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Abstract. This paper presents and analyzes a new algorithm for computing eigenvectors of
symmetric tridiagonal matrices factored as LDLt, with D diagonal and L unit bidiagonal. If an
eigenpair is well behaved in a certain sense with respect to the factorization, the algorithm is shown
to compute an approximate eigenvector which is accurate to working precision. As a consequence, all
the eigenvectors computed by the algorithm come out numerically orthogonal to each other without
making use of any reorthogonalization process. The key is first running a qd-type algorithm on the
factored matrix LDLt and then applying a fine-tuned version of inverse iteration especially adapted
to this situation. Since the computational cost is O(n) per eigenvector for an n × n matrix, the
proposed algorithm is the central step of a more ambitious algorithm which, at best (i.e., when all
eigenvectors are well-conditioned), would compute all eigenvectors of an n×n symmetric tridiagonal
at O(n2) cost, a great improvement over existing algorithms.
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1. Setting the scene. This section is addressed to a broader audience than is
the rest of the paper.

A real symmetric matrix has a full set of orthogonal eigenvectors, and users of
software expect computed eigenvectors to be orthogonal to working accuracy. Excel-
lent programs are available to diagonalize real symmetric matrices, so we might be
tempted to say that the problem of computing orthogonal eigenvectors is solved. The
best approach has three phases: (1) reducing the given dense symmetric matrix A
to tridiagonal form T , (2) computing the eigenvalues and eigenvectors of T , and (3)
mapping T ’s eigenvectors into those of A. For an n × n matrix the first and third
phases require O(n3) arithmetic operations each. There are several choices for the
second phase. The QR algorithm is simple but rather slow. The time-consuming part
is the accumulation of O(n2) plane rotations, each of which requires O(n) operations.
Yet we must remember that it is this accumulation that guarantees numerically or-
thogonal eigenvectors, however close some of the eigenvalues may be, and that is a
beautiful feature of the QR algorithm [15, 26]. An attractive feature of QR is that it
requires only O(n2) operations to compute the eigenvalues alone. In principle, once
the eigenvalues are known, one can invoke inverse iteration to independently compute
each eigenvector at a cost of O(n) per eigenvector. For distributed memory computers
this feature would permit computation of the eigenvectors in parallel. The blemish in
this approach is that the computed eigenvectors may not be numerically orthogonal
when some eigenvalues are close, say agreeing to more than three decimals. So inverse
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iteration is augmented with a Gram–Schmidt process to enforce orthogonality, thus
making it an O(n3) procedure in the worst case. A very careful implementation of
this approach is available in the LAPACK library [25]. Since the mid 1990s, stable
versions of the divide and conquer method for Phase 2 have been available [21]. Divide
and conquer is a fast method much of the time but can reduce to an O(n3) process
for rather uniform eigenvalue distributions.

With n near 1000 there are cases where the O(n3) reduction of a dense matrix to
tridiagonal form T takes much less time (10–20%) than computing T ’s eigenvectors
by inverse iteration. For example, the tridiagonal reduction of a certain 1000 × 1000
dense matrix takes about 10 seconds, while LAPACK’s bisection and inverse iter-
ation software takes 93 seconds to compute all the eigenvalues and eigenvectors of
the tridiagonal. The timings for a 2000 × 2000 matrix clearly show the O(n3) be-
havior: 101 seconds for tridiagonalization and 839 seconds for solving the tridiagonal
eigenproblem; detailed timing results are given in section 8.1. This behavior was an
unpleasant surprise for the guardians of LAPACK and was brought to our attention in
1995 by a group of computational quantum chemists who were interested in a parallel
solution. For one of their examples of order 966 there was a cluster of 931 eigen-
values deemed to be close to each other, and the Gram–Schmidt process in inverse
iteration was consuming all the time (see section 8.1). It was time to re-evaluate
Phase 2.

As values of n near 103 become common and values exceeding 104 do occur,
it is hard to stop people dreaming of an algorithm that is guaranteed to compute
a numerically orthogonal set of eigenvectors of T in O(n2) operations in the worst
case. The presence of parallel distributed memory computer systems has vitalized the
search for such an algorithm. Ideally the n eigenvalues would be equally distributed
among all processors, along with a copy of the tridiagonal, and the eigenvectors would
be computed independently at the same time and would turn out to be orthogonal to
working accuracy.

There are formidable obstacles that impede the realization of this dream, and
these will be reviewed in the next section.

This paper presents a central step towards the goal. The method proposed, in
section 4, is Algorithm Getvec for computing a single eigenvector in O(n) time. The
main theorem, Theorem 15 in section 7, shows that in special, but important, situ-
ations (see below) our new algorithm produces an eigenvector that is guaranteed to
be within O(nε) of the true eigenvector whenever the eigenvalue has a relative sepa-
ration from its neighbors that exceeds a threshold tol, say 10−3. It has been known
for years that inverse iteration can produce fully accurate eigenvectors whenever the
eigenvalue has an absolute separation that is above the threshold. So our contribu-
tion is to change absolute to relative in the separation condition. Our examples show
that the resulting speedups can be dramatic (from 839 seconds to 4.6 seconds). Sec-
tion 8 contains detailed experimental results. To establish our result, roundoff errors
included, we were obliged to jettison the traditional representation of a tridiagonal
matrix by its diagonal and next-to-diagonal entries. Instead, we use a bidiagonal
factorization LDLt of a carefully chosen translate of the original tridiagonal T . The
crucial properties that must be satisfied in order for Algorithm Getvec to compute an
accurate approximation to eigenvector v (corresponding to eigenvalue λ of LDLt) are
that (i) both λ and v must be determined to high relative accuracy by the parameters
in L and D and (ii) the relative gap between λ and its nearest neighbor µ in the spec-
trum should exceed tol; |λ − µ| > tol · |λ|. The phrase “determined to high relative
accuracy” is explained in section 2. We say that an LDLt factorization that satisfies
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property (i) is a relatively robust representation (RRR) for the eigenpair (λ,v). A
positive (or negative) definite LDLt factorization is known to be an RRR for all its
eigenpairs [7]; in section 6.1 we give conditions for an indefinite LDLt to be an RRR.

The proof of the main theorem, Theorem 15, rests on the existence of relative
perturbation results for the bidiagonal factors and on a special interpretation of the
roundoff errors in differential qd algorithms that yields what is called mixed stability:
carefully selected small relative perturbations of both the input and the output of our
subroutines reveal the existence of an exact relationship of the form L̄D̄L̄t − λ̂I =
N̄D̄N̄ t, where N̄ is a “twisted” factor defined in section 4 and λ̂ is an approximation
to λ. The translation by λ̂ preserves eigenvectors while shifting the eigenvalue of
interest very close to 0. The middle part of this paper presents the relevant error
analysis. Although essential for our results, this analysis will be indigestible for most
readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry
of the input L, D and the output twisted factors suffice to give the exact relation.

The algorithm presented in this paper, Algorithm Getvec, allows us to compute a
very accurate eigenvector for each eigenvalue that has a large relative separation from
its neighbors (> tol). How do we compute numerically orthogonal approximations to
eigenvectors when relative gaps are smaller? The full method, Algorithm MRRR or
MR3 (Algorithm of Multiple Relatively Robust Representations), crucially depends
on Algorithm Getvec but is beyond the scope of the paper and is described in detail
in [10]. Here we briefly sketch the outline of Algorithm MR3 to show how it is based on
the results of this paper: Compute the extreme eigenvalues of T and start with a base
τ at one end of the spectrum. Compute the positive (or negative) definite factorization
LDLt = ±(T − τI) and find all its eigenvalues to high relative accuracy. Next invoke
Algorithm Getvec on LDLt to compute eigenvectors for all the eigenvalues λ of LDLt

that have large relative gaps. For each cluster of relatively close eigenvalues, pick a new
base τc at, or close to, one end of the cluster. Perform a careful factorization LcDcL

t
c =

LDLt − τcI to get a new RRR. Shifting by τc increases the relative separations of
eigenvalues in the cluster. Refine, to high relative accuracy, the shifted eigenvalues
(of LcDcL

t
c) that now have relative gaps exceeding tol, and invoke Algorithm Getvec

on the new factorization LcDcL
t
c to compute their eigenvectors. Repeat the process

with suitable bases τ until all eigenvectors have been computed. For more details on
Algorithm MR3 the reader is referred to [10], which also addresses the tricky aspect
of showing that the eigenvectors computed using the various LDLt factorizations are
numerically orthogonal.

We now give a brief outline of the paper. Section 2 elaborates on the difficulties
in achieving our goals, and section 3 demonstrates the need to use an LDLt factoriza-
tion to replace T . We present the proposed algorithm in section 4, while the “mixed”
roundoff error analyses and associated commutative diagrams are given in section 5.
To prove the correctness of the proposed algorithm, the various parts of a commuta-
tive diagram are analyzed in detail in section 6, and the main theorem is proved in
section 7. Numerical results and timing comparisons are given in section 8. Finally,
section 9 discusses an extension to the computation of singular vectors.

Householder notation (capital letters for matrices, Greek lowercase for scalars,
and lowercase bold roman for vectors) is generally followed. The norm ‖ · ‖ will refer
to the 2-norm. Sections 3, 4, 5, and 6.2 are derived from [9].

2. Difficulties. The quality of an approximate eigenvector z is measured by its
residual. The following basic result, which goes back to Temple in the 1930s, if not
earlier, will be needed later. See [28, Chapters 10 and 11] for details and a proof.



ORTHOGONAL EIGENVECTORS AND RELATIVE GAPS 861

Theorem 1. Let A = At be a real matrix that has a simple eigenvalue λ with
normalized eigenvector v. For any unit vector z and a scalar µ, closer to λ than to
any other eigenvalue,

| sin ∠(v,z)| ≤ ‖Az − zµ‖/gap(µ),(1)

where gap(µ) = min{|ν − µ| : ν �= λ, ν ∈ spectrum(A)}. In addition, the error in the
eigenvalue is bounded by the residual norm, i.e.,

|µ− λ| ≤ ‖Az − zµ‖.

The sad fact is that a small residual norm does not guarantee an accurate eigen-
vector when gap(µ) is also small. On the other hand, accurate approximations y to
u and z to v (where u is an eigenvector orthogonal to v), in the strong sense that

| sin ∠(u,y)| < nε and | sin ∠(v,z)| < nε,(2)

where ε is the machine precision, do ensure numerical orthogonality of the computed
eigenvectors since

| cos ∠(y,z)| ≤ | sin ∠(u,y)| + | sin ∠(v,z)| < 2nε.

Thus accuracy yields orthogonality. This observation is not as vacuous as it appears.
In the QR algorithm the computed eigenvectors are acceptable because they are or-
thogonal (numerically) and their residuals are small but they are not always accurate
in the sense of (2). Part of the explanation for this anomaly is that A may not de-
termine some of its eigenpairs to high accuracy. Thus the eigenvector v used above
may be highly sensitive as soon as there is uncertainty in the entries of A and so the
concept of accuracy goes out of focus. That is why, in the sense of (2), accuracy is
not the only way to compute numerically orthogonal eigenvectors; the QR algorithm
is a good example.

Let us return to the residual norm. In general , the best we can hope for is to
produce residuals r = r(z) = Az − zµ satisfying

‖r‖ ≤ nε(λmax − λmin).(3)

By (1) and (3), if gap(µ) ≥ tol · (λmax − λmin), where tol is the gap threshold (say
10−3), then

| sin ∠(v,z)| ≤ nε/tol

and accuracy is assured (throughout the paper we assume that n3ε ≤ 1). On the
other hand, in the many cases when gap(µ) � tol, the residual norm must be much
smaller than the right-hand side of (3) in order to deliver the accuracy of (2).

In general we see no possibility for reducing the residuals without using higher
precision arithmetic in parts of the computation. Instead we turn to special matrices
and special situations, in particular, to a symmetric tridiagonal matrix T . Our goal
is to compute residuals satisfying

‖r‖ = ‖Tz − zλ̂‖ ≤ Knε|λ̂|(4)

for some modest constant K independent of z and λ̂, so that, by Theorem 1,

| sin ∠(v,z)| ≤ Knε|λ̂|
gap(λ̂)

=
Knε

relgap(λ̂)
,
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where relgap(λ̂) := gap(λ̂)/|λ̂|. Note that if λ̂ = O(ε(λmax−λmin)), then (4) requires
‖r‖ = O(ε2(λmax − λmin)). How is that possible since even the rounded version of
the “true” eigenvector may not achieve (4)?

To achieve (4) we need three separate properties:
I. The eigenpair (λ,v) must be determined to high relative accuracy by the

matrix parameters. See the next paragraph for definitions.
II. The computed λ̂ must approximate λ to high relative accuracy, i.e., |λ− λ̂| =

O(nε|λ̂|).
III. The vector z must then be computed to satisfy (4).
To achieve property I we discard the traditional representation of T in favor of a

suitable LDLt factorization of T or some translate T − τI. Write li for L(i+1, i) and
di for D(i, i). We say that (λ,v) is determined to high relative accuracy by L and D
if small relative changes, li → li(1 + ηi), di → di(1 + δi), |ηi| < ξ, |δi| < ξ, cause
changes δλ and δv that satisfy

|δλ|
|λ| ≤ K1nξ, λ �= 0,(5)

| sin ∠(v,v + δv)| ≤ K2nξ

relgap(λ)
(6)

for modest constants K1 and K2, say, smaller than 100. We call such an LDLt

factorization an RRR for (λ,v). The backward stable QR algorithm on T cannot
guarantee such accuracy.

Section 3 shows the necessity for the change of representation to LDLt. Prop-
erty II is then easily achieved by a bisection algorithm that uses differential qd trans-
forms (see section 4.1) or, in the positive definite case, by the dqds algorithm; see [13].
Given properties I and II, we can think of satisfying property III by using inverse it-
eration. While traditional inverse iteration often works well in practice, we employ
an elegant alternative that uses a rank-revealing twisted factorization of T − λ̂I to
obtain a starting vector that is guaranteed to be good.

A subtle point in our analysis is that (4) is achieved, not for T or LDLt but for
a small relative perturbation of LDLt.

Much of this paper, from section 4 onwards, is devoted to the algorithm and a
proof to show that property III can be achieved in the presence of roundoff error.

3. Standard tridiagonal form is inadequate. In this section we show that
the standard representation of tridiagonals is inadequate for our purpose of computing
highly accurate eigenvectors. Recent work has shown that some tridiagonal classes
do determine all their eigenvalues to high relative accuracy [8]. However, for many
tridiagonals small relative changes in the diagonal and off-diagonal entries can cause
huge relative changes in the small eigenvalues.

We now give a carefully constructed example which exhibits this relative insta-
bility even when n = 3.

Example 1. Consider the tridiagonal

T1 =

⎡
⎣ 1 −

√
ε ε1/4

√
1 − 7ε/4 0

ε1/4
√

1 − 7ε/4
√
ε + 7ε/4 ε/4

0 ε/4 3ε/4

⎤
⎦



ORTHOGONAL EIGENVECTORS AND RELATIVE GAPS 863

and a small relative perturbation to the off-diagonals of T1,

T1 + δT1 =

⎡
⎣ 1 −

√
ε ε1/4(1 + ε)

√
1 − 7ε/4 0

ε1/4(1 + ε)
√

1 − 7ε/4
√
ε + 7ε/4 ε(1 + ε)/4

0 ε(1 + ε)/4 3ε/4

⎤
⎦ ,

where ε is a small quantity of the order of the machine precision. The two smallest
eigenvalues of T1 and T1 + δT1 are1

λ1 = ε/2 + ε3/2/8 + O(ε2), λ1 + δλ1 = ε/2 − 7ε3/2/8 + O(ε2),

λ2 = ε− ε3/2/8 + O(ε2), λ2 + δλ2 = ε− 9ε3/2/8 + O(ε2),

while

λ3 = 1 + ε + O(ε2), λ3 + δλ3 = 1 + ε + 2ε3/2 + O(ε2).

Thus ∣∣∣∣δλi

λi

∣∣∣∣ = (3 − i)
√
ε + O(ε), i = 1, 2,

and the relative change in these eigenvalues is much larger than the initial relative
perturbations in the entries of T1. Similarly the corresponding eigenvectors of T1 and
T1 + δT1 are

v1 =

⎡
⎢⎣

ε1/4
√

2
(1 +

√
ε

2 ) + O(ε5/4)

− 1√
2
(1 −

√
ε

2 ) + O(ε)
1√
2
(1 − 3ε

4 ) + O(ε3/2)

⎤
⎥⎦ , v1 + δv1 =

⎡
⎢⎣

ε1/4
√

2
(1 + 5

√
ε

2 ) + O(ε5/4)

− 1√
2
(1 + 3

√
ε

2 ) + O(ε)
1√
2
(1 − 2

√
ε) + O(ε)

⎤
⎥⎦

and

v2 =

⎡
⎢⎣

− ε1/4
√

2
(1 +

√
ε

2 ) + O(ε5/4)
1√
2
(1 −

√
ε

2 ) + O(ε)
1√
2
(1 + 3ε

4 ) + O(ε3/2)

⎤
⎥⎦ , v2 + δv2 =

⎡
⎢⎣

− ε1/4
√

2
(1 − 3

√
ε

2 ) + O(ε5/4)
1√
2
(1 − 5

√
ε

2 ) + O(ε)
1√
2
(1 + 2

√
ε) + O(ε)

⎤
⎥⎦ ,

whereby ∣∣∣∣δvi(j)vi(j)

∣∣∣∣ = O(
√
ε) for i = 1, 2 and j = 1, 2, 3.

Since a small relative change of ε in the off-diagonal entries of T1 results in a much
larger relative change in its eigenvalues and eigenvectors, we say that T1 does not
determine its eigenvalues and eigenvectors to high relative accuracy. Consequently, in
the face of roundoff errors, it is unlikely that we can compute numerically orthogonal
eigenvectors without explicit orthogonalization. To corroborate this, we gave the
best possible approximations to λ1 and λ2 as input to the EISPACK and LAPACK
implementations of inverse iteration but turned off all orthogonalization within these

1We carefully constructed this matrix to have the desired behavior, which may be verified by
using a symbol manipulator such as Maple [5] or Mathematica [37].
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procedures. As expected, we found the computed vectors to have dot products as
large as O(

√
ε).

In contrast, when T is positive definite, the representations LDLt and L̃L̃t, where
L̃ = LD1/2, each determine all the eigenpairs to high relative accuracy. See [8,
Theorem 5.13] for more details. Thus these factored forms are preferable to the
standard form for eigenvalue/eigenvector calculations.

When D is not positive definite the situation is more complicated. Extensive
testing shows that even in the face of element growth, LDLt determines its small
eigenpairs to high relative accuracy; see Example 2 in section 6.1. Of course we
may also use the representation UDU t derived from Gaussian elimination in reverse
order or even a twisted factorization (see section 4). The important point is that the
positive definite case is not the only one in which some eigenpairs are determined to
high relative accuracy by a factored form.

Let LDLtv = vλ, λ �= 0. A relative condition number defined in [9] is

κrel(λ) := vtL|D|Ltv/|λ|.

In section 6.1 the true relative condition number covering all the relative perturbations
in L and D is shown to be 1 + κrel(λ). Note that when D is positive definite, then
κrel(λ) = 1, but we do not need such strong stability for our results. A value of
κrel(λ) such as 10 or 100 is adequate.

The focus of this paper is on how to exploit high relative accuracy when it occurs,
not to give conditions for its occurrence. See section 6.1 for some discussion on the
latter.

4. Algorithm Getvec. In this section we present our procedure, Algorithm
Getvec, for computing an eigenvector.

If λ̂ is an accurate approximation to an eigenvalue λ of T , then T − λ̂I is almost
singular. In order to compute the eigenvector, i.e., to solve (T − λ̂I)z ≈ 0, we seek a
factorization that reveals this singularity. As we show below, in the tridiagonal case
we can easily construct such a “twisted” factorization from the forward and backward
triangular factors [31].

Suppose that

LDLt − λ̂I = L+D+L
t
+ = U−D−U

t
−,

where L+ is unit lower bidiagonal and U− is unit upper bidiagonal. The L+D+L
t
+ and

U−D−U
t
− factorizations may be obtained by Gaussian elimination in the forward and

backward directions, respectively. Note that by the discussion in section 3, we have
replaced T by LDLt. It may happen that neither D+ nor D− reveals the singularity
of LDLt − λ̂I. A twisted factorization, written as

LDLt − λ̂I = NkDkN
t
k,

may be constructed by factoring the matrix from top down and from bottom up
meeting at row k. The twisted factor Nk takes rows 1 : k of L+ and rows k : n of U−.
Thus all rows of Nk have two nonzeros, except row k, which has three nonzero entries

(L+(k − 1) 1 U−(k)),

while Dk is diagonal,

Dk = diag(D+(1), . . . , D+(k − 1), γk, D−(k + 1), . . . , D−(n)),
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where we denote L+(i + 1, i) by L+(i), U−(i, i + 1) by U−(i), and the ith diagonal
entries of D+ and D− by D+(i) and D−(i), respectively. We will continue to use this
notation for the rest of the paper.

Clearly, there are n twisted factorizations, one for each k = 1, . . . , n. One such
twisted factor, with n = 6 and k = 3, is shown in Figure 1.

⎡
⎢⎢⎢⎢⎢⎢⎣

x
x x

x x x
x x

x x
x

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Twisted triangular factor Nk with n = 6, k = 3.

The only new entry is γk, the kth diagonal element of Dk, and it is of great
importance. As we show in section 6.2, the nearness to singularity of LDLt − λ̂I is
revealed by a small value of |γk| for an appropriate choice of k. There are several
formulae for γk, for example,

γk =

{
D+(k) + D−(k) − (dk−1l

2
k−1 + dk − λ̂),

D+(k) − (dklk)
2/D−(k + 1),

(7)

where dk = D(k, k), lk−1 = L(k, k − 1), and so (LDLt)kk = dk−1l
2
k−1 + dk and

(LDLt)k,k+1 = dklk.
Naive ways of computing twisted factorizations will not satisfy our demands of

high relative accuracy. The so-called “differential qd transforms” allow accurate com-
putation of twisted factorizations, including more robust expressions for γk. We will,
however, wait until section 4.1 to give details of the qd transforms. Without further
ado, we present Algorithm Getvec, which computes an approximate eigenvector by
first forming the appropriate twisted factorization. In the following we assume that
LDLt is an irreducible tridiagonal, i.e., dili �= 0 for 1 ≤ i ≤ n− 1.

Algorithm Getvec(LDLt, λ̂).

I. Factor LDLt − λ̂I = L+D+L
t
+ by the dstqds transform (Algorithm 4.2 in

section 4.1).

II. Factor LDLt − λ̂I = U−D−U
t
− by the dqds transform (Algorithm 4.4 in

section 4.1).
III. Compute γk for k = 1, . . . , n (by the top formula of (18)). Pick an r such

that |γr| = mink |γk|. Then

NrDrN
t
r = LDLt − λ̂I

is the desired twisted factorization (see Algorithm 4.5 in section 4.1).
IV. Form the approximate eigenvector z by solving N t

rz = er, where er is the
rth column of the identity matrix, which is equivalent to solving

(LDLt − λ̂I)z = NrDrN
t
rz = erγr (since Drer = erγr and Nrer = er)
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via

z(r) = 1,

for i = r − 1, . . . , 1, z(i) =

{
−L+(i)z(i + 1), D+(i) �= 0,
−(di+1li+1/dili)z(i + 2), otherwise,

for j = r, . . . , n− 1, z(j + 1) =

{
−U−(j)z(j), D−(j + 1) �= 0,
−(dj−1lj−1/dj lj)z(j − 1), otherwise.

V. If wanted, compute znrm = ‖z‖ and set z̃ = z/znrm.
Remark 1. Steps I–III above employ differential qd transforms that are essen-

tial in order to exploit the RRR properties of the bidiagonal representation LDLt.
The choice of r in step III ensures that |γr| ≤ 2n|λ̂ − λ| and the residual norm

‖(LDLt− λ̂I)z‖/‖z‖ ≤
√
n|λ̂−λ| under suitable conditions; see Theorems 10 and 11

in section 6.2.
Remark 2. No pivoting is done in steps I and II since the computation assumes

IEEE arithmetic [1]. If some D+(i) (or D−(i)) equals zero, then infinity is produced
at the next step, and the computation of z in step IV handles this special case. See
Remark 3 below.

Remark 3. Let us explain the special handling in step IV above of the case of a
zero entry in D+ or D−. In exact arithmetic, when λ̂ is an eigenvalue, zero entries in
D+ and D− can occur if and only if the corresponding eigenvector has a zero entry.
In particular, when λ̂ is an eigenvalue, then D+(i) = 0 and D−(i+ 2) = 0 if and only
if z(i + 1) = 0. See [31] for more details. Thus, when D+(i) = 0, i < r, we use the

(i+1)st equation of the tridiagonal system (LDLt− λ̂I)z = erγr to connect z(i) with
z(i + 2). The case when D−(j + 1) = 0, j > r, is handled similarly.

Remark 4. The index r is desired to be such that the rth component of the
eigenvector v is largest in magnitude [31]. It is possible to avoid up to half of the 2n
divisions in steps I and II by observing that v(i) cannot be the largest in magnitude if
the eigenvalue is not contained in the ith Gerschgorin disk. This observation enables
us to identify the smallest and largest indices that are candidates for the twist index r.
The savings are often real when n is large since eigenvectors of large matrices often
have negligible entries at either end. See [9, section 3.4.1] for details.

Remark 5. In addition to computing an eigenvector approximation, the above
algorithm can also be used to improve the accuracy of λ̂. By Lemma 12 in section 6.2,
γr/‖z‖2 is the Rayleigh quotient correction to λ̂ and so it can double the number of

correct digits when λ̂ is not quite acceptable, for example, when |λ̂ − λ| = O(
√
ε|λ|)

where λ is the eigenvalue closest to λ̂. Indeed, the refinement of eigenvalues in Al-
gorithm MR3 of [10] is done by switching from bisection to this Rayleigh quotient
correction for increased efficiency.

Remark 6. The vector z often has small numerical support (defined below) when
n is large. This situation can be detected when consecutive entries in z are small
enough in magnitude. Then the remaining entries in z may be set to zero. Suppose
all elements z(j), j < i − 1 < r − 1, are set to zero; then equations i − 2 and i − 1

of (LDLt − λ̂I)z = erγr are no longer satisfied and result in a residual βi−2(z(i −
1)ei−2 − z(i− 2)ei−1), where βi−2 = D+(i− 2)L+(i− 2). For the vector z to be an
accurate eigenvector (see Theorem 1), it suffices to ensure that |z(i−1)| and |z(i−2)|
are small enough that

|D+(i− 2)L+(i− 2)| (|z(i− 1)| + |z(i− 2)|) < ε · gap(λ̂),
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where z(i− 2) = −L+(i− 2)z(i− 1). Similarly when i > r we set the elements z(j),
j > i, to 0 if |z(i)| and |z(i + 1)| are small enough that

|D−(i)U−(i− 1)| (|z(i)| + |z(i + 1)|) < ε · gap(λ̂),

where z(i + 1) = −U−(i)z(i). Thus all our computed vectors have a first and last
nonzero component and we call the index set {first:last} the numerical support of z
and so

|supp(z)| = last − first + 1.

Note that in exact arithmetic the first and last entries of an eigenvector of an unre-
duced tridiagonal matrix are nonzero but in practice they are often extremely small,
and so the above situation is not uncommon.

There is more to be said about the support. Before z is computed all the {γi} are

computed in order to find the smallest among them. By Lemma 11 in [31], as λ̂ → λ,

γr
γi

→ v(i)2

v(r)2
,(8)

where v is λ’s eigenvector. This suggests that if |γi| > |γr|/ε2, then z(i) may be
neglected and it might be argued that this gives us a better way to approximate
supp(z) at the time r is chosen. Unfortunately, machine precision is often not sufficient

to put λ̂ close enough to λ for (8) to hold for indices where |v(i)| �
√
ε, and so this

strategy does not work in practice.
Remark 7. It is not essential that |γr| be minimal. In principle one keeps a list

of indices i such that |γmin| < |γi| < 2|γmin|, and can choose r to be any of these
indices.

Remark 8. Suppose λ̂ approximates λ. As will be shown in section 7, in the
presence of roundoff errors, the best we can hope for is that the computed vector ẑ
satisfies

| sin ∠(ẑ,v)| = O

(
|λ− λ̂|
gap(λ̂)

)
= O

(
nε|λ̂|

gap(λ̂)

)
= O

(
nε

relgap(λ̂)

)
.

Such a ẑ will be an accurate eigenvector when relgap(λ̂) ≥ tol. A natural question
to ask is: can such an accurate approximation be computed when the relative gap is
smaller, say, relgap(λ̂) =

√
ε? A tempting solution is to extend Algorithm Getvec to

do a step of inverse iteration: (LDLt − λ̂I)y = ẑ ⇒ (LDLt − λ̂I)2y ≈ γrer. The
tempting argument is that by doing so,

| sin ∠(y,v)| = O

(
|λ− λ̂|2

gap(λ̂)2

)
= O

(
n2ε2

relgap(λ̂)2

)
,

since the eigenvalues of (LDLt − λ̂I)2 are just (λi − λ̂)2. When relgap(λ̂) =
√
ε and

n is modest, this strategy appears to yield an accurate eigenvector y.
Unfortunately this simple solution does not work. In our experience, even for

small n the extra step of inverse iteration increases the accuracy by a factor of .1 or
.01 but not by a factor of

√
ε as the above reasoning indicates. The failure is due to

the presence of roundoff errors and limitations due to relative perturbation theory.
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The case of relgap(λ̂) � tol requires radically different strategies. One strategy
is to take a new shift to improve the relative gaps and then invoke Algorithm Getvec.
Small relative gaps are not the concern of this paper, but the interested reader may
see [9, 10] for details. Very tight clusters of eigenvalues that are well-separated from
the rest of the spectrum may also be handled by the overlapping submatrix ideas
of [29].

4.1. Differential qd transforms. This section completes the description of
Algorithm Getvec by presenting the differential qd transforms that are needed to
compute the L+D+L

t
+, U−D−U

t
− and NrDrN

t
r decompositions in steps I–III of the

algorithm. Algorithm 4.1 given below is a straightforward implementation of the
transformation

LDLt − µI = L+D+L
t
+.(9)

We call this the “stationary quotient-difference with shift”(stqds) transform for his-
torical reasons. The term was first coined by Rutishauser for similar transformations
that formed the basis of his qd algorithm first developed in 1954 [34, 35, 36]. Al-
though (9) is not identical to the stationary transformation given by Rutishauser, the
differences are not significant enough to warrant inventing new terminology. The term
“stationary” is used for (9) since it represents an identity transformation when µ = 0.
Rutishauser used the term “progressive” instead for the formation of U−D−U

t
− from

LDLt − µI or of L+D+L
t
+ from UDU t − µI.

Algorithm 4.1. (stqds)-stationary qd transform.

D+(1) := d1 − µ

for i = 1, n− 1

L+(i) := (dili)/D+(i)(10)

D+(i + 1) := dil
2
i + di+1 − L+(i)dili − µ(11)

end for

This algorithm loses accuracy when there is element growth. Next we show how
to eliminate some of the additions and subtractions from Algorithm 4.1. We introduce
the intermediate variable si := D+(i)−di, 1 ≤ i ≤ n. A two-term recurrence between
si and si+1, 1 ≤ i ≤ n− 1, may be obtained as follows:

si+1 = D+(i + 1) − di+1

= dil
2
i − L+(i)dili − µ by (11)

= L+(i)li(D+(i) − di) − µ by (10)

= L+(i)lisi − µ.(12)

Using this intermediate variable, we get the so-called differential form of the
stationary qd transform (dstqds). This term was again coined by Rutishauser in the
appendix of [36].
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Algorithm 4.2. (dstqds)-differential form of the stationary qd transform.

s1 := −µ

for i = 1, n− 1

D+(i) := si + di(13)

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − µ

end for

D+(n) := sn + dn

In section 5 we will show that the differential transforms, in the face of roundoff
errors, have attractive properties which play a crucial role in proving the main result
of the paper, Theorem 15.

We also need to compute the transformation

LDLt − µI = U−D−U
t
−,

which we call the “progressive quotient-difference with shift”(qds) transform. The
following algorithm gives an obvious way to implement this transformation.

Algorithm 4.3. (qds)-progressive qd transform.

D−(n) := dn−1l
2
n−1 + dn − µ

for i = n− 1, 1,−1

U−(i) := (dili)/D−(i + 1)(14)

D−(i) := di−1l
2
i−1 + di − (dili)U−(i) − µ(15)

end for

Here we have adopted the convention that d0 = l0 = 0, which justifies (15) for i = 1.
As in the stationary transformation, we introduce the intermediate variable pi :=
D−(i)−di−1l

2
i−1, 1 ≤ i ≤ n. A two-term recurrence between pi and pi+1, 1 ≤ i ≤ n−1,

may be obtained as follows:

pi = D−(i) − di−1l
2
i−1(16)

= di − U−(i)dili − µ by (15)

=
di

D−(i + 1)
(D−(i + 1) − dil

2
i ) − µ by (14)

=
di

D−(i + 1)
· pi+1 − µ.(17)

Using this intermediate variable, we get the differential form of the progressive qd
transform.
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Algorithm 4.4. (dqds)-differential form of the progressive qd transform.

pn := dn − µ

for i = n− 1, 1,−1

D−(i + 1) := dil
2
i + pi+1

t := di/D−(i + 1)

U−(i) := lit

pi := pi+1t− µ

end for

D−(1) := p1

Note that we have denoted the intermediate variables by the symbols si and pi
to stand for stationary and progressive, respectively.

We also need to find all the γk’s in order to choose the appropriate twisted fac-
torization for computing the eigenvector. By (7),

γk = D+(k) − (dklk)
2

D−(k + 1)

= sk + dk − (dklk)
2

D−(k + 1)
by (13)

= sk +
dk

D−(k + 1)

(
D−(k + 1) − dkl

2
k

)
.

Substituting from (16), (17), and (12) in the above equation, we can express γk by
any of the following formulae:

γk =

⎧⎨
⎩

sk + dk

D−(k+1) · pk+1,

sk + pk + µ,

pk + L+(k − 1)lk−1sk−1.

(18)

In section 5, we will see that the top and bottom formulae in (18) are “better”
in the presence of roundoff. When µ is close to an eigenvalue of LDLt, the near-
singularity of LDLt − µI can be revealed by choosing r = argmink|γk|.The twisted
factorization at position r is given by

LDLt − µI = NrDrN
t
r ,

where Dr = diag(D+(1), . . . , D+(r − 1), γr, D−(r + 1), . . . , D−(n)), and Nr is the
corresponding twisted factor that takes rows 1 : r of L+ and rows r : n of U− (see
the beginning of section 4). It may be formed by the following “differential twisted
quotient-difference with shift”(dtwqds) transform which is just the appropriate blend
of Algorithms 4.2 and 4.4.
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Algorithm 4.5. (dtwqds)-differential twisted qd transform.

s1 := −µ

for i = 1, r − 1

D+(i) := si + di

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − µ

end for

pn := dn − µ

for i = n− 1, r,−1

D−(i + 1) := dil
2
i + pi+1

t := di/D−(i + 1)

U−(i) := lit

pi := pi+1t− µ

end for

if r < n

γr := sr +
dr

D−(r + 1)
· pr+1

else

γr := sn + dn

end if

Note: In cases where we have already computed the stationary and progressive
transformations, i.e., we have computed L+, D+, U−, and D−, the only additional
work needed for dtwqds is one multiplication and one addition to compute γr.

We emphasize that the particular qd transforms presented in this section are new.
Similar qd recurrences have been studied by Rutishauser [34, 35, 36]; Henrici [22], [23,
Chapter 7]; Fernando and Parlett [13]; and Yao Yang [38].

4.2. Relation to previous work. Algorithm Getvec presented earlier is close
in spirit to the one presented by Godunov and his co-workers in the USSR in 1985; see
[18] and [17]. They formulated the idea of taking the top entries in the vector from one
sequence and the bottom entries from another one and then choosing the right index
at which to join the two pieces. Independently, Fernando discovered a similar idea
in terms of running the well-known two-term recurrence for D+, both forward from
D+(1) and backward from D+(n) = 0, and then joining the two sequences where they
are closest. In [31], Parlett and Dhillon formulated and proved the double factorization
theorem that gave a formula for computing γk, and showed the relationship of γk to
the diagonal of the inverse. Further, [31] showed that at least one twisted factorization
must reveal the size of the smallest eigenvalue thus yielding an accurate eigenvector
(see Theorem 11 in section 6.2).

However, neither Godunov nor Fernando reaps the full reward for choosing the
best place to join two pieces.

The reasons are quite different in the two cases. Godunov et al. carefully select
approximate eigenvalues on opposite sides of the true eigenvalue for the two sequences
that provide the eigenvector entries. However, they need directed rounding in order
to establish their bounds in finite precision arithmetic. Directed rounding is available
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in most modern computer hardware since it is part of the IEEE floating point stan-
dard [1]; however, the only programming language that makes it available in 2002
is C99. It is not yet implemented in Fortran 2000. Fernando does not consider the
effects of roundoff error but, as with Godunov et. al., computes the two factorizations
from a translate of the original matrix T that may not define its eigenvalues to high
relative accuracy. The 3 × 3 example in section 3 illustrates the problem: the algo-
rithm given by Fernando in section 5 of [14], even with highly accurate eigenvalue
approximations, can yield eigenvectors with error exceeding

√
ε.

Thus we use the LDLt representation instead of the diagonal and off-diagonal
elements of T . Even use of a good representation is not enough to ensure that the
residual norm ‖(LDLt − λ̂I)z‖ = O(ε|λ − λ̂|) for the computed z. For example,
if Rutishauser’s stationary qd algorithm (stqds) were used to compute L+ and D+

satisfying LDLt− λ̂I = L+D+L
t
+ we could not prove our main result, Theorem 15 in

section 7. That result requires a second innovation, beyond the use of LDLt, namely
use of the differential qd algorithms introduced in section 4.1 to compute the entries of
the twisted factors. The crucial relative mixed error analyses as will be shown by the
commutative diagrams in section 5 are not valid for Rutishauser’s implementation.
Hence the LDLt representation and differential qd transforms are both crucial to our
goal of computing orthogonal eigenvectors when relative gaps are large.

5. Roundoff error analysis. In this section, we exhibit desirable properties of
the differential qd transforms of section 4.1 in the face of roundoff errors. The error
analysis that follows is somewhat daunting and a trustful reader may wish to skip the
proofs. However, the very special “interpretation” of the roundoff errors is the rock
on which our main result, Theorem 15, is built.

First, we introduce our model of arithmetic. We assume that the floating point
result of a basic arithmetic operation ◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 + η) = (x ◦ y)/(1 + δ),

where η and δ depend on x, y, ◦, and the arithmetic unit but satisfy

|η| < ε, |δ| < ε

for a given ε that depends only on the arithmetic unit. We shall choose freely the
form (η or δ) that suits the analysis. As usual, we will ignore O(ε2) terms in our
analyses. We also adopt the convention of denoting the computed value of x by x̂.

Ideally, we would like to show that the differential qd transforms introduced
in section 4.1 produce an output that is exact for data that is very close to the
input matrix. Since we desire relative accuracy, we would like this backward error
to be relative. However, our algorithms do not admit such a pure backward analysis
(see [38] for a backward analysis where the backward errors are absolute but not
relative). Nevertheless, we will give a hybrid interpretation involving both backward
and forward relative errors.

The best way to understand our first result is by studying Figure 2. Following
Rutishauser, we merge elements of L and D into a single array,

Z := {d1, l1, d2, l2, . . . , dn−1, ln−1, dn}.

Likewise, the array
⇀

Z is made up of elements
⇀

di and
⇀

li; Ẑ+ contains elements D̂+(i),
L̂+(i), and so on. The acronym ulp in Figure 2 stands for units in the last place held.
It is the natural way to refer to relative differences between numbers. When a result
is correctly rounded the error is not more than half an ulp.
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�

�

�

�
⇀

Z
⇀

Z+

Z Ẑ+

dstqds

exact

dstqds

computed

change each

di by ≤ 1 ulp,

li by ≤ 3 ulps.

change each
⇀

D+(i) by ≤ 2 ulps,
⇀

L+(i) by ≤ 3 ulps.

Fig. 2. Effects of roundoff—dstqds transform.

Notational Guide. In all results of this section, numbers in the computer are
represented either by letters without any overbar, such as Z, or by “hat-
ted” symbols, such as Ẑ+. For example, in Figure 2, Z represents the input
data, while Ẑ+ represents the output data obtained by executing the dstqds

algorithm in finite precision. Intermediate arrays, such as
⇀

Z and
⇀

Z+, are
introduced for our analysis but are typically unrepresentable in a computer’s
limited precision. Note that we have chosen the symbol ⇀ in Figure 2 to
indicate a process that takes rows and columns of a tridiagonal in increasing
order, i.e., from “left to right.” Later, in Figure 3 we use ↼ to indicate a
“right to left” process.

Figure 2 states that the computed outputs of the dstqds transform (Algorithm

4.2), D̂+(i) and L̂+(i), are small relative perturbations of the quantities
⇀

D+(i) and
⇀

L+(i) which in turn are the results of an EXACT dstqds transform applied to the

perturbed matrix represented by
⇀

Z. The elements of
⇀

Z are obtained by small relative
changes in the inputs L and D. Analogous results hold for the dqds and dtwqds
transforms (Algorithms 4.4 and 4.5). As we mentioned above, this is not a pure
backward error analysis. We have put small perturbations not only on the input
but also on the output in order to obtain an exact dstqds transform. This property
is called mixed stability in [4, 6] and numerical stability in [24] but note that our
perturbations are relative, not absolute.

Theorem 2. Let the dstqds transform be computed as in Algorithm 4.2. In the
absence of overflow and underflow, the diagram in Figure 2 commutes and

⇀

di (
⇀

li)

differs from di (li) by at most 1 (3) ulps, while D̂+(i) (L̂+(i)) differs from
⇀

D+(i)

(
⇀

L+(i)) by at most 2 (3) ulps.
Proof. We write the exact equations satisfied by the computed quantities:

D̂+(i) = (ŝi + di)/(1 + ε+),

L̂+(i) = di li(1 + ε∗)(1 + ε/)/D̂+(i) =
di li(1 + ε∗)(1 + ε/)(1 + ε+)

ŝi + di
,

and ŝi+1 =
L̂+(i) liŝi(1 + ε◦)(1 + ε∗∗) − µ

1 + εi+1
.

In the above, all ε’s depend on i but we have chosen to single out the one that accounts
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�

�

�

�
↼

Z
↼

Z−

Z Ẑ−

dqds

exact

dqds

computed

change each

di by ≤ 3 ulps,

li by ≤ 3 ulps.

change each
↼

D−(i) by ≤ 2 ulps,
↼

U−(i) by ≤ 4 ulps.

Fig. 3. Effects of roundoff—dqds transform.

for the subtraction as it is the only one where the dependence on i must be made
explicit. In more detail the last relation is

(1 + εi+1)ŝi+1 =
di l

2
i ŝi

ŝi + di
(1 + ε∗)(1 + ε/)(1 + ε+)(1 + ε◦)(1 + ε∗∗) − µ.

The trick is to define
⇀

di and
⇀

li so that the exact dstqds relation

⇀
si+1 =

⇀

di
⇀

l2i
⇀
si

⇀
si +

⇀

di
− µ(19)

is satisfied. This may be achieved by setting
⇀

di = di(1 + εi),
⇀
si = ŝi(1 + εi),(20)

⇀

li = li

√
(1 + ε∗)(1 + ε/)(1 + ε+)(1 + ε◦)(1 + ε∗∗)

1 + εi
.

In order to satisfy the exact mathematical relations of dstqds,

⇀

D+(i) =
⇀
si +

⇀

di,(21)

⇀

L+(i) =

⇀

di
⇀

li
⇀
si +

⇀

di
,(22)

we set

⇀

D+(i) = D̂+(i)(1 + ε+)(1 + εi),

⇀

L+(i) = L̂+(i)

√
(1 + ε◦)(1 + ε∗∗)

(1 + ε∗)(1 + ε/)(1 + ε+)(1 + εi)
,(23)

and the result holds.
A similar result holds for the dqds transform.
Theorem 3. Let the dqds transform be computed as in Algorithm 4.4. In the

absence of overflow and underflow, the diagram in Figure 3 commutes and
↼

di (
↼

li)
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differs from di (li) by at most 3 (3) ulps, while D̂−(i) (Û−(i)) differs from
↼

D−(i)

(
↼

U−(i)) by at most 2 (4) ulps.
Proof. The proof is similar to that of Theorem 2. The computed quantities satisfy

D̂−(i + 1) = (di l
2
i (1 + ε∗)(1 + ε∗∗) + p̂i+1)/(1 + ε+),(24)

t̂ = di(1 + ε/)/D̂−(i + 1),

Û−(i) = lit̂(1 + ε◦) =
di li(1 + ε/)(1 + ε◦)(1 + ε+)

di l2i (1 + ε∗)(1 + ε∗∗) + p̂i+1
,

p̂i =
(di/D̂−(i + 1))p̂i+1(1 + ε/)(1 + ε◦◦) − µ

1 + εi
,

⇒ (1 + εi)p̂i =
di p̂i+1

di l2i (1 + ε∗)(1 + ε∗∗) + p̂i+1
(1 + ε/)(1 + ε◦◦)(1 + ε+) − µ.

Note that the above ε’s are different from the ones in the proof of the earlier Theo-
rem 2. As in Theorem 2, the trick is to satisfy the exact relation,

↼
pi =

↼

di
↼
pi+1

↼

di
↼

l2i +
↼
pi+1

− µ,(25)

which is achieved by setting

↼

di = di(1 + ε/)(1 + ε◦◦)(1 + ε+),
↼
pi = p̂i(1 + εi),(26)

and
↼

li = li

√
(1 + ε∗)(1 + ε∗∗)(1 + εi+1)

(1 + ε/)(1 + ε◦◦)(1 + ε+)
,(27)

so that
↼

di
↼

l2i = di l
2
i (1 + ε∗)(1 + ε∗∗)(1 + εi+1).

The other dqds relations,

↼

D−(i + 1) =
↼

di
↼

l2i +
↼
pi+1,(28)

↼

U−(i) =

↼

di
↼

li
↼

di
↼

l2i +
↼
pi+1

,(29)

may be satisfied by setting

↼

D−(i + 1) = D̂−(i + 1)(1 + ε+)(1 + εi+1),

↼

U−(i) =
Û−(i)

1 + ε◦

√
(1 + ε∗)(1 + ε∗∗)(1 + ε◦◦)

(1 + ε/)(1 + ε+)(1 + εi+1)
.(30)

By combining parts of the analyses for the dstqds and dqds transforms, we can
also exhibit a similar result for the twisted factorization computed by Algorithm 4.5.
In Figure 4, the various Z arrays represent corresponding twisted factors that may
be obtained by “concatenating” the stationary and progressive factors. In particular,
for any twist position k,

Ẑk := {D̂+(1), L̂+(1), . . . , L̂+(k − 1), γ̂k, Û−(k), D̂−(k + 1), . . . , Û−(n− 1), D̂−(n)},
Z̄k := {

⇀

D+(1),
⇀

L+(1), . . . ,
⇀

L+(k − 1), γ̄k, Ū−(k),
↼

D−(k + 1), . . . ,
↼

U−(n− 1),
↼

D−(n)},
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�

�

�

�

Z̄ Z̄k

Z Ẑk

dtwqds

exact

dtwqds

computed
change each

di by ≤ 1 ulp,

1 ≤ i < k,

li by ≤ 3 ulps,

1 ≤ i < k,

dk by ≤ 4 ulps,

lk by 3 1
2
ulps,

di by ≤ 3 ulps,

k < i ≤ n,

li by ≤ 3 ulps,

k < i < n.

change each
⇀

D+(i) by ≤ 2 ulps, 1 ≤ i < k,
⇀

L+(i) by ≤ 3 ulps, 1 ≤ i < k.

γ̄k by ≤ 2 ulps, Ū−(k) by 4 1
2
ulps,

↼

D−(i) by ≤ 2 ulps, k < i ≤ n,
↼

U−(i) by ≤ 4 ulps, k < i < n.

Fig. 4. Effects of roundoff—dtwqds transform.

while

Z̄ := {
⇀

d1,
⇀

l1, . . . ,
⇀

lk−1, d̄k, l̄k,
↼

dk+1, . . . ,
↼

ln−1,
↼

dn}.

Ẑk and Z̄k represent the twisted factorizations

N̂kD̂kN̂
t
k and N̄kD̄kN̄

t
k,

respectively.
Theorem 4. Let the dtwqds transform be computed as in Algorithm 4.5. In the

absence of overflow and underflow, the diagram in Figure 4 commutes.
Proof. The crucial observation is that for the exact stationary transform (i.e.,

(19), (21), and (22)) to be satisfied for 1 ≤ i ≤ k − 1, roundoff errors need to be put
only on d1, d2, . . . , dk−1 and l1, l2, . . . , lk−1. Similarly for the progressive transform
(i.e., (25), (28) and (29)) to hold for k + 1 ≤ i < n, roundoff errors need to be put
only on the bottom part of the matrix, i.e., on dk+1, . . . , dn and lk+1, . . . , ln−1.

Next we turn to the entries associated with the twist position k. By the top
formula in (18),

γ̂k =

(
ŝk +

dk

D̂−(k + 1)
p̂k+1(1 + ε−/ )(1 + ε−◦◦)

)/
(1 + εk).

Note that in the above, we have put the superscript “−” on some ε’s to indicate that
they are identical to the corresponding ε’s in the proof of Theorem 3. By (20) and
(24),

(1 + εk)γ̂k =
⇀
sk

1 + ε+
k

+
p̂k+1 · dk(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)

dk l2k(1 + ε−∗ )(1 + ε−∗∗) + p̂k+1

⇒ (1 + εk)(1 + ε+
k )γ̂k =

⇀
sk +

p̂k+1(1 + ε−k+1) · dk(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)(1 + ε+
k )

dk l2k(1 + ε−∗ )(1 + ε−∗∗)(1 + ε−k+1) + p̂k+1(1 + ε−k+1)
,
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where the superscript “+” indicates that the corresponding ε’s are identical to those
in the proof of Theorem 2. Note that we are free to attribute roundoff errors to dk
and lk in order to preserve exact mathematical relations at the twist position k. In
particular, by setting

γ̄k = γ̂k(1 + εk)(1 + ε+
k ),

d̄k = dk(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)(1 + ε+
k ),

l̄k = lk

√
(1 + ε−∗ )(1 + ε−∗∗)(1 + ε−k+1)

(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)(1 + ε+
k )

and recalling that
↼
pk+1 = p̂k+1(1+ε−k+1) (see (26)), the following exact relation holds:

γ̄k =
⇀
sk +

d̄k
↼
pk+1

d̄k l̄2k +
↼
pk+1

.

In addition, the exact relation

Ū−(k) =
d̄k l̄k

d̄k l̄2k +
↼
pk+1

holds if we set

Ū−(k) =
Û−(k)

1 + ε−◦

√
(1 + ε−∗ )(1 + ε−∗∗)(1 + ε−◦◦)(1 + ε+

k )

(1 + ε−/ )(1 + ε−k+1)(1 + ε−+)
,(31)

where ε−◦ is identical to the ε◦ of (30). Note that since d̄k l̄
2
k =

↼

dk
↼

l2k, the (k + 1)st

diagonal element in Z̄k remains
↼

D−(k + 1) as

d̄k l̄
2
k +

↼
pk+1 =

↼

dk
↼

l2k +
↼
pk+1 =

↼

D−(k + 1) from (28).

Note: A similar result may be obtained if γk is computed by the last formula
in (18).

6. Analysis of the commutative diagram. The roundoff error analysis of the
previous section shows that the commutative diagram of Figure 4 holds, with k = r,
for Algorithm Getvec’s computation, which forms the twisted factorization NrDrN

t
r

and then computes an approximate eigenvector. Figure 5 lays out the essentials
given in Figure 4 and shows that the computed vector ẑ can be connected to the
eigenvector v in three steps: (i) the right side relates ẑ to a vector z̄, (ii) the bottom
arrow connects z̄ to an eigenvector v̄, and (iii) the left side relates v̄ to the desired
eigenvector v. In the rest of this section, we analyze each of these relationships in
detail, before bringing it all together in section 7.

6.1. The left side—relative perturbation theory. The left side of Figure 5
examines the closeness of the eigenvector v to v̄ when small relative changes are made
to the nontrivial entries of L and D. When LDLt is positive (or negative) definite,
it is well known that it determines its eigenvalues and eigenvectors to high relative
accuracy [7], i.e., LDLt is an RRR; see (5) and (6). However, in many cases, an
indefinite LDLt factorization also determines its eigenpairs to high relative accuracy.
This section discusses conditions under which this can happen.

In the following analysis LDLt should be thought of as the most familiar of the n
twisted factorizations and the results below extend, with small modifications, to any
twisted factorization.
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�

�

�

�
• N̄rD̄rN̄

t
r z̄ = erγ̄r

L̄D̄L̄t − λ̂I = N̄rD̄rN̄
t
r ,

⇒ (L̄D̄L̄t − λ̂I)z̄ = erγ̄r.

• N̂rD̂rN̂
t
r , ẑ•LDLtv = vλ

•L̄D̄L̄tv̄ = v̄λ̄
dtwqds

exact

dtwqds

computed

3 to 3 1
2 ulps in L

1 to 4 ulps in D 2 ulps in D̄r

3 to 4 1
2 ulps in N̄r

Fig. 5. Relationships connecting v to ẑ.

6.1.1. Multiplicative form. For the sake of completeness, we present the fol-
lowing well-known lemma; see [8, Lemma 5.7] and its proof.

Lemma 5. Let L be a unit bidiagonal matrix with no zero off-diagonal entries.
Independent relative perturbations in the off-diagonals may be represented by the two-
sided scaling

E−1LE,

where E = diag(e1, . . . , en) is a diagonal scaling matrix unique to within a constant
multiple, and independent of L.

Proof. Let Lijαij represent the perturbation of Lij . The equations to be solved
are

Li+1,iei
ei+1

= Li+1,iαi+1,i, 1 ≤ i < n.

Letting en = 1 we get en−1 = αn,n−1. Decreasing the index i further, we get

ei = ei+1 · αi+1,i =

n−1∏
j=i

αj+1,j , i = n− 1, n− 2, . . . , 1.

Independent relative perturbations to nonzero entries of D are directly represented
by a diagonal scaling matrix that we choose to write as F 2. Thus independent relative
perturbations to the nontrivial entries of L and D lead to the perturbed matrix

T̄ = L̄D̄L̄t = (E−1LE)(FDF )(ELtE−1).(32)

Lemma 6. Let Algorithm dtwqds be executed in finite precision arithmetic. The
matrices E and F that account for changes in the input L and D in order for the
commutative diagram of Figure 4 to hold (see Theorem 10) satisfy

(1 − ε)6n−1 < ‖(EF )2‖ < (1 + ε)6n−1,
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where ε is the machine precision.
Proof. Let l̄i = li(1 + ηi) and d̄i = di(1 + δi). With twist index k, the bounds on

ηi and δi satisfy

i < k :(1 − ε)3 < 1 + ηi < (1 + ε)3, 1 − ε < 1 + δi < 1 + ε,

i = k :(1 − ε)7/2 < 1 + ηi < (1 + ε)7/2, (1 − ε)4 < 1 + δi < (1 + ε)4,

i > k :(1 − ε)3 < 1 + ηi < (1 + ε)3, (1 − ε)3 < 1 + δi < (1 + ε)3.

From Lemma 5 the bound on ‖E‖ = maxi |ei| is maximized for e1, the product of
all the independent perturbations, which is upper bounded by (1 + ε)3(n−1)+1/2. In
contrast di −→ dif

2
i , i = 1, . . . , n, and f2

1 < 1 + ε unless the twist is at k = 1 when
f2
1 < (1 + ε)4. Thus

‖(EF )2‖ = max
i

(eifi)
2 < (1 + ε)6(n−1)+1(1 + ε)4 = (1 + ε)6n−1,

‖(EF )2‖ = max
i

(eifi)
2 > (1 − ε)6(n−1)+1(1 − ε)4 = (1 − ε)6n−1.

Let (λ,v) be an eigenpair of LDLt, λ �= 0, ‖v‖ = 1. We may write T̄ in (32) in
standard multiplicative form, i.e., with “outer” perturbations only, as

T̄ = GtTG = GtLDLtG,(33)

where G := L−tFELtE−1

is an upper triangular matrix sometimes close to I. There is an eigenpair (λ̄, v̄) of T̄
associated with (λ,v) and we want to investigate the closeness of λ̄ to λ and v̄ to v.

All the published results in relative perturbation theory known to us (see [11,
27, 2]) consider the form (33) above and do not require bidiagonal form for L. The
perturbation bounds depend on ‖Gt−G−1‖ and/or ‖GtG−I‖; when these quantities
are small, LDLt can be shown to be an RRR for all the eigenvalues [12, 11, 27].
Yet G depends on L and will be far from orthogonal when L is ill-conditioned for
inversion. However, in our experiments, we have often encountered situations where
LDLt is indefinite, L is ill-conditioned and the small eigenvalues in the interior of the
spectrum are relatively robust while some of the larger ones are very sensitive.

So the desired bounds must not be uniform over the eigenvalues. In the work we
have examined (see [2]), the bounds either are uniform or do not treat eigenvectors or
are not computable. The value of the representation (32), along with Lemma 6 above,
is that E and F are independent of L in the bidiagonal case. The price we pay for
(32) is the presence of the “inner” scalings EF that bring us to new territory. There
is a way to turn this inner scaling into a standard congruence and it was introduced
in the earliest papers on computing singular values of a matrix C. Thus C −→ XCY t

corresponds to

(
O C
Ct O

)
−→

(
X O
O Y

)(
O C
Ct O

)(
Xt O
O Y t

)
,

and the eigenvalues of the double matrix are the singular values of C and their nega-
tions, while the eigenvectors contain the right and left singular vectors. All the ex-
tensive perturbation theory for symmetric matrices has been brought to bear on the
double matrix [11].
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Our case T = LDLt is more difficult. In order to follow the approach indicated
above, let Ω := sign(D) = diag(±1) and observe that (32) corresponds to

(
O L|D|1/2

Ω|D|1/2Lt O

)
−→

(
E−1 O
O EF

) (
O L|D|1/2

Ω|D|1/2Lt O

) (
E−1 O
O EF

)
,

(34)

where we have used the commutativity EFΩ = ΩEF . When Ω �= I, our double matrix
is not normal and its eigenvalues are the square roots of those of LDLt together with
their negations. So the spectrum of the double matrix lies on both the real and the
imaginary axes.

The first order perturbation analyses in [32, 30] foreshadow the upcoming results
in section 6.1.2 and give realistic (relative) condition numbers that discriminate among
the eigenpairs. Nevertheless those first order expressions do not yield bounds; the
higher order terms are not controlled. One of us has developed bounds [33] on the
change in both λ and v, under mild conditions, and these bounds are close in form to
the first order perturbation results in [32, 30], and are close to Demmel and Kahan’s
results in [7] when T is positive definite. In the next section we adapt these bounds to
our situation. Of particular interest is the bound on the change in an eigenvector v.

6.1.2. Perturbation bounds. We present here the quantities that govern the
sensitivity of λ and v to the special perturbations L −→ E−1LE,D −→ FDF as
given in section 6.1.1. In [9] Dhillon used first order perturbation theory to introduce
a relative condition number corresponding to (only) the inner perturbations EF in
(32),

κrel(λ) :=
vtL|D|Ltv

|λ| =
vtL|D|Ltv

|vtLDLtv| ,

and it plays the dominant role in λ’s sensitivity to inner and outer perturbations.
This section gives bounds that account for both inner and outer perturbations

and are derived in [33] using the double matrix form of (34); however, we quote results
from [33] without giving the derivations, as they are much too long to be included
here. In (34), when Ω = I the spectral decomposition of the symmetric double matrix
is intimately related to the SVD of L|D|1/2. For general Ω, we need to introduce the
hyperbolic SVD (HSVD) of a matrix.

In the definitions that follow, K denotes a general real square matrix, and unlike
L|D|1/2, K need not be bidiagonal. Given a signature matrix Ω = diag(ω1, . . . , ωn),
ωi = ±1, and the spectral decomposition KΩKt = V ΛV t, V t = V −1, the hyperbolic
SVD (HSVD) of K, introduced in [3], is defined as

K = V ΣP t with P tΩP = Ω̄,

where Ω̄ is another signature matrix congruent to Ω. Note that Λ = Σ2Ω̄. Without
loss of generality, we can order the eigenvalues in Λ so that Ω̄ = Ω; hence the HSVD
can be written as

K = V ΣP t with P tΩP = Ω.(35)

When Ω = I, the standard SVD is recovered. ΩP holds the right Ω-singular vectors
of K since KΩP = V ΣΩ while V holds the left Ω-singular vectors since KtV = PΣ.
Thus (σ,v,Ωp) can be called an Ω-singular triple since

KΩp = vσω, Ktv = pσ.(36)
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Note that there are alternate interpretations: (i) P is the eigenvector matrix of the
definite pair (KtK,Ω) as KtK − µΩ = P (Σ2 − µΩ)P t,Σ2 = |Λ|, and (ii) ΩP is the
eigenvector matrix of ΩKtK = (ΩP )Λ(ΩP )−1 since, by (35), (ΩP )−1 = ΩP t.

It is not hard to see that with K = L|D|1/2, then, since Ktv = pσ,

κrel(λ) =
vtKKtv

σ2
= ptp ≥ 1.

We now present the main theorem of [33] which quantifies the change in the
HSVD when K is perturbed to DlKDr. Before we do so, we must introduce some
terminology.

Write V = [v1, . . . ,vn], P = [p1, . . . ,pn]. One ingredient in the bounds on the
change in vj is the set {‖pi‖2}. The other ingredient is the relative separation be-

tween eigenvalues. Actually it is the separations between the σi =
√
|λi| that emerge

naturally in the theory in [33],

δji :=
|λj − λi|
σj + σi

=

{
|σj − σi| if ωi = ωj ,
σ2

j+σ
2
i

σj+σi
if ωi �= ωj ,

(37)

but the factors that govern the sensitivity of vj involve both relative separations
(δji/σj)

2 and (δji/σi)
2 for i �= j. Note that(

δjk
σj

)2

=

(
|λj − λk|

σj(σj + σk)

)2

=
|λj − λk|

|λj |
· |λj − λk|
(σj + σk)2

≥ |λj − λk|
|λj |

· |λj − λk|
2(|λj | + |λk|)

.

The upcoming bounds concern a particular eigenpair (λj ,vj), ‖vj‖ = 1, and as noted
above, ‖pj‖ plays a leading role. The other quantities of interest are

rgapj := min
i �=j

δji
σj

,

‖mj‖2 :=
∑
i �=j

(
‖pi‖
δji/σj

)2

,

‖m〈j〉‖2 :=
∑
i �=j

(
‖pi‖
δji/σi

)2

,

‖P〈j〉‖2
F :=

∑
i �=j

‖pi‖2,

where 〈j〉 denote the index set complementary to j in {1, . . . , n}. The actual vectors
mj and m〈j〉 play no role in the bounds; only their norms are needed. Note that
1/rgapj ≤ ‖mj‖ ≤ ‖P〈j〉‖F /rgapj . Of the four expressions given above, the second
appears in the bounds and the other three in the restriction on the perturbation level
of Theorem 7.

We cite the needed part of the relevant theorem from [33] and then adapt it to
our situation.

Theorem 7. Let Ω be a signature matrix, Ω = diag(ω1, . . . , ωn), ωi = ±1. Con-
sider an invertible matrix K with HSVD as in (35). Define Λ = diag(λ1, . . . , λn) :=
Σ2Ω and assume that λi �= λj, i �= j. Let K be perturbed to DlKDr, with Dl and Dr

diagonal, and let ε̄d := max{‖D±2
l − I‖, ‖D±2

r − I‖}. If ε̄d is small enough that

8ε̄d‖pj‖2 ≤ rgapj , 4ε̄d‖m〈j〉‖ ‖P〈j〉‖F ≤ 1,(38)
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then there is an Ω-singular triple (σ̄j , v̄j ,Ωv̄j) of DlKDr such that

| sin ∠(v̄j ,vj)| ≤ ε̄d

(
2‖pj‖‖mj‖ +

1

2

)
/(1 − ε̄d),

and
|σ̄2

j − σ2
j |

σ2
j

≤
ε̄d(‖pj‖2 + 1) + β2

1 − ε̄d(‖pj‖2 + 1) − β2
,

where 0 < β2 ≤ 2(ε̄d‖pj‖)2{(‖P〈j〉‖F + 2‖mj‖)2 + 4‖mj‖ ‖m〈j〉‖} .
Theorem 7 reveals how we should define the condition numbers:

relcond(vj) := 2‖pj‖ ‖mj‖ + 1/2,(39)

relcond(λj) := ‖pj‖2 + 1.(40)

Note that relcond(λj) exceeds Dhillon’s κrel(λj) by 1 and it accounts for both the
inner and outer perturbations.

The following lemma shows that in the indefinite well-conditioned case and in the
definite case, these relative condition numbers are small. For any invertible M define
condF (M) := ‖M‖F ‖M−1‖F and cond2(M) := ‖M‖2‖M−1‖2.

Lemma 8. With the notation developed above (setting K = L|D|1/2, Ω =
sign(D)),

relcond(vj) ≤ condF (L|D|1/2)
rgapj

+ 1/2, and relcond(λj) ≤ cond2(L|D|1/2).

When LDLt is definite, then

relcond(vj) ≤ 2
√
n− 1

rgapj

+ 1/2 and relcond(λj) = 2.

Proof. In [33, Lemma 2.1] it is shown that

‖P‖2
F =

∑
‖pi‖2 ≤ condF (L|D|1/2).

Observe, from the definition of ‖mj‖, that H2
j := ‖P〈j〉‖2

F /‖mj‖2 is a weighted

harmonic mean of the relative gaps (δji/σj)
2 and, as for any mean, rgap2

j ≤ H2
j .

From the definition of relcond(vj) in (39),

relcond(vj) = 2‖pj‖
‖P〈j〉‖F

Hj
+ 1/2,(41)

≤ ‖P‖2
F

rgapj

+ 1/2,

≤ condF (L|D|1/2)
rgapj

+ 1/2.

The bound on relcond(λj) is an easy consequence of (36). When D is definite, then
‖pi‖ = 1 for all i, and ‖P〈j〉‖2

F = n− 1. Thus, by (41), the result holds.
Next we apply Theorem 7 to our situation.
Corollary 9. With the notation presented above let invertible tridiagonal T =

LDLt have eigenpairs (λi,vi), ‖vi‖ = 1, with L a proper bidiagonal matrix (all



ORTHOGONAL EIGENVECTORS AND RELATIVE GAPS 883

li �= 0) with 1’s on the diagonal, and D a diagonal matrix. Consider perturbations
L −→ E−1LE, D −→ FDF with ‖(EF )2 − I‖ = ε̄d. If ε̄d is small enough that (38)
holds, then there is an eigenpair (λ̄j , v̄j) of T̄ = E−1LEFDFELtE−1 such that

| sin ∠(v̄j ,vj)| ≤ relcond(vj)ε̄d/(1 − ε̄d),

and
|λ̄j − λj |

|λj |
≤ ε̄drelcond(λj) + β2

1 − ε̄drelcond(λj) − β2
,

where relcond(vj) and relcond(λj) are defined in (39) and (40), respectively, and β2

is as in Theorem 7.
Proof. L is proper so that no subdiagonal entry vanishes, T is invertible, and thus

its eigenvalues are simple and do not vanish. Therefore we may apply Theorem 7 with
ε̄d := max{‖E−2 − I‖, ‖(EF )2 − I‖} = ‖(EF )2 − I‖. The left Ω-singular vectors V
of K = L|D|1/2 are the eigenvectors of KΩKt = T .

The bounds in Theorem 7 make no explicit reference to n, the order of the matrix.
This factor appears when we relate ε̄d to the machine precision ε. In our application,
Lemma 6 above gives 1 + ε̄d < (1 + ε)6n−1. Corollary 9 and this bound on ε̄d will be
applied in Theorem 15.

Lemma 8 covers the “easy” cases. However, in the case when LDLt is indefinite
and ill-conditioned the small eigenpairs are often relatively robust, while the large
ones are not. Corollary 9 covers such cases. The following example illustrates one
such situation.

Example 2. To bring life to the quantities of this section we exhibit a 4 × 4
symmetric matrix T = T (η) that depends on a parameter η (think of η as 10−8):

T = T (η) :=

⎡
⎢⎢⎢⎣

η 1√
2

0 0
1√
2

−2η 1√
2

0

0 1√
2

3η η

0 0 η 2η

⎤
⎥⎥⎥⎦ ,

T = LDLt = V (Σ2Ω)V t,

Ω = diag(1,−1, 1, 1), L|D|1/2 = V ΣP t.

T is indefinite but permits triangular factorization T = LDLt with large element
growth, like 1/η, in the multipliers. This ill-conditioned L|D|1/2 has HSVD: L|D|1/2 =
V ΣP t; recall from (40) that the ‖pi‖ govern the relative conditioning of the eigen-
values. We present only the leading terms in the quantities shown below. The eigen-
values ωσ2 of T are not presented in monotonic order because of the constraint that
P tΩP = Ω. For full details see [33].

Λ = Σ2Ω = diag

(
4 −

√
2

2
η,−1,

4 +
√

2

2
η,+1

)
,

Σ = diag(
√
η µ−, 1,

√
η µ+, 1) µ2

− :=
4 −

√
2

2
, µ2

+ :=
4 +

√
2

2
,

{
‖pi‖2

}
=

{
2 −

√
2

4
,

1

2η
, 2 +

√
2

4
,

1

2η

}
.

The two small σ’s are close, σ1 ≈ 1.137η and σ3 ≈ 1.645η, while the other σ’s
are almost 1 but have differing ω values. The large singular values are extremely
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sensitive, “condition number” 1/η, but the two small σ’s are relatively robust and the
associated v’s also turn out to be relatively robust. We demonstrate the latter for v1.

For σ1 =
√
η µ− ≈ 1.137

√
η,

rgap1 =
µ+ − µ−

µ−
≈ .447,

δ12 =
1 + ηµ2

−
1 +

√
ηµ−

, δ13 =
√
η(µ+ − µ−), δ14 = 1 −√

ηµ−.

Recall from (37) that δ12 is a quotient, not just a difference, because ω1 �= ω2.
The point of this example is the neutralizing of large ‖p‖ values in the first and

third terms by equally large relative separations in ‖m1‖ below:

‖m1‖=

⎡
⎣∑

i �=1

‖pi‖2 (σ1/δ1i)
2

⎤
⎦

1/2

=

[
1

2η

( √
ηµ−

1 −√
ηµ−

)2

+

(
2 +

√
2

4

)( √
ηµ−√

η(µ+ − µ−)

)2

+
1

2η

( √
ηµ−

1 −√
ηµ−

)2
]1/2

≈
[

1

2
µ2
− +

(
2 +

√
2

4

)(
µ−

µ+ − µ−

)2

+
1

2
µ2
−

]1/2

≈ (µ−)
[
1 + (8 +

√
2)

]1/2

≈ 3.44.

Combined with the modest value of ‖p1‖, relcond(v1) defined in (39) is less than 10.
Similarly v3 is seen to be relatively robust, but v2 and v4 are not.

6.2. The bottom arrow—rank-revealing twisted factorization. The bot-
tom arrow in Figure 5 represents an exact relation L̄D̄L̄t − λ̂I = N̄rD̄rN̄

t
r . Con-

sider the vector z̄(r) (denoted as z̄ in Figure 5) such that z̄(r)(r) = 1 and (L̄D̄L̄t −
λ̂I)z̄(r) = erγ̄r. This section presents the desired bound on the residual norm

‖(L̄D̄L̄t − λ̂I)z̄(r)‖/‖z̄(r)‖ when r is chosen appropriately. For ease of notation, we
drop the overbars for the rest of section 6.2; thus the quantities L, D, γk, and z below
can be thought of as L̄, D̄, γ̄k, and z̄, respectively, in Figure 5. We first establish that
in cases of interest, when λ̂ approximates λ, then one of the γk, 1 ≤ k ≤ n, reveals
that LDLt − λ̂I is nearly singular.

Let λ̂ �= λ. Since et
kz

(k) = 1 = γke
t
k(LDLt − λ̂I)−1ek,

γ−1
k = et

k(LDLt − λ̂I)−1ek.(42)

We present next the relation of γk to the spectral factorization of LDLt − λ̂I
using an eigenvector expansion. These results do not require the tridiagonal form.

Let LDLt = V ΛV t. Replace LDLt with V ΛV t in (42) to find, for each k,

1

γk
=

|vj(k)|2

λj − λ̂
+

∑
i �=j

|vi(k)|2

λi − λ̂
,(43)

where λ = λj is an eigenvalue closest to λ̂ and its normalized eigenvector is vj . The
following theorem shows that when λj is isolated the twist index k for which the
eigenvector component |vj(k)| is large leads to a small |γk|.
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Theorem 10. Let γk be as in (43), where λ̂ approximates λj, and let λj be
isolated enough, i.e.,

|λj − λ̂|
gap(λ̂)

≤ 1

M
· 1

n− 1
,(44)

where M > 1 and gap(λ̂) := mini �=j |λi − λ̂|. Then, for k such that vj(k) ≥ 1/
√
n,

|γk| ≤ |λj − λ̂|
|vj(k)|2 · M

M − 1
≤ n|λj − λ̂| · M

M − 1
.(45)

Proof. A proof is given in [9, Section 3.2], which we repeat here for the sake of
completeness. By (43),

1

γk
=

|vj(k)|2

λj − λ̂

⎡
⎣1 +

∑
i �=j

∣∣∣∣ vi(k)

vj(k)

∣∣∣∣
2
(
λj − λ̂

λi − λ̂

)⎤
⎦ .(46)

Since

∑
i �=j

∣∣∣∣ vi(k)

vj(k)

∣∣∣∣
2

=
1 − |vj(k)|2
|vj(k)|2 ,

we can rewrite (46) as

1

γk
=

|vj(k)|2

λj − λ̂

[
1 +

(
|vj(k)|−2 − 1

)
A1

]
,(47)

where

A1 =
∑
i �=j

wi

(
λj − λ̂

λi − λ̂

)
, 1 =

∑
i �=j

wi, wi ≥ 0,

and so

|A1| ≤ |λj − λ̂|/gap(λ̂), with gap(λ̂) = min
i �=j

|λi − λ̂|.(48)

If (44) holds, then by (47) and (48),

|γk| ≤
|λj − λ̂|
|vj(k)|2

∣∣∣∣1 −
(
|vj(k)|−2 − 1

)(
1

M · (n− 1)

)∣∣∣∣
−1

.

For k such that |vj(k)| ≥ 1/
√
n,

|γk| ≤
|λj − λ̂|
|vj(k)|2

[
1 − 1

M

]−1

,

and so the result holds.
In general, the case γk = ∞ for all k can occur, but we are free to choose λ̂ to

avoid such situations; see also [9, section 3.3]. In cases of interest, |λj − λ̂|/gap(λ̂) =
O(ε), implying that M � 1 and M/(M − 1) ≈ 1, whence (45) shows that when
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|vj(k)| is above average, |γk| reveals the near singularity. This justifies step III in
Algorithm Getvec.

We now show that under suitable conditions the vector z(k) enjoys a small residual
norm and serves as an excellent approximation to the eigenvector vj [14, 31].

Theorem 11. Let z(k) satisfy

(LDLt − λ̂I)z(k) = ekγk

with z(k)(k) = 1, and let γk be as in (43) where λ̂ approximates λj, λ̂ �= λj. Then, if
vj(k) �= 0, the residual norm

‖(LDLt − λ̂I)z(k)‖
‖z(k)‖ =

|γk|
‖z(k)‖ ≤ |λj − λ̂|

|vj(k)| ,

and thus for at least one k,

|γk|
‖z(k)‖ ≤

√
n|λj − λ̂|.

Proof. A proof is given in [31, section 5] and [9, section 3.2], but we repeat it here
for the sake of completeness. Recall that LDLt = V ΛV t. Then

z(k) = (LDLt − λ̂I)−1ekγk,

⇒ ‖z(k)‖2 = |γk|2et
kV (Λ − λ̂I)−2V tek,

= |γk|2
n∑

i=1

|vi(k)|2

|λ̂− λi|2
,

⇒ |γk|
‖z(k)‖ ≤ |λj − λ̂|

|vj(k)| for all k with vj(k) �= 0.

Noting that |vj(k)| ≥ 1/
√
n for at least one k completes the proof.

However, (λ̂, z(k)) is not the best approximate eigenpair because λ̂ is not the
Rayleigh quotient of z(k). By using the Rayleigh quotient we obtain a useful decrease
in residual norm.

Lemma 12. Let LDLt = T and (T − λ̂I)z(k) = ekγk, z(k)(k) = 1. Then the

Rayleigh quotient ρ with respect to T − λ̂I is

ρ(z(k)) = γk/‖z(k)‖2,

and ‖(T − (λ̂ + ρ)I)z(k)‖/‖z(k)‖ =
γk

‖z(k)‖2

(
‖z(k)‖2 − 1

)1/2

.

Proof. Write z for z(k) and γ for γk, and note that

zt(T − λ̂I)z = ztekγ = γ, since z(k) = 1,

and

(T − (λ̂ + ρ)I)z = ekγ − zρ,

‖(T − (λ̂ + ρ)I)z‖2 = γ2 + ‖z‖2ρ2 − 2γρ,

=
γ2

‖z‖2

(
‖z‖2 − 1

)
.

The above lemma justifies the use of Algorithm Getvec in increasing λ̂’s accuracy;
see Remark 5 in section 4.
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6.3. The right side—computing the eigenvector by multiplications. This
section looks at the right side of Figure 5 and shows that the vector ẑ computed by
Algorithm Getvec is very close to a vector z̄ that obeys the exact relationship (49),
where N̄r and D̄r are perturbed factors determined by step IV of Algorithm Getvec.

Theorem 13. Let N̂r and D̂r, N̄r and D̄r be the twisted factors represented by
Ẑr and Z̄r, respectively, in Figure 4 (see also Theorem 4 and Figure 5). Let ẑ be the
vector computed in step IV of Algorithm Getvec, and let z̄ be the exact solution of

N̄rD̄rN̄
t
r z̄ = γ̄rer,(49)

where z̄(r) = 1. Then, barring underflow, ẑ is a small relative perturbation of z̄.
Specifically,

ẑ(r) = z̄(r) = 1,

ẑ(i) = z̄(i) · (1 + ηi), i �= r, (1 − ε)5|i−r|ε ≤ 1 + ηi ≤ (1 + ε)5|i−r|ε,(50)

where ε is the machine precision.
Proof. The above bound accounts for the roundoff errors in the recurrence in

step IV of Algorithm Getvec. For now, assume that no component of D+ or D− is
zero (so that only the top formulae for ẑ(i) and ẑ(j + 1) in step IV are used). The

matrix N̄r, built out of
⇀

L+ and
↼

U−, was defined in Theorem 4 so that the equality
L̄D̄L̄t − λ̂I = N̄rD̄rN̄

t
r holds. Thus N̄r is a given matrix, not to be modified, in

the context of this theorem. Because of the roundoff error in multiplication the top
entries of ẑ computed in step IV of Algorithm Getvec satisfy

ẑ(i) = −L̂+(i)ẑ(i + 1)(1 + εi), i < r,

and the bottom entries satisfy

ẑ(i) = −Û−(i− 1)ẑ(i− 1)(1 + εi), i > r,(51)

where |εi| < ε. In contrast, the ideal vector z̄ satisfies

z̄(i) = −
⇀

L+(i)z̄(i + 1), i < r,(52)

and z̄(i) = −
↼

U−(i− 1)z̄(i− 1), i > r.

Since ẑ(r) = z̄(r) = 1, we may define ηr = 0 and trivially write ẑ(r) = z̄(r)(1 + ηr)
with |ηr| ≤ 4(r− r)ε. Now proceed by induction as i decreases in order to prove (50).
Examine (23) to find that

L̂+(i) =
⇀

L+(i)(1 + δi), (1 − ε)3 < 1 + δi < (1 + ε)3 for all i < r.

Thus

ẑ(i− 1) = −
⇀

L+(i− 1)(1 + δi−1)ẑ(i)(1 + εi−1),

= −
⇀

L+(i− 1)(1 + δi−1)z̄(i)(1 + ηi)(1 + εi−1),

where (1 − ε)4(r−i) ≤ 1 + ηi ≤ (1 + ε)4(r−i) by induction,

= z̄(i− 1)(1 + δi−1)(1 + ηi)(1 + εi−1), by (52)

= z̄(i− 1)(1 + ηi−1), thus defining 1 + ηi−1 := (1 + ηi)(1 + δi−1)(1 + εi−1),

and (1 − ε)4(r−i)+4 ≤ 1 + ηi−1 ≤ (1 + ε)4(r−i)+4, as claimed.
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For the lower half of ẑ, i ≥ r, the argument is similar with Û− and
↼

U− involved

instead of L̂+ and
⇀

L+. Note that Û− is related to
↼

U− by (31) and (30), which,
respectively, involve 1 1

2 and 1 more ulps than (23).
To begin, define ηr = 0 so that |ηr| ≤ 5(r − r)ε. For i = r + 1, (50) holds since

(31) gives 4.5 ulps for
↼

U−(r) in (51), while εr+1 = 0 (because ẑ(r) = 1). For i > r+1,
(30) gives 4 ulps and εi in (51) gives one more ulp for an increase of at most 5 ulps
each time i increases. Thus (50) holds for all values of i.

We now consider the case when an eigenvector entry vanishes, i.e., D+(i) =
0 (see Remark 3 in section 4). In this case the alternate formulae in step IV of
Algorithm Getvec are used to compute the next eigenvector entry, i.e., if i < r, then

z(i) = −(di+1li+1/dili)z(i + 2),(53)

where di and li are elements of the input matrices L and D. Examining the relations
between di and

⇀

di, and between li and
⇀

li in the proof of Theorem 2, we can see that
the product

dili =
⇀

di
⇀

li(1 + ξi) =
⇀

D+(i)
⇀

L+(i)(1 + ξi), (1 − ε)3 < 1 + ξi < (1 + ε)3, i < r.

Thus the term (di+1li+1/dili) in (53) contributes 6 ulps, and combining these with
the 4 arithmetic operations in (53), we can write

ẑ(i) = −(
⇀

di+1

⇀

li+1/
⇀

di
⇀

li)ẑ(i + 2) · (1 + δi),

where (1− ε)10 < 1+ δi < (1+ ε)10. (A closer analysis reveals that (1− ε)8 < 1+ δi <
(1 + ε)8.) Thus (50) holds in this case also. The case when D−(i + 1) = 0, i > r, is
similar.

Corollary 14 (to Theorem 13). Under the hypotheses of Theorem 13,

| sin ∠(z̄, ẑ)| ≤ (1 + ε)5(n−1) − 1

(1 − ε)5(n−1)
.

Proof. First we establish a general result on elementwise perturbation of vectors
which shows that the term (n − 1) above could be replaced by a weighted standard
deviation of the relative changes to ẑ’s entries.

Let 0 �= u ∈ R
n and let ū be given by ū(i) = (1 + ηi)u(i). For expressions

concerning the angle ∠(u, ū) there is no loss in assuming that ‖u‖2 = utu = 1.
Now,

cos2 ∠(u, ū) =
(ūtu)2

ūtū

=
1 + 2

∑
ηiu(i)2 + (

∑
ηiu(i)2)2

1 + 2
∑

ηiu(i)2 +
∑

η2
i u(i)2

,

sin2 ∠(u, ū) =

∑
η2
i u(i)2 − (

∑
ηiu(i)2)2

1 + 2
∑

ηiu(i)2 +
∑

η2
i u(i)2

.

The numerator is a weighted variance of the ηi which we denote by (std. dev.(ηi; u))2.
The denominator exceeds (1+avg)2, where avg = avg(ηi; u) =

∑
ηiu(i)2 because, by

Cauchy–Schwarz, avg2 = (
∑

ηiu(i) · u(i))2 ≤
∑

η2
i u(i)2. On taking square roots,

| sin ∠(u, ū)| ≤ std. dev.(ηi; u)

1 + avg
.(54)
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�

�

�

�
• N̄rD̄rN̄

t
r z̄ = erγ̄r

L̄D̄L̄t − λ̂I = N̄rD̄rN̄
t
r ,

⇒ (L̄D̄L̄t − λ̂I)z̄ = erγ̄r.

• N̂rD̂rN̂
t
r , ẑ•LDLtv = vλ

•L̄D̄L̄tv̄ = v̄λ̄
dtwqds

exact

dtwqds

computed

3 to 3 1
2 ulps in L

1 to 4 ulps in D 2 ulps in D̄r

3 to 4 1
2 ulps in N̄r

Fig. 6. Relationships connecting v to ẑ.

A crude but simple bound on a standard deviation of the ηi is maxi |ηi| . Finally
substitute z̄ for u and ẑ for ū and use (50) to verify that

1 + max
i

|ηi| ≤ max
(
(1 + ε)5(n−r), (1 + ε)5(r−1)

)
,

and, by Theorem 13,

(1 − ε)5(n−1) ≤ 1 + avg.

Since r might be 1 or n the corollary is established.
Note: The standard deviation in (54) is weighted by the squares of the eigenvector

entries. So, in practice, for localized eigenvectors we can replace n − 1 in the above
bound with the size of the numerical support of ẑ.

7. Bounds on accuracy (proof of correctness). The following is the main
theorem of the paper. Figure 6 is identical to Figure 5 and we repeat it here so that
it can be readily consulted.

Theorem 15. Let (λ,v) = (λj ,vj) be an eigenpair of the real symmetric unre-

duced n×n tridiagonal matrix LDLt with ‖v‖ = 1. Let λ̂ be an accurate approximation
closer to λ than to any other eigenvalue of LDLt and let ẑ be the vector computed in
step IV of Algorithm Getvec in section 4 using λ̂, N̂r, D̂r, and twist index r. Let L̄ and
D̄ be the perturbations of L and D determined by the error analysis of section 5, and
let (λ̄, v̄) be the eigenpair of L̄D̄L̄t with λ̄ the closest eigenvalue to λ̂, and ‖v̄‖ = 1.
Let ε denote the machine precision, and for convenience, let ε∗ := (1 + ε)6n−1 − 1. If
ε is small enough that (38) holds with ε∗ instead of ε̄d, then

| sin ∠(ẑ,v)| ≤ (1 + ε)5(n−1) − 1

(1 − ε)5(n−1)
+

|λ̄− λ̂|
|v̄(r)|gap(λ̂)

+
ε∗relcond(v)

1 − ε∗
,(55)

where relcond(v) is as in (39), and

gap(λ̂) := min{|λ̂− µ̄|, λ̄ �= µ̄ ∈ spectrum of L̄D̄L̄t}.
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Proof. There are three terms in the upper bound on sin∠(ẑ,v) because we connect
ẑ to v via two “ideal” vectors z̄, v̄ and each transition contributes a term: ẑ → z̄,
z̄ → v̄, v̄ → v; see Figure 6. Recall from Theorem 4 that the matrices L̄, D̄, N̄r, D̄r

depend on λ̂ and were defined so that the equality

L̄D̄L̄t − λ̂I = N̄rD̄rN̄
t
r(56)

holds. That was the culmination of the error analysis in section 5. Recall that
D̄r(r) = γ̄r. Then z̄ is defined as the exact solution of

N̄rD̄rN̄
t
r z̄ = erγ̄r,(57)

with z̄(r) = 1. First consider ẑ and z̄. Theorem 13 shows that each z̄(i) is of the
form ẑ(i)(1 + ηi) and Corollary 14 proves that

| sin ∠(ẑ, z̄)| < (1 + ε)5(n−1) − 1

(1 − ε)5(n−1)
.(58)

Next consider z̄ and v̄. Combine (56) and (57) and then invoke Theorem 11 in
section 6.2 to find that

‖(L̄D̄L̄t − λ̂I)z̄‖
‖z̄‖ =

|γ̄r|
‖z̄‖ ≤ |λ̄− λ̂|

|v̄(r)| .

So by Theorem 1 (the gap theorem),

| sin ∠(v̄, z̄)| ≤ |λ̄− λ̂|
|v̄(r)|gap(λ̂)

.(59)

Finally consider v̄ and v. The left side of Figure 6 indicates that v̄ and v are related
through the matrix perturbations given in section 6.1 (see Lemma 5):

LDLt −→ L̄D̄L̄t = E−1LEFDFELtE−1.

Theorem 4 bounded the entries in the specific matrices E and F and, by Lemma 6 in
section 6.1.1,

ε̄d := ‖(EF )2 − I‖ < ε∗ := (1 + ε)6n−1 − 1.

Thus Corollary 9 yields

| sin ∠(v, v̄)| ≤ relcond(v)ε∗
1 − ε∗

.(60)

Add (58), (59), and (60) to obtain the theorem’s bound on | sin ∠(ẑ,v)|.
Next we discuss the implications of Theorem 15 for computing numerically or-

thogonal eigenvectors from Algorithm Getvec. The first term is essentially 5nε and the
last is relcond(v)6nε, and we are concerned only with cases when relcond(v) is O(1).
The middle term is the delicate one. If we bound each term separately, we would
have |λ̂ − λ̄| ≤ Knε|λ|, 1/|v(r)| ≤

√
n, and relgap(λ̂) ≥ tol, giving a bound that

exceeds O(nε). However for symmetric tridiagonal matrices the three terms are not
independent. Moreover Getvec is often invoked for small isolated eigenvalues that have
very large relgap(λ). For example, let us consider the extreme example introduced by
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Demmel and Kahan in [7] that shows the bound of Knε on the change in eigenvalue is
attainable. The matrix is LLt, L bidiagonal, with Lii = 1 and Li+1,i = β � 1. Think
of β = 10. Small relative changes of 1+ε to the off-diagonals and 1−ε to the diagonal
entries change λmin = λ1 ≈ β2(1−n) by 2(2n − 1)ε|λ| < 4nε|λ|. Only the smallest
eigenvalue suffers this degree of sensitivity but relgap(λ1) ≈ β2n− 1 while |v(r)| ≈ 1.
In this case the middle term in (55) is negligible compared to the other two terms.
In fact, the corresponding eigenvector v decays very rapidly and very low accuracy in
the eigenvalue (correct exponent) is sufficient to produce a very good eigenvector. All
the other eigenvalues of this example are clustered in [β2 − 2/β, β2 + 1] and so their
eigenvectors should be calculated from a factorization of LLt − (β2 + 1)I, not from
LLt (see Algorithm MR3 in [10]).

In general this middle term warrants further study, but we must recall from
Theorem 11 that part of the middle term is a bound on the quantity |γr|/‖z‖, and
in practice, we have good approximations (up to order of magnitude) on it as well as
on gap(λ). So any situation in which the middle term is too large is detectable. The
algorithm monitors this term before accepting an eigenvector.

The reader may have noticed that the bound (55) contains quantities from both

the factorizations LDLt and L̄D̄L̄t; for example gap(λ̂) in the middle term is with
respect to the eigenvalues of L̄D̄L̄t. However, the entries in L and L̄ differ by at
most 3 ulps and those of D and D̄ by at most 4 ulps. Our application is only to
well-conditioned eigenpairs, and so such λ and λ̄ will differ only by a few ulps and
the computed λ̂ must be a good approximation to each of them. We feel that it is
satisfactory to present our results in this form.

The following corollary summarizes a typical situation in which Algorithm Getvec
is invoked.

Corollary 16. In addition to the assumptions of Theorem 15 suppose that (i) r

is such that v̄(r) ≥ 1/
√
n, (ii) λ̂ is computed to satisfy |λ̂− λ̄|/|λ̂| ≤ Kε, (iii) relgap(λ̂)

exceeds 2−8, and (iv) relcond(v) ≤ M/relgap(λ̂). Then

| sin ∠(ẑ,v)| ≤ 5nε + 28K
√
nε + 28Mε + O(ε2).

8. Numerical examples. We first compare and contrast the behavior of Algo-
rithm Getvec on two 3 × 3 tridiagonals. These aptly illustrate various aspects of the
theory.

Example 3. First consider the matrix

T0 =

⎡
⎣ 1

√
ε 0√

ε 7ε/4 ε/4
0 ε/4 3ε/4

⎤
⎦ ,

where ε is the machine precision (ε ≈ 2.2 × 10−16 in IEEE double precision). The
eigenvalues of T0 are

λ1 = ε/2 + O(ε2), λ2 = ε + O(ε2), λ3 = 1 + ε + O(ε2),
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while the corresponding normalized eigenvectors are

v1 =

⎡
⎢⎣ −

√
ε/2 + O(ε3/2)

1√
2
(1 + ε

4 ) + O(ε2)

− 1√
2
(1 − 3ε

4 ) + O(ε2)

⎤
⎥⎦ , v2 =

⎡
⎢⎣ −

√
ε/2 + O(ε3/2)

1√
2
(1 − 5ε

4 ) + O(ε2)
1√
2
(1 + 3ε

4 ) + O(ε2)

⎤
⎥⎦ ,

v3 =

⎡
⎣ 1 − ε

2 + O(ε2)√
ε + O(ε3/2)

ε3/2

4 + O(ε5/2)

⎤
⎦ .

The exact triangular factorization is given by T0 = Lexact
0 Dexact

0 (Lexact
0 )t, where

Lexact
0 =

⎡
⎣ 1 0 0√

ε 1 0
0 1/3 1

⎤
⎦ and Dexact

0 =

⎡
⎣ 1 0 0

0 3ε/4 0
0 0 2ε/3

⎤
⎦ .

When applying Algorithm Getvec to the above matrix, we observe the following.
1. The factorization computed in IEEE double precision arithmetic, L0D0L

t
0,

turns out to be exact, i.e., L0 = Lexact
0 and D0 = Dexact

0 .

2. The computed eigenvalues λ̂i satisfy

|λ̂i − λi| ≤ 2ε|λ̂i|, 1 ≤ i ≤ 3.

3. For each λ̂i, γ
(i)
k can be computed by applying steps I–III of Algorithm Getvec.

The computed values are

γ(1) =

⎡
⎣ 1.11 · 10−16

2.46 · 10−32

2.46 · 10−32

⎤
⎦ , γ(2) =

⎡
⎣ 2.22 · 10−16

4.93 · 10−32

4.93 · 10−32

⎤
⎦ , γ(3) =

⎡
⎣ 4.44 · 10−16

−2.00
−1.00

⎤
⎦ .

Algorithm Getvec chooses r = 2 for λ̂1, r = 2 for λ̂2, and r = 1 for λ̂3. Note
that for the first two eigenvalues |γr| = O(ε2) = O(ε|λi|) � ε‖T0‖.

4. The eigenvectors v̂i computed by Algorithm Getvec are such that

max |v̂t
iv̂j | = 1.66 · 10−16 < ε, 1 ≤ i ≤ 3, 1 ≤ j < i,

max
|v̂i(k) − vi(k)|

|vi(k)| = 8.88 · 10−16 < 4ε, 1 ≤ i ≤ 3, 1 ≤ k ≤ 3.

Amazingly each eigenvector entry is computed to high relative accuracy, even
the tiny v3(3) entry.

5. Instead of Algorithm Getvec, we can use one step of inverse iteration,

(L0D0L
t
0 − λ̂iI) xi = random vector,

to compute the eigenvectors. These computed vectors also turn out to be
accurate and numerically orthogonal (however, the tiny v3(3) entry is not
computed to high relative accuracy). Note that the analysis of section 7 does
not extend to random right-hand sides.

6. Both |γ(3)
2 | and |γ(3)

3 | are large while the corresponding eigenvector entries are
O(

√
ε) and O(ε3/2), respectively. Thus the numerical support of an eigenvec-

tor cannot solely be determined by the magnitudes of γi, and illustrates our
comments at the end of Remark 6 in section 4.
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Example 4. The above matrix T0 is a “benign” example. The following, also
discussed in section 3, is a harder case:

T1 =

⎡
⎣ 1 −

√
ε ε1/4

√
1 − 7ε/4 0

ε1/4
√

1 − 7ε/4
√
ε + 7ε/4 ε/4

0 ε/4 3ε/4

⎤
⎦ .

The eigenvalues of T1 are

λ1 =
ε

2
+

ε3/2

8
+ O(ε2), λ2 = ε− ε3/2

8
+ O(ε2), λ3 = 1 + ε + O(ε2),

while the corresponding normalized eigenvectors are

v1 =

⎡
⎢⎣

ε1/4
√

2
(1 +

√
ε

2 ) + O(ε5/4)

− 1√
2
(1 −

√
ε

2 ) + O(ε)
1√
2
(1 − 3ε

4 ) + O(ε3/2)

⎤
⎥⎦ , v2 =

⎡
⎢⎣

ε1/4
√

2
(1 +

√
ε

2 ) + O(ε5/4)

− 1√
2
(1 −

√
ε

2 ) + O(ε)

− 1√
2
(1 + 3ε

4 ) + O(ε3/2)

⎤
⎥⎦ ,

v3 =

⎡
⎢⎣ 1 −

√
ε

2 + O(ε)

ε1/4(1 +
√
ε

2 ) + O(ε5/4)
ε5/4

4 (1 +
√
ε

2 ) + O(ε9/4)

⎤
⎥⎦ .

In exact arithmetic, T1 = Lexact
1 Dexact

1 (Lexact
1 )t, where

Lexact
1 =

⎡
⎢⎣

1 0 0
ε1/4

√
1−7ε/4

1−
√
ε

1 0

0 1−
√
ε

3 1

⎤
⎥⎦ and

Dexact
1 =

⎡
⎢⎣

1 −
√
ε 0 0

0 3ε
4(1−

√
ε)

0

0 0 ε(8+
√
ε)

12

⎤
⎥⎦ .

On this example, Algorithm Getvec behaves quite differently than on T0 from Exam-
ple 3:

1. The computed factorization L1D1L
t
1 does not have high relative accuracy.

The relative errors in L1(2), D1(2), and D1(3) are as large as 4.97 · 10−9.

2. Consequently, some of the computed eigenvalues λ̂i do not have high relative
accuracy with respect to the eigenvalues of T1. In particular,

|λ̂i − λi| ≈ 10−9|λ̂i| for i = 1, 2.

Unlike λ1 and λ2, the third eigenvalue λ3 is computed to high relative accu-
racy, i.e., |λ̂3 − λ3| = O(ε). However, the important point is that all the λ̂i

have high relative accuracy with respect to the eigenvalues of L1D1L
t
1.

3. The values of γ
(i)
k computed by steps I–III of Algorithm Getvec are

γ(1) =

⎡
⎣ −4.13 · 10−24

−7.40 · 10−32

−9.86 · 10−32

⎤
⎦ , γ(2) =

⎡
⎣ −6.62 · 10−24

−9.86 · 10−32

−9.86 · 10−32

⎤
⎦ ,

γ(3) =

⎡
⎣ 2.22 · 10−16

1.49 · 10−8

−1.00

⎤
⎦ .
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Algorithm Getvec chooses r = 2 for λ̂1, r = 2 for λ̂2, and r = 1 for λ̂3. Note
that for the first two eigenvalues |γr| = O(ε2) � ε‖T‖.

4. The eigenvectors v̂i computed in step IV of Algorithm Getvec are numerically
orthogonal, i.e.,

max |v̂t
iv̂j | = 5.55 · 10−17 < ε, 1 ≤ i ≤ 3, 1 ≤ j < i.

But as in the case of the computed eigenvalues, the relative errors in the
computed eigenvectors (with respect to the eigenvectors of T1) are much larger
than O(ε), i.e.,

max
|v̂i(k) − vi(k)|

|vi(k)| = 3.72 · 10−9, 1 ≤ i ≤ 2, 1 ≤ k ≤ 3.

All components of the third eigenvector v3 are computed to high relative
accuracy.

5. The inverse iteration step

L1D1L
t
1 − λ̂iI = L+D+L

t
+,(61)

L+D+L
t
+ xi = random vector

also leads to computed eigenvectors that are numerically orthogonal when
the dstqds transform is used to compute (61). From our experience, the use
of a twisted factorization in Algorithm Getvec does not appear to be essential
in practice; inverse iteration using dstqds also works well. However, twisted
factorizations are more elegant to use, have better numerical behavior, and
allow us to prove the accuracy of our algorithm.

6. When the diagonal and off-diagonal elements of T1 are directly used to com-
pute eigenvalues and eigenvectors (either by using inverse iteration or twisted
factorizations as in Algorithm Getvec), the dot products between the com-
puted eigenvectors are as large as 10−8. See Example 1 in section 3 for an
explanation of this failure. Thus the use of L1D1L

t
1 is essential for achieving

numerical orthogonality in this case.
The above example beautifully illustrates our techniques. We do not promise

high relative accuracy for eigenvalues and eigenvectors of the given tridiagonal ma-
trix. In fact, it is unrealistic to hope for such accuracy as explained in section 3.
However, we get a “good” factorization of the tridiagonal and then proceed to com-
pute its eigenvalues and eigenvectors to high accuracy, which automatically leads to
orthogonality.

Example 5. Our next example is

T2 =

⎡
⎢⎢⎣

.520000005885958 .519230209355285

.519230209355285 .589792290767499 .36719192898916
.36719192898916 1.89020772569828 2.7632618547882 · 10−8

2.7632618547882 · 10−8 1.00000002235174

⎤
⎥⎥⎦

with eigenvalues

λ1 ≈ ε, λ2 ≈ 1 +
√
ε, λ3 ≈ 1 + 2

√
ε, λ4 ≈ 2.0.

Note that the interior eigenvalues have relgap(λi) = O(
√
ε). When we apply Algo-

rithm Getvec to the LDLt factorization of T2, the corresponding computed eigenvec-
tors have

|v̂t
2v̂3| = 1.12 · 10−8 = O(

√
ε).
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Table 1

Timing comparisons for computing all eigenvalues and eigenvectors.

Time taken (in seconds)

Matrix Matrix Lapack DSTEBZ DSTEBZ + Lapack Lapack Lapack DLASQ1

type size +DSTEIN Eispack TINVIT DSTEDCDSTEQR+Algorithm Getvec

125 0.20 (.09+.11) 0.14 (.09+.05) 0.01 0.13 0.05 (.01+.04)

Arithmetic 250 1.12 (.32+.80) 0.67 (.32+.35) 0.03 0.98 0.08 (.02+.06)

progression 500 7.81 (1.25+6.06) 4.17 (1.25+2.92) 0.20 7.46 0.39 (.11+.28)

(ε apart) 1000 93.97 (4.87+89.10) 39.44 (4.87+34.57) 1.22 74.33 1.19 (.36+.83)

2000 839.5 (20.9+818.6) 343.9 (20.9+323.0) 6.03 913.7 4.50 (1.5+3.0)

125 0.11 (.08+.03) 0.10 (.08+.02) 0.05 0.13 0.05 (.01+.05)

Uniform 250 0.45 (.33+.12) 0.38 (.33+.05) 0.24 0.99 0.11 (.04+.07)

distribution 500 1.74 (1.24+.50) 1.47 (1.24+.23) 1.51 7.51 0.31 (.11+.20)

(ε to 1) 1000 93.37 (4.87+88.50) 5.68 (4.87+.81) 10.47 74.07 1.16 (.40+.76)

2000 839.5 (20.9+818.6) 344.8 (20.9+323.8) 159.3 648.2 4.57 (1.6+3.0)

Uniform 125 0.11 (.08+.03) 0.09 (.08+.01) 0.05 0.13 0.05 (.01+.04)

distribution 250 0.45 (.33+.12) 0.39 (.33+.06) 0.25 0.96 0.13 (.04+.09)

(ε to 1 with 500 1.78 (1.27+.51) 1.50 (1.27+.23) 1.51 7.40 0.37 (.09+.28)

random signs) 1000 7.21 (4.96+2.25) 5.89 (4.96+.93) 10.25 68.85 1.51 (.37+1.14)

2000 31.40 (21.3+10.1) 25.20 (21.3+4.10) 160.8 955.6 5.10 (1.5+3.6)

125 0.12 (.09+.03) 0.10 (.09+.01) 0.05 0.13 0.04 (.01+.03)

(1,2,1) 250 0.44 (.32+.12) 0.37 (.32+.05) 0.16 0.92 0.08 (.03+.05)

Matrix 500 1.85 (1.24+.61) 1.49 (1.24+.25) 1.02 7.01 0.39 (.09+.30)

1000 12.38 (4.88+7.50) 7.06 (4.88+2.18) 7.26 71.75 1.22 (.32+.90)

2000 840.0 (21.0+819.0) 128.8 (21.0+107.8) 105.8 678.7 4.71 (1.6+3.1)

Biphenyl 966 77.61 (4.6+73.0) 33.02 (4.6+28.4) 7.66 73.96 1.33 (.3+1.03)

As discussed in Remark 8 in section 4, inverse iteration appears to be a natural remedy
to cure the problem. However, even after ten inverse iteration steps

|v̂t
2v̂3| = 3.45 · 10−9 = O(

√
ε).

Thus the simple approach of using multiple inverse iteration steps does not lead
to numerical orthogonality, as explained in Remark 8. For an approach that can
achieve orthogonality in this situation, the reader is referred to [10]; also see Chapter 5
in [9].

8.1. Timing comparisons. Algorithm Getvec can lead to substantial speedups
over earlier LAPACK software2 to compute eigenvectors when the relative gaps be-
tween eigenvalues exceed tol (= 10−3) but the absolute gaps are smaller. We illustrate
this speedup on various examples in Table 1. Matrices of the first type have eigenval-
ues in an arithmetic progression,

λi = i · ε, i = 1, 2, . . . , n− 1, and λn = 1.

The second type has eigenvalues that come from a uniform random distribution in the
interval [ε, 1], while the third type has a similar eigenvalue distribution as the second

2Since we first wrote this paper, our software has been incorporated in the latest release of
LAPACK, where Algorithm Getvec appears as subroutine DLAR1V.
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Fig. 7. Left, eigenvalue distribution; right, relative gaps for the Biphenyl matrix.

type except random ± signs are placed on the eigenvalues. The fourth type are the
Toeplitz tridiagonal matrices with 2’s on the diagonals and 1’s as the off-diagonal
elements, with eigenvalues λi = 4 sin2[πi/(2(n + 1))]. The final example comes from
a real application in computational quantum chemistry—more specifically it arises in
the modeling of the biphenyl molecule using Møller–Plesset theory [9]. Most of the
eigenvalues of this positive definite 966 × 966 Biphenyl matrix are small compared to
its norm. See Figure 7 for a plot of the eigenvalues and their relative gaps.

In Table 1 we compare the speed of Algorithm Getvec to various existing algo-
rithms. In our implementation, we factor T = LDLt and then use the dqds software in
LAPACK (subroutine DLASQ1) to compute all eigenvalues of LDLt to high relative
accuracy before invoking Algorithm Getvec to compute all eigenvectors. DSTEBZ is
the bisection routine in LAPACK, while DSTEIN and TINVIT are inverse iteration
routines from LAPACK and EISPACK, respectively, that perform Gram–Schmidt
orthogonalization when eigenvalues have small absolute gaps, in particular, when
|λi+1 − λi| ≤ 10−3‖T‖ (actually TINVIT uses maxi |Ti,i| + |Ti,i+1| instead of ‖T‖
while DSTEIN uses the 1-norm of T ). DSTEQR uses the QR iteration to compute
orthogonal eigenvectors [19], while DSTEDC is the divide and conquer code in LA-
PACK [21]. The QR algorithm and divide and conquer method compute eigenvalues
and eigenvectors simultaneously, while our strategy and the inverse iteration routines
first find the eigenvalues and then the eigenvectors—for these cases Table 1 gives the
breakup of the time needed to compute eigenvalues as compared to eigenvectors.

The QR code DSTEQR always takes O(n3) time irrespective of the eigenvalue dis-
tribution. Due to the orthogonalization criterion, DSTEIN and TINVIT take O(n3)
time on matrices of type 1 and the Biphenyl matrix and on large matrices of type 2
and 4. Table 1 shows that on these examples, Algorithm Getvec can be about two
orders of magnitude faster than DSTEIN, TINVIT, and DSTEQR. Even on matrices
where DSTEIN and TINVIT show O(n2) behavior, such as matrices of type 3 and
matrices of type 2 and 4 with n ≤ 500, Algorithm Getvec is generally faster. Also see
that Algorithm Getvec is several times faster than DSTEDC on four of the five matrix
types, and is comparable in speed on the first example, where DSTEDC is very fast
due to deflation of clustered eigenvalues. The reader should observe the O(n2) be-
havior of Algorithm Getvec, whereas the other subroutines, in general, show an O(n3)
behavior (all timings were measured using Fortran BLAS on a 333-MHz UltraSPARC
processor with 1 GByte main memory). All algorithms delivered adequate numerical
orthogonality on the test cases.
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9. Singular vectors. A natural application of the procedures analyzed in this
paper is to compute the SVD of a bidiagonal matrix Lt: Lt = UΣV t, U t = U−1,
V t = V −1. Since LLt = V Σ2V t, the Cholesky factor of the symmetric positive
definite matrix LLt is the initial input and so the output of our method is V whose
columns are the right singular vectors of Lt.

What must be done to compute U? The tempting formula

u = Ltv/σ, σ �= 0,

solve Lu = 0, σ = 0,

is well known to be treacherous. Orthogonal v’s do not give rise to orthogonal u’s
because of the cancellation in forming Ltv.

A better way is to invoke Algorithm Getvec again, as shown below. Note that a
natural operation on bidiagonal and diagonal arrays is to “flip” them: L −→∼ L. In
practice the order of the entries is reversed. Formally

∼ L = ĨLtĨ ,

where Ĩ is the reversal matrix, Ĩ = (en, . . . ,e1) when I = (e1, . . . ,en). For diagonal
matrices, flipping is just reversal. If cost were of no consequence, then U could be
computed by flipping the given Lt, calling our algorithm, and reversing the output.
The justification is that

(∼ L)(∼ Lt) = (ĨLtĨ)(ĨLtĨ)t

= ĨLtLĨ = ĨUΣ2U tĨ .

The reversal mechanism needs to be applied locally. When an eigenvalue (σ2) has
been computed Algorithm Getvec invokes Algorithms 4.2 and 4.4 to obtain a double
factorization and, after selecting an index, the desired singularity-revealing twisted
factorization. From this comes the singular vector v. In order to compute u it is only
necessary to reverse L, apply Algorithms 4.2 and 4.4 again, select a possibly different
index, and form the corresponding twisted factorization. Then Algorithm Getvec, in
section 4, will yield {Ĩu}. In other words very little extra code is needed in order to
compute u as well as v.

However, even the use of Getvec outlined in the above paragraph is not adequate.
It produces matrices U and V that are orthogonal to working precision, but the extra
coupling relations ‖Ltv − uσ‖ = O(ε‖L‖) and ‖Lu − vσ‖ = O(ε‖L‖) may fail when
singular values are clustered.

In recent work [20], Großer and Lang have presented coupling relations that con-
nect factorizations of LLt−µ2I and LtL−µ2I. By forcing these relations to hold for
the computed factorizations they found a way to use Algorithm Getvec and satisfy all
the desired properties to working accuracy:

Ltv − uσ ≈ 0, Lu − vσ ≈ 0, U tU − I ≈ 0, V tV − I ≈ 0.

This algorithm is to become part of the LAPACK library.
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