. The ef-
fectiveness of the proposed model is also empirically
supported by several experiments. These results show
the usefulness of item features under the context of
ranking in both theory and practice.



Kai-Yang Chiang, Cho-Jui Hsieh, Inderjit S. Dhillon

Acknowledgement

This research was supported by NSF grants CCF-
1320746, IIS-1546452 and CCF-1564000.

References

[1] P. L. Bartlett, M. I. Jordan, and J. D. Mcauliffe. Con-
vexity, classification, and risk bounds. Journal of the
American Statistical Association, 101(473):138 – 156,
2006.

[2] P. L. Bartlett and S. Mendelson. Rademacher and
Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3:463–
482, 2003.

[3] A. Barzilai. Basketballvalue.com.
http://basketballvalue.com/index.php, 2012.

[4] R. A. Bradley and M. E. Terry. Rank analysis of in-
complete block designs: I. the method of paired com-
parisons. Biometrika, pages 324–345, 1952.

[5] M. Braverman and E. Mossel. Noisy sorting with-
out resampling. In Proceedings of the Nineteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, pages 268–276, 2008.

[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learn-
ing to rank using gradient descent. In ICML, pages
89–96, 2005.

[7] K.-Y. Chiang, C.-J. Hsieh, and I. S. Dhillon. Ma-
trix completion with noisy side information. In NIPS,
pages 3447–3455, 2015.

[8] K.-Y. Chiang, C.-J. Hsieh, and I. S. Dhillon. Robust
principal component analysis with side information.
In ICML, pages 2291–2299, 2016.

[9] F. Diaz. Regularizing query-based retrieval scores. In-
formation Retrieval, 10, 2007.

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[11] J. Giesen, E. Schuberth, and M. Stojaković. Approx-
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Appendix A: Solving the Proposed

Model

To solve the proposed problem (1) efficiently, we can
rewrite the problem as follows. For each comparison
Pij , consider a corresponding vector x̃ij ∈ R

n+d de-
fined by:

x̃ij = [(µjxj − µixi); ej − ei],

where ej (ei) is an n dimensional unit vector with only
the j-th (i-th) position is one. Then the problem can
be written compactly as:

min
θ∈Rn+d

∑

(i,j)∈SI

ℓ(θT x̃ij , Pij) + λ‖θ‖2, (6)

where θ = [w; r] is the parameter set we want to op-
timize. The problem now is in a standard empirical
risk minimization (ERM) form, which can be solved
efficiently using publicly available solvers (e.g. LIB-
LINEAR package [10] used in our experiments).

Appendix B: Proofs

Proof of Proposition 1

Proof (of Proposition 1). The argument and the proof
of the proposition is quite standard in recovery liter-
atures, e.g. [25]. We repeat the high-level idea of the
proposition for completeness. Let Ω be the set of m
comparisons, each of which is sampled independently
from {1 . . . n} × {1 . . . n}. Let Ωt be the set of entries
with cardinality t, uniformly sampled from the collec-
tion of sets of t unique comparisons. Let F(Ω) and
F(Ωm) be the event that the problem (2) fails to out-
put an ǫ-accurate ranking given the comparison set Ω
and Ωm respectively. Then we have:

Pr(F(Ω)) =
m
∑

t=1

Pr(F(Ω) | |Ω| = t)) Pr(|Ω| = t)

=

m
∑

t=1

Pr(F(Ωt)) Pr(|Ω| = t)

≥ Pr(F(Ωm))
m
∑

t=1

Pr(|Ω| = t)

= Pr(F(Ωm)),

where the third inequality is because the failure proba-
bility will not increase as number of samples increases
in Ωt, i.e.

for all t1 ≤ t2, Pr(F(Ωt1)) ≥ Pr(F(Ωt2)).

Proof of Lemma 2

First, we need the following preliminary lemma to
bound the Rademacher complexity of class of linear
functions.

Lemma 3 (Complexity Bound on Linear Function
Class [18]). Let FW be a class of linear functions
{x→ wTx | ‖w‖ ≤ Ŵ}, and each x is bounded by X̂ .
Then the Rademacher complexity of FW is bounded by:

R(FW ) ≤ X̂Ŵ
√

1

m
.

With this lemma, now we can present the proof of
Lemma 2.

Proof (of Lemma 2). By the definition of the
Rademacher complexity of function class FΘ, we
can rewrite R(FΘ) as follows:

R(FΘ) = Eσ

[

sup
θ∈Θ

1

m

m
∑

t=1

σtθ
T x̄itjt

]

= Eσ

[

sup
‖w‖≤W

1

m

m
∑

t=1

σtw
T (xjt − xit)

]

+ Eσ

[

sup
‖r‖≤R

1

m

m
∑

t=1

σtr
T (ejt − eit)

]

, (7)

which contains the complexity of two linear function
classes. Since for any (it, jt), ‖xjt − xit‖ ≤ 2X and
‖ejt − eit‖ ≤

√
2, by applying Lemma 3 to each

term in (7), we can upper bound the complexity of
ESI

[

R(FΘ)
]

by:

ESI

[

R(FΘ)
]

≤ (
√
2XW +R)

√

2

m
. (8)

We now further construct an appropriate setting ofW
and R as follows. Let d = UµU

T
µ s be the projection

of s on the subspace given by the orthogonal matrix
Uµ. Consider ŵ = argmind=Xw ‖w‖2. The minimum
norm solution ŵ is given by the SVD of X, i.e.,

ŵ = X†d = V Σ†UTd = VµΣ
†
µU

T
µ d, (9)

where Σ†
µ = diag(1/σ1, 1/σ2 · · · 1/σd̄). Combining

with the definition of Uµ, we have

‖ŵ‖ ≤ 1

µσ1
‖d‖,

in which σ1 can be further bounded as follows:

σ2
1 = ‖X‖22 ≥

‖X‖2F
d
≥ nγ2X 2

d
.

Therefore, we can upper bound ‖ŵ‖ by:

‖ŵ‖ ≤
√
d

µγX√n‖d‖.
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The lemma is therefore proved by plugging W = ‖ŵ‖
and R = ‖s− d‖ into (8).

Proof of Theorem 1

The following preliminary lemma is required in the
proof to link ℓ-risk to excess risk of 0-1 loss:

Lemma 4 (Consistency of Excess Risk [1]). Let ℓ be
a convex surrogate loss function. Then there exists a
strictly increasing function Ψ, Ψ(0) = 0, such that for
all measurable f :

R(f)−R∗ ≤ Ψ(Rℓ(f)−R∗
ℓ ),

where R∗ = inff R(f) and R∗
ℓ = inff Rℓ(f).

Now we can prove the Theorem as follows.

Proof (of Theorem 1). Consider the problem (3) with
Pij = Yij where W and R are set to be (4). Let
f∗(x̄) = θ∗T x̄ where θ∗ ∈ Θ is the optimal solution of
(3). From the construction in the proof of Lemma 2,

θ̂ = [ŵ, r] is (one of) an optimal solution θ∗ since θ̂
satisfies ℓ(f(x̄ij), Pij) = ℓ(sj − si, Pij) = ℓ(Yij , Yij) =

0 for any (i, j). This suggests that R̂ℓ(f
∗) = 0 and

apparently R∗ = R∗
ℓ = 0. Therefore, in this context,

Lemma 4 becomes:

R(f∗) ≤ Ψ(Rℓ(f
∗)).

On the other hand, since ℓ(f∗(x̄ij), Pij) ≤ B, the ex-
pected ℓ-risk of f∗ can be bounded by Lemma 1 as:

Rℓ(f
∗) ≤ 2Lℓ

( √
2d

µγ
√
n
‖d‖+ ‖r‖

)

√

2

m
+ B

√

log 1
δ

2m
.

(10)
Finally, let LΨ = Ψ(B) be the (bounded) Lipschitz
constant for Ψ. Then, by putting above two equations
together, we can derive the Theorem as:

Dkτ (π
∗, s)

=R(f∗)

≤Ψ(Rℓ(f
∗))

≤LΨ

(

2Lℓ

(

√
2d

µγ
√
n
‖d‖+ ‖r‖

)

√

2

m
+ B

√

log 1
δ

2m

)

=O

(

(
√
d+ ‖r‖

)

√

1

m

)

+O

(

√

log 1/δ

m

)

,

by the fact that ‖d‖ ≤ ‖s‖ = O(
√
n).

Proof of Theorem 2

Proof (of Theorem 2). Again, consider the problem
(3) where W and R are set as (4), except that now

Pij = sgn(Yij) is observed instead. The instance

θ̂ = [ŵ; r] (defined in the proof of Lemma 2) is still
in the feasible solution set Θ, and thus its correspond-
ing function f

θ̂
is also feasible in FΘ. However, un-

like the case Pij = Yij in Theorem 1, θ̂ is not nec-
essarily the optimal solution of problem (3) for the

case Pij = sgn(Yij). Indeed, although θ̂ satisfies
Xŵ + r = s, it may exist another θ∗ ∈ Θ such that
R̂ℓ(f

∗) ≤ R̂ℓ(fθ̂). Nevertheless, θ̂ still provides an in-
stance to show R∗ = 0. Thus, by applying Lemma 4
in this case, we have:

R(f∗) ≤ Ψ(Rℓ(f
∗)−R∗

ℓ ). (11)

Using Lemma 1, the quantity Rℓ(f
∗)−R∗

ℓ can be fur-
ther bounded by:

Rℓ(f
∗)−R∗

ℓ

≤R̂ℓ(f
∗)−R∗

ℓ

+ 2Lℓ

( √
2d

µγ
√
n
‖d‖+ ‖r‖

)

√

2

m
+ B

√

log 1
δ

2m
.

Note that here R̂ℓ(f
∗) − R∗

ℓ can amount a positive
quantity, as f∗ may still make the term ℓ(f∗(x̄ij), Pij)
non-zero in empirical ℓ-risk. However, such a quantity
is expected to be extreme small since R̂ℓ(f

∗) ≤ R̂ℓ(fθ̂),

where R̂ℓ(fθ̂) is the ℓ-risk of the true ranking.

Finally, let LΨ be the Lipschitz constant for Ψ
bounded by Ψ(B). Then the Theorem follows by
putting the above two equations together as:

Dkτ (π
∗, s)

=R(f∗)

≤Ψ(Rℓ(f
∗)−R∗

ℓ )

≤LΨ

(

R̂ℓ(f
∗)−R∗

ℓ

+ 2Lℓ

(

√
2d

µγ
√
n
‖d‖+ ‖r‖

)

√

2

m
+ B

√

log 1
δ

2m

)

=O
(

R̂ℓ(f
∗)−R∗

ℓ

)

+O

(

(
√
d+ ‖r‖

)

√

1

m

)

+O

(

√

log 1/δ

m

)

.

Proof of Theorem 3

Proof (of Theorem 3). We prove the Theorem by
showing that the residual norm ‖r‖ = O(

√
log n) with

high probability, and thus, the claim will be proved by
applying Theorem 1 and 2. To begin with, we con-
sider the first scenario, where each corrupted feature
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can be expressed as x⋆
i +∆xi. The feature matrix X

can thus be described as X⋆+∆X, where in ∆X there
are C ′ log n rows to be non-zero. Let ∆X = U∆Σ∆V

T
∆

be the reduced SVD of ∆X. Then the norm of the
residual can be bounded by:

‖r‖ ≤ ‖U∆U
T
∆s‖

= ‖∆XV∆Σ
−2
∆ V T

∆∆XT s‖
≤ ‖∆X‖2‖Σ−2

∆ ‖2‖∆XT s‖ (12)

where the last term ‖∆XT s‖ ≤
√
dC ′ξT log n. Now,

to bound the first two terms, we need to bound the
largest and smallest singular value of ∆X. Consider
∆X ′ ∈ R

C′ logn×d to be the truncated ∆X where only
non-zero rows in ∆X are left. The spectrum of ∆X ′

is the same as ∆X. Moreover, its two norm can be
bounded by:

‖∆X ′‖2 ≤ ‖ξE‖2 ≤ ξ
√

C ′d log n,

where E ∈ R
C′ logn×d is the matrix with all entries are

one. Also, using the result of [26], we can guarantee
that with high probability σd(∆X ′) ≥ Ω(

√
log n−

√
d),

which suggests w.h.p.:

‖Σ−2
∆ ‖2 =

1

σd(∆X)2
=

1

σd(∆X ′)2
≤ O(

1

log n
).

Thus by substituting all above back to (12), we can
conclude that ‖r‖ = O(

√
log n).

To prove the second case where C ′ log n items have
shuffled features, note that we can still express the
feature matrix X = X⋆ +∆X, where now the row of
∆X follows:

∆xi =

{

xj − xi, if item i is corrupted,

0, otherwise.

We can further bound the infinity norm of ∆xi by
‖∆xi‖∞ ≤ ‖xj − xi‖∞ ≤ ‖xj − xi‖ ≤ 2X . Now the
claim is proved by applying ξ = 2X to the proof of
scenario 1.

Proof of Theorem 4

We will focus on proving the following theorem in-
stead.

Theorem 5 (Kendall’s Tau Guarantee for Noisy Com-
parisons from Flip-Sign Model). Let δ be any constant
such that 0 < δ < 1. Suppose the following assump-
tions hold:

a. We observe m noisy pairwise comparisons under
the flip sign model (parameterized by some noise
level 0 ≤ ρc < 0.5).

b. Feature matrix X is γ-close with bounded X .

Consider the following instance of RABF model (prob-
lem (3)):

min
θ∈Rd+n

∑

(i,j)∈SI

(θT x̄ij − Pij)
2, Pij ∼ Dρc

(13)

s.t. ‖w‖ ≤ (1− 2ρc)W, ‖r‖ ≤ (1− 2ρc)R,

where W and R are set to be (4), and the distribution
Dρc

is defined by:

Pr(Pij = +1 | sgn(Yij) = −1)
=Pr(Pij = −1 | sgn(Yij) = +1)

=ρc,

which describes the flip sign model. Then with prob-
ability at least 1 − δ, the optimal π∗ of the problem
satisfies:

Dkτ (π
∗, s)

≤O
(

min
f∈FΘ

Rℓ(f)−R∗
ℓ

)

+O

(

1

1− 2ρc

(
√
d+ ‖r‖

)

√

1

m

)

+O

(

√

log 1/δ

m

)

.

Theorem 4 follows directly from Theorem 5 provided
that minf∈FΘ

Rℓ(f) − R∗
ℓ = O(ǫ). 4 Thus, proving

Theorem 5 will suffice.

However, Theorem 5 is harder to conclude compared
to Theorem 1 and 2. In particular, note that when
comparisons are generated from flip-sign model, the
solution of the RABF model (13) is no longer the min-
imizer of the problem minf∈FΘ

R̂ℓ(f). It is because

the definition of R̂ℓ(f) is on the clean distribution (i.e.
Pij = sgn(Yij)), while in problem (13) each Pij is sam-
pled from noise distribution Dρc

. Thus, the optimizer
of problem (13) is only the minimizer over empirical
risk of noisy comparisons. We again use θ∗/f∗/π∗ to
denote the optimal parameter/function/corresponding
score vector of problem (13). The challenge is hence
to bound the risk of f∗ with respect to the clean dis-
tribution, i.e. R(f∗).

The high level idea of our proof is as follows. We
first show that the problem (13) is equivalent to an
ERM problem with some “unbiased estimator” for the
loss over clean distribution [21] (stating in Lemma 5
introduced shortly), and the two optimal solutions will
be only different with a (1−2ρc) factor. We then apply
the result in [21] to guarantee the risk of the optimum
of the equivalent problem with respect to the clean
distribution, which concludes the proof.

4Similar to the discussion in the proof of Theorem 2,
such a condition will be satisfied in nature for a sufficiently
expressive FΘ.
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Before presenting the proof, we introduce a lemma
which shows that the problem (13) is equivalent to
another ERM problem with an unbiased estimator of
squared loss with noisy labels (see Section 3 in [21] for
more details):

Lemma 5 (Equivalence of Problem (13) with Unbi-
ased Estimator). The problem (13) is equivalent to the
following optimization problem:

min
θ̃=[w̃;r̃]∈Rd+n

∑

(i,j)∈SI

ℓ̃(θ̃T x̄ij , Pij),

s.t. ‖w̃‖ ≤ W, ‖r̃‖ ≤ R, (14)

where ℓ̃(t, y) is an unbiased estimator of squared loss
from noisy comparisons defined by:

ℓ̃(t, y) =
(1− ρc)(t− y)2 − ρc(t+ y)2

1− 2ρc
.

Furthermore, the optimal solution of the problem (14),
denoted as θ̃∗, satisfies:

θ∗ = (1− 2ρc)θ̃
∗ (15)

where θ∗ is the optimal solution of the problem (13).

The proof of Lemma 5 will be shown in next subsection
for completeness. Now, with this lemma, we are ready
to present the proof of Theorem 5 as follows.

Proof (of Theorem 5). Let θ̃∗/f̃∗/π̃∗ denote the op-
timal parameter/function/corresponding ranking of
problem (14). Then from Theorem 3 of [21], we can
guarantee that with probability at least 1− δ, the risk
of f̃∗ w.r.t. clean distribution is bounded by:

Rℓ(f̃
∗) ≤ min

f∈FΘ

Rℓ(f)+
8Lℓ

1− 2ρc
ESI

[

R(FΘ)
]

+2

√

log 1
δ

2m
.

(16)
However, since θ∗ = (1 − 2ρc)θ̃

∗ from Lemma 5, we
know that the ranking scores of all items in π∗ are
only scaled by a 1 − 2ρc factor with respect to π̃∗

and furthermore, the ranking order will still remain
same as π̃∗. This implies that R(f∗) = Dkτ (π

∗, s) =
Dkτ (π̃

∗, s) = R(f̃∗). Finally, by applying Lemma 2,
Lemma 4 to (16), the claim of Theorem 5 can be ob-

tained as:

Dkτ (π
∗, s)

=R(f̃∗)

≤Ψ(Rℓ(f̃
∗)−R∗

ℓ )

≤LΨ

(

min
f∈FΘ

Rℓ(f)−R∗
ℓ

+
8Lℓ

1− 2ρc

(

√
2d

µγ
√
n
‖d‖+ ‖r‖

)

√

2

m
+ 2

√

log 1
δ

2m

)

=O
(

min
f∈FΘ

Rℓ(f)−R∗
ℓ

)

+O

(

1

1− 2ρc

(
√
d+ ‖r‖

)

√

1

m

)

+O

(

√

log 1/δ

m

)

.

Proof of Lemma 5

Proof (of Lemma 5). First off, we rewrite the unbi-
ased estimator of squared loss ℓ̃(t, y) as:

ℓ̃(t, y) = t2 − 2t

1− 2ρc
y + y2

=

(

t− y

1− 2ρc

)2

+

(

y2 − 1

1− 2ρc
y2
)

.

Therefore, problem (14) can be rewritten as:

min
θ̃∈Rd+n

∑

(i,j)∈SI

ℓ̃(θ̃T x̄ij , Pij)

≡ min
θ̃∈Rd+n

∑

(i,j)∈SI

(

θ̃T x̄ij −
Pij

1− 2ρc

)2

≡min
w̃,r̃

∑

(i,j)∈SI

(

w̃T (xj − xi) + (r̃j − r̃i)−
Pij

1− 2ρc

)2

,

s.t. ‖w̃‖ ≤ W, ‖r̃‖ ≤ R. (17)

Now define two new variables as:

w = (1− 2ρc)w̃

r = (1− 2ρc)r̃ (18)

and substitute (18) to the problem (17). We can fur-
ther derive an equivalent optimization problem w.r.t.
w and r as:

min
w,r

∑

(i,j)∈SI

(

wT (xj − xi) + (rj − ri)− Pij

)2

≡min
θ

∑

(i,j)∈SI

(θT x̄ij − Pij)
2,

s.t. ‖w‖ ≤ (1− 2ρc)W, ‖r‖ ≤ (1− 2ρc)R,
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which is the problem (13) as claimed. In addition,
from (18), the optimal solutions between two problems
satisfy:

θ∗ = [w∗, r∗] = (1− 2ρc)[w̃
∗, r̃∗] = (1− 2ρc)θ̃

∗

and the proof is thus completed.

Proof of Theorem 6

Proof (of Theorem 6). First, note that the frequently
used accumulated regret bound for online learning can-
not be directly applied here, since we want to bound
the excess risk achieved by the final model θ(T ). There-
fore, in this proof we use guarantee from SGD conver-
gence for our online-to-batch conversion. Consider Al-
gorithm 1 as a SGD algorithm that solves the problem
minf∈FΘ

Rℓ(f). Then, with a strongly convex, twice
differentiable ℓ, a standard SGD convergence analysis
(e.g. [17]) tells us that:

Rℓ(f
(T ))−Rℓ(f

∗) ≤ ĈLℓ

2T

with some constant Ĉ. Now consider the batch prob-
lem (6), with m observations to be online comparisons
Algorithm 1 observed (so that m = T ). The problem
shares the same f∗ with Algorithm 1, and furthermore,
its equivalent hard constraint problem in form (3) will
satisfy equation (10). This means that we can guar-
antee with high probability,

Rℓ(f
(T )) ≤2Lℓ

( √
2d

µγ
√
n
‖d‖+ ‖r‖

)

√

2

T

+ B

√

log 1
δ

2T
+

ĈLℓ

2T
,

and the Theorem can be derived by following the same
procedure below equation (10) in the proof of Theo-
rem 1.

Appendix C: Details of Online Rank

Aggregation with Features

As introduced in Section 5.1, we could extend our
RABF model to online rank aggregation by solving
RABF formulation using SGD. Specifically, for each
pairwise comparison Pij observed at time t, we per-
form a SGD update on model parameters (w, r) with

Algorithm 1 Online RABF (oRABF)

Input: feature matrix X, parameters (λw, λr), step
size η.
w(0) ← 0, r(0) ← 0.
for t = 1, 2, · · ·T do

Update w(t+1), r(t+1) using rule (19) based on the
given the observed Pij at time t.

end for

return π(T ) = Xw(T ) + r(T )

the following update rule:

w(t+1) ← w(t)

− η

(

∂ℓ(w(t)T (xj − xi) + rj − ri, Pij)

∂w
+ λww

(t)

)

r(t+1) ← r(t)

− η

(

∂ℓ(w(t)T (xj − xi) + rj − ri, Pij)

∂r
+ λrr

(t)

)

(19)

The procedure of the online-RABF algorithm is shown
in Algorithm 1. The following Theorem provides a
guarantee on the output of the score vector π(T ) from
online-RABF algorithm:

Theorem 6. Suppose assumptions b, c in Theorem 1
hold, ℓ is strongly convex and twice differentiable, and
n is sufficiently large. Then by running Algorithm 1
with appropriate setting of (λw, λr), with high proba-
bility, its output score vector π(T ) satisfies:

Dkτ (π
(T ), s) ≤ O(

√

‖r‖2
T

).

A similar result can also be proved for Pij = sgn(Yij).
As a consequence, Algorithm 1 only needs O(‖r‖2/ǫ2)
online updates to guarantee an ǫ-accurate ranking,
which again implies that given good features such that
‖r‖2 = o(n), sublinear number of samples is sufficient.
The result shows that the sublinear sample complexity
is also achievable by online RABF as in batch setting.
The proof of Theorem 6 can be found in Appendix B.

Appendix D: Empirical Justification of

Sublinear Sample Complexity

In this experiment, we show that sample complexity of
RABF can be sublinear given sufficiently good features
for both noiseless and noisy comparison cases. We con-
sider synthetic datasets generated by the procedure
described in Section 6. We generate several true score
vectors s ∈ R

n with n from 500 to 10000. For each n,
we further generate a perturbed feature matrix X with
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(b) ρc = 0, Pij = sgn(Yij)
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(c) ρc = 0, Pij = Yij
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(d) ρc = 0.1, Pij = sgn(Yij)
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(e) ρc = 0.1, Pij = Yij
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(f) ρc = 0.2, Pij = sgn(Yij)
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(g) ρc = 0.2, Pij = Yij

Figure 2: A synthetic experiment where O(log n) item features are corrupted. Figure 2a shows that the feature
quality is good as ‖r‖2 grows under the order of log n. Figure 2b∼2g show that for our RABF model, O(log n)
comparisons suffice to output an ǫ-accurate ranking with bounded Dkτ , while for methods without features Dkτ

becomes unbounded as n increases. In addition, the argument holds regardless of whether comparisons are
clean (ρc = 0) or noisy (ρc = 0.1, 0.2). The results empirically support the fact that RABF is able to leverage
informative features to achieve faster learning (i.e. sublinear sample complexity) as shown in theory.



Rank Aggregation and Prediction with Item Features

ρf = 50 log n/n, so there are O(log n) items having
corrupted features in X by construction. We first sam-
ple m = 50 log n clean pairwise comparisons (ρc = 0)
and apply the proposed methods (RABF-LOG and
RABF-SQ) and methods without features (MLE and
LS) to recover the ranking. The results are shown in
Figure 2. In Figure 2a, we observe that ‖r‖2 grows
O(log n) in this scenario. Hence, from Corollary 1,
m = O(log n) should suffice for our model RABF to
guarantee an ǫ-accurate ranking with bounded Dkτ .
This is indeed true as suggested in Figure 2c and 2b,
where Kendall’s Tau of the rankings from RABF-SQ
and RABF-LOG do not grow with n provided O(log n)
comparisons. As a comparison, both LS and MLE fail
to output good rankings (i.e. bounded Dkτ ) with only
O(log n) comparisons as n goes large. Furthermore, we
redo the same experiment except that now the sam-
pled comparisons changed to be noisy (ρc = 0.1 and
0.2). The results are shown in Figure 2e to 2f. From
these figures, we can observe that O(log n) samples are
still sufficient for RABF to guarantee a ranking with
bounded Dkτ for noisy comparisons case. These ex-
periments empirically confirm the fact that by making
use of informative features, RABF is able to produce
an ǫ-accurate ranking with only sublinear number of
(either clean or noisy) comparisons.

Appendix E: Experiments of Rank

Aggregation Methods for Pij = Yij

Here we show the experimental results of rank aggrega-
tion methods for Pij = Yij , where the detailed experi-
ment setup is described in Section 6.1. Figure 3a and
3b are results on synthetic datasets where we perturb
features and comparisons and compare the robustness
of each model. Figure 4a and 4b are results on Forbes
and NBA datasets as real-world applications. Similar
to the results for Pij = sgn(Yij), here we see RABF-SQ
also outperforms other existing methods, showing the
effectiveness of our model for rank aggregation task for
the case Pij = Yij .
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Figure 3: Performance of rank aggregation methods for Pij = Yij on synthetic datasets. Similar to Figure 1a
and 1b, RABF-SQ performs the best under different feature and comparison noise levels.
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Figure 4: Performance of rank aggregation methods for Pij = Yij on real-world datasets. Similar to Figure 1c
and 1d, here we see that RABF-SQ model has smaller sample complexity in real-world applications compared
to other methods.


