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Abstract

In this paper we present an O(nk) procedure, Algorithm MR3, for computing k eigenvec-
tors of an n × n symmetric tridiagonal matrix T . A salient feature of the algorithm is that a
number of different LDLt products (L unit lower triangular, D diagonal) are computed. In
exact arithmetic each LDLt is a factorization of a translate of T . We call the various LDLt

products representations (of T ) and, roughly speaking, there is a representation for each clus-
ter of close eigenvalues. The unfolding of the algorithm, for each matrix, is well described
by a representation tree. We present the tree and use it to show that if each representation
satisfies three prescribed conditions then the computed eigenvectors are orthogonal to working
accuracy and have small residual norms with respect to the original matrix T .
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we present an algorithm that takes a real n × n symmetric tridiag-
onal matrix and computes approximate eigenvectors that are orthogonal to working
accuracy, under prescribed conditions. We call our method Algorithm MR3 or MRRR
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(Algorithm of Multiple Relatively Robust Representations) for reasons that will be-
come clear. To compute k eigenvectors, this algorithm requires O(nk) operations in
the worst case whereas previous algorithms such as the QR algorithm, the Divide and
Conquer method and inverse iteration require either O(n3) or O(nk2) operations in
the worst case. Recent implementations of the Divide and Conquer method compete
closely with our algorithm for matrices which allow extensive “deflations” but in
general, they are slower and show an O(n3) behavior to compute all the eigenpairs
[3,10,15]. Our approach lends itself naturally to the computation of a small subset of
the eigenpairs whereas the adaptation of Divide and Conquer to this case is somewhat
artificial.

This paper is focused on presenting Algorithm MR3 and proving that it com-
putes eigenvectors that are numerically orthogonal and have small residual norms
under prescribed conditions. In an earlier communication [6] we presented Algo-
rithm Getvec which computes a very accurate approximation (error angle = O(nε))
to an eigenvector v of a tridiagonal matrix LDLt (L is unit lower bidiagonal, D is
diagonal) under two conditions: (a) the eigenvalue λ under consideration should have
a large relative gap (� tol say), and (b) the eigenpair (λ, v) should be determined to
high relative accuracy by L and D. More details are given in Section 2.1.

This paper considers the general scenario in which condition (a) need not be satis-
fied; in this case, Algorithm Getvec cannot guarantee numerically orthogonal eigen-
vectors. Failure of condition (a) occurs because the given matrix LDLt has a cluster
of eigenvalues λl � · · · � λr whose relative separation falls below an acceptable
tolerance. To compute the corresponding eigenvectors, the proposed Algorithm MR3

proceeds as follows. Choose a value τ close to the cluster (usually close to λl or λr )
so that for at least one eigenvalue λk in the cluster, the gap relative to τ ,

relgap(λk − τ) = min
l�i�r,i /=k

|(λk − τ) − (λi − τ)|
|λk − τ |

exceeds the acceptable tolerance. Then compute the new representation LcDcL
t
c =

LDLt − τI , where the subscript c stands for child. In exact arithmetic all eigenvec-
tors v of LDLt are eigenvectors of LcDcL

t
c with shifted eigenvalues λ − τ . However

this is not true for the computed LcDcL
t
c and the eigenvalues λ − τ need to be refined

so that they have high relative accuracy with respect to the computed representa-
tion. Now, for all refined eigenvalues with relative gaps that exceed the tolerance,
Algorithm MR3 computes the corresponding eigenvectors by invoking Getvec using
LcDcL

t
c and the refined eigenvalues. For the remaining eigenvalues, whose relative

gaps still fall below the tolerance, the above procedure can be repeated. A detailed
description of the algorithm is given in Section 2.2. Provided that the relevant ei-
genpairs (λ − τ, v) are determined to high relative accuracy by Lc and Dc then our
algorithm will produce eigenvector approximations that are numerically orthogonal
and have small residual norms. Proving these claims is a major part of this paper.

The preceding remarks suggest that Algorithm MR3 computes a new representa-
tion of the tridiagonal matrix for each cluster of close eigenvalues. The algorithm
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computes a subset of eigenvector approximations from each representation and the
reader may wonder whether the vectors computed from different representations will
be numerically orthogonal. That is the first technical question addressed in this paper.
If we begin with an initial form L0D0L

t
0 (positive definite, say) and if every represen-

tation LcDcL
t
c = L0D0L

t
0 − τI were computed exactly then there would be nothing

to prove since eigenvectors are invariant under translation.
It is the inevitable roundoff error in the computed factors that provokes this paper

and a fundamental ingredient in the robustness of our approach is that we use special
methods, called differential qd algorithms, to implement the transformation

LcDcL
t
c = LDLt − τI

without explicitly forming the product LDLt. These algorithms guarantee that the
computed Lc and Dc are related to L and D by very special relative perturbations.
Our proof of orthogonality hinges on the special nature of these perturbations and is
somewhat complicated due to the many representations that may be used. It would be
nice if a simple backward error analysis would let us say that each computed eigen-
vector is very close to an exact eigenvector of the initial matrix. That approach is
doomed because some eigenvectors of the initial matrix (corresponding to very close
eigenvalues perhaps even equal to working accuracy) may be poorly determined by
the initial representation L0D0L

t
0. Thus our preoccupation with high relative accu-

racy at intermediate stages in the algorithm is not for its own sake but to guarantee
orthogonality.

Our second technical task is to show that each computed eigenpair (λ̂, z) has a
small residual norm with respect to the initial matrix, ‖(L0D0L

t
0 − λ̂I )z‖ =

O(ε‖L0D0L
t
0‖) where ε is the machine precision. In contrast to Getvec which deliv-

ers very accurate eigenvectors (error angle = O(nε)) for certain representations
LDLt, all we can ask, in general, when L0D0L

t
0 has clusters of close eigenvalues,

is that our computed vectors z have small residuals.
Our results are that the three properties given in Section 3.1 permit us to guarantee

that the computed eigenpairs (λ̂k, zk) satisfy

max
j /=k

|zt
kzj | � 2[G + (ndepth − 1)R]nε (Theorem 3),

and

‖L0D0L
t
0zk − zkλ̂k‖ �Gnε + 9(ndepth − 1)(2C + 1/2)ε spdiam[L0D0L

t
0]

+ O(nε2) (Theorem 4),

where G and R are specified by (3) and (16) respectively, C is a small constant often
less than 1, ndepth is the depth of the representation tree (see Section 3) and spdiam
denotes the spectral diameter, i.e., spdiam[A] = λmax[A] − λmin[A]. Note that
spdiam[A] � 2‖A‖ for any symmetric A; in our algorithm the initial representation
L0D0L

t
0 is either indefinite or barely definite so that the situation ‖L0D0L

t
0‖ �

spdiam[L0D0L
t
0] is avoided.
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We now give a brief outline of the paper. Section 2 presents the proposed Algo-
rithm MR3 after reviewing Algorithm Getvec. To obtain both the orthogonality and
residual results we use the idea of a representation tree that captures how Algo-
rithm MR3 acts on a given matrix. A certain amount of preparation is needed to
introduce the representation tree which is provided in Section 3, and some example
representation trees are illustrated in Section 3.2. Section 4 introduces the all impor-
tant commutative diagram that captures the mixed relative roundoff error analysis of
the differential qd transforms. Based on the commutative diagram, the orthogonality
result is proved in Section 5 while Section 6 establishes the residual bound.

A word about notation. Throughout the paper we use ε to denote the roundoff unit
but employ variations such as εi , ηj , η, ξ for small quantities that are not necessarily
tied to a computer. T is used to denote a symmetric tridiagonal matrix, while we use
LDLt to denote its bidiagonal factorization. (λ, v) denotes an exact eigenpair while
(λ̂, z) denotes the computed approximation to the eigenpair. All angles θ between
vectors/subspaces will be taken to be acute, so that we may write sin θ instead of
| sin θ |.

We assume that all tridiagonals are irreducible. If the given tridiagonal T is a
direct sum of smaller matrices, or is close enough to such a matrix, then each block
may be treated separately with considerable reduction in effort. So there is no loss in
assuming that the off-diagonal entries exceed some threshold and so all eigenvalues
are simple, even though they may be very close.

2. Algorithms

2.1. Algorithm Getvec

We first review Algorithm Getvec that was presented in [6] to compute an eigen-
vector of an isolated eigenvalue. Fig. 1 gives an outline of the algorithm, which
takes an LDLt factorization and an approximate eigenvalue λ̂ as input and com-
putes the corresponding eigenvector by forming the appropriate twisted factorization
N�N t = LDLt − λ̂I .

In [6] it was shown that the vector z computed by Getvec is an accurate approxi-
mation to a true eigenvector v of LDLt provided the following two conditions hold:

Condition A. The eigenvalue λ should have an adequate relative separation from the
rest of the spectrum, i.e.,

relgap(λ) := min
µ/=λ

|λ − µ|/|λ| � tol,

where µ ranges over all the other eigenvalues of LDLt. Often tol is set to 10−3 which
reflects a willingness to forego 3 digits of accuracy, see also [16, p. 322].
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Fig. 1. Algorithm Getvec for computing the eigenvector of an isolated eigenvalue. See [6] for more details.

Condition B. The eigenpair (λ, v) must be defined to high relative accuracy by L and
D, i.e., small relative changes, li → li (1 + ηi), di → di(1 + δi), |ηi | < ξ , |δi | < ξ ,
ξ � 1, cause changes �λ and �v that satisfy

|�λ| � K1nξ |λ|, λ /= 0, (1)

sin ∠(v, v + �v) � K2nξ

relgap(λ)
(2)

for modest constants K1 and K2, say, smaller than 10. We call such an LDLt factor-
ization a relatively robust representation (RRR) for (λ, v). Note that the case λ = 0
is easy since relative perturbations preserve the zero diagonal entry of D.

Details on twisted factorizations, differential qd transforms and Algorithm Getvec
may be found in [6,12]. The following theorem quantifies the accuracy of the com-
puted eigenvector:

Theorem 1 [6, Theorem 15]. Let (λ, v) be an eigenpair of an n × n real symmetric
irreducible tridiagonal matrix LDLt with ‖v‖ = 1. Let λ̂ be an accurate
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approximation closer to λ than to any other eigenvalue of LDLt and let z be the
vector computed in Step IV of Algorithm Getvec. Let L̄ and D̄ be perturbations of L

and D determined by the error analysis of the differential twisted qd algorithm (see
[6, Section 5]) and let (λ̄, v̄) be the eigenpair of L̄D̄L̄t with λ̄ the closest eigenvalue
to λ̂ and ‖v̄‖ = 1. Let ε denote the roundoff unit. Then

sin ∠(z, v) � (1 + ε)5(n−1) − 1

(1 − ε)5(n−1)
+ |λ̄ − λ̂|

|v̄(r)|gap(λ̂)

+ (1 + ε)6n−1 − 1

2 − (1 + ε)6n−1
· relcond(v)

where gap(λ̂) := min{|λ̂ − µ̄|, µ̄ ∈ spectrum of L̄D̄L̄t, µ̄ /= λ̄}, r is the twist index
in Step III of Getvec and relcond(v) is the relative condition number of v defined in
[6].

Let us consider the middle term in Theorem 1’s bound. The choice of index r in
Getvec is intended to pick out one of the largest entries in v while (1) ensures that
λ can be computed to high relative accuracy. However in the proof of Theorem 15
in [6], |λ̄ − λ̂|/|v̄(r)| appears as an upper bound for the quantity |γ̄r |/‖z̄‖, which can
be estimated from Algorithm Getvec. Thus if |γ̄r |/‖z̄‖ � Knε|λ̂| for some modest
constant K , then under Condition A the middle term is bounded by Knε/tol. Further,
if relcond(v) � K̄ then Theorem 1 guarantees that the vector z computed by Getvec
satisfies

sin ∠(z, v) � Gnε (3)

with G incorporating the details of Theorem 1; G will be a little larger than 5 +
K/tol + 6K̄ . The dependence on tol can be removed since a good estimate of
gap(λ̂) is easily available, and |γ̄r |/(‖z̄‖gap(λ̄)) can often be driven to be smaller
than Knε.

2.2. Algorithm MR3

Fig. 2 describes Algorithm MR3 that computes k eigenvectors of a symmetric
tridiagonal matrix T in O(nk) time. The eigenvectors to be computed are specified
by the index set �0. The algorithm “breaks” each cluster of eigenvalues by shifting
close to the cluster and forming a new factorization for each cluster. Note that no
Gram–Schmidt orthogonalization is performed to obtain orthogonality.

Remark 1. The actual computation of each eigenvector is performed by invoking
Algorithm Getvec when the (possibly shifted) eigenvalue has a large relative separa-
tion from its neighbors.
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Fig. 2. Algorithm MR3 computes orthogonal eigenvectors by using multiple representations. Note that
no Gram–Schmidt orthogonalization is needed.

Remark 2. In general, several intermediate factorizations LDLt are needed. Each is
called a “representation” and each is associated with a cluster of eigenvalues indexed
by �. Each pair (LDLt, �) is a node in a representation tree, which is defined in the
next section.

Remark 3. For technical reasons we assume that �0 is such that if �0 indexes any
eigenvalue in a cluster of L0D0L

t
0 then it contains all eigenvalues in that cluster. We

make this assumption to simplify the algorithm and proofs which can be extended to
handle an arbitrary �0.
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Remark 4. The crucial feature of Algorithm MR3 concerns the representations
LcDcL

t
c ≈ LDLt − τcI computed in Step 4b of Fig. 2. Each LcDcL

t
c is associ-

ated uniquely with an index set �c. Except for �0 and singletons, each �c corre-
sponds to a cluster of eigenvalues––every eigenvalue of LDLt in �c has a relative
gap that is smaller than the input threshold tol, usually set to 10−3. The repre-
sentations must satisfy three crucial properties: we defer describing these proper-
ties till Section 3.1 after introducing the notion of a representation tree in the next
section.

3. The representation tree

As seen in the previous section, Algorithm MR3 may use different representa-
tions to compute different eigenvectors. The sequence of computations performed by
Algorithm MR3 on a given matrix T can be neatly summarized by a representation
tree, which was originally introduced in [5]. As we will see, representation trees
facilitate our reasoning about the accuracy of the computed eigenvectors.

Before we introduce representation trees, we must resolve the practical question
of how to designate eigenvalues. Because several different shifts will be employed
we often denote each eigenvalue by its index, not its value. For example, eigenvalue
{6} always denotes the sixth eigenvalue from the left in the spectrum but its value
will vary according to the current origin.

We assume that the reader is familiar with elementary concepts concerning graphs,
particularly those related to a tree [2, Section 5.5]. A representation tree is a rooted
tree where the root node denoted by ({L0, D0}, �0) or (L0D0L

t
0, �0) represents

the initial RRR and initial index set �0; the latter equals {1, 2, . . . , n} if the en-
tire spectrum is desired. An example representation tree is shown in Fig. 3. Nodes

Fig. 3. An example representation tree.
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that have no children are called leaf nodes while all other nodes are internal. The
depth of a tree is the maximum number of edges on a path from a leaf node to
the root. In general, an internal node in the tree is denoted by ({Lc, Dc}, �c) or
(LcDcL

t
c, �c) where �c is a subset of the initial index set �0. This node captures

the fact that LcDcL
t
c is an intermediate RRR used in the process of obtaining the

eigenvectors indexed by �c. The index set associated with any leaf node must be
a singleton. A leaf node is denoted by ({Ni, �i}, {i}) and captures the fact that the
ith eigenvector is computed by Algorithm Getvec using the twisted factorization
Ni�iN

t
i (see Section 2.1). An internal node (LDLt, �) may have h children (imme-

diate descendants), some of them being internal nodes themselves and some being
leaf nodes, with disjoint index sets �α1 , �α2 , . . . , �αh

that form a partition of �,
i.e.,

� = �α1 ∪ �α2 ∪ · · · ∪ �αh
. (4)

Note that this partition is determined by Algorithm MR3 and depends on the relative
separations between the eigenvalues of LDLt. Algorithm MR3 ensures that each
internal node corresponds to a cluster, thus within each index set �αi

the relative gaps
with respect to LDLt are below the input threshold tol, while across different index
sets the relative gaps are larger than this tolerance. We elaborate on this property in
Section 3.1.

Each edge connecting a parent node (LDLt, �) to its child node, (LcDcL
t
c, �c) or

(Nc�cN
t
c, �c), is labeled by a floating point number τ . Informally, this edge denotes

the action of computing the new representation

LDLt − τI = LcDcL
t
c or LDLt − τI = Nc�cN

t
c.

We discuss details of this computation in Section 4. We now present an example
that leads to the representation tree of Fig. 3. Consider a 4 × 4 tridiagonal T0 with
eigenvalues

λ1 = ε, λ2 = 1 + √
ε, λ3 = 1 + 2

√
ε, λ4 = 2.0

with ε ≈ 2.2 × 10−16 (machine precision in IEEE double precision arithmetic). Let
T0 = L0D0L

t
0 be the initial representation. Since relgap(λ1) ≈ 1/ε and relgap(λ4) ≈

1 are both large, Algorithm Getvec is invoked by MR3 and the corresponding eigen-
vectors are computed using the twisted factorizations

L0D0L
t
0 − λ̂1I = N1�1N

t
1 and L0D0L

t
0 − λ̂4I = N4�4N

t
4.

The interior eigenvalues have a relative separation of about
√

ε. Thus Algorithm
MR3 forms the new representation

L0D0L
t
0 − I = L1D1L

t
1 (taking τ = 1). (5)
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The relevant eigenvalues of L1D1L
t
1 are now �λ2 ≈ λ2 − τ = √

ε and �λ3 ≈
λ2 − τ = 2

√
ε. Most importantly, these shifted eigenvalues now have large relative

gaps. A vital feature of Algorithm MR3 is that these eigenvalues are recomputed
(refined is a more apt description) using the new matrices L1 and D1 till they have
high relative accuracy with respect to L1D1L

t
1. Finally, Algorithm Getvec is invoked

to compute numerically orthogonal approximations z2 and z3 using the twisted fac-
torizations

L1D1L
t
1 − �λ2I = N2�2N

t
2 and L1D1L

t
1 − �λ3I = N3�3N

t
3,

where �λ2 ≈ √
ε and �λ3 ≈ 2

√
ε.

The representation tree in Fig. 3 compactly summarizes the above computations.
Many different matrices T0 can produce the above behavior. Two contrasting exam-
ples, one with no element growth and the second with large element growth in form-
ing L1D1L

t
1 (see (5)), can be seen as Examples 5.1.1 and 5.1.2 in [5].

3.1. Properties

There are three properties that must be satisfied by the representations in the tree.
The properties involve the choice of τc at each node of the tree and the “relative
robustness” of the resulting computed representation LcDcL

t
c. The desired relation-

ship is LDLt − τcI = LcDcL
t
c, however roundoff errors mean that the computed

LcDcL
t
c will be slightly different. The precise relationship between the computed

and exact representations is given in Section 4.
Consider an internal node (LDLt, �) in the tree and let (LcDcL

t
c, �c) be one of

its child nodes. Some extra notation is needed to define the properties that each node
representation must satisfy. We use SA

� to denote the invariant subspace associated
with � under the matrix A, i.e.,

A · SA
� ⊆ SA

� .

Another way to describe SA
� is as span(vi ), i ∈ �, Avi = viλi . We also define the

relative gaps of the index set � with respect to the symmetric matrix A as

relgap(�; A) := min
j �∈�,i∈�

|λi − λj |/|λi |, where λi, λj are eigenvalues of A.

We will use the subspaces S
LcDcL

t
c

�c
and SLDLt

�c
, and the relative gaps relgap

(�c; LcDcL
t
c) and relgap(�c; LDLt) below. We are now ready to present the three

properties that must be satisfied.

Property I (Relatively robust representation (RRR)). LcDcL
t
c should be an RRR for

�c, i.e., each eigenvalue λi of LcDcL
t
c, i ∈ �c, and the corresponding invariant

subspace S�c = S
LcDcL

t
c

�c
, must be defined to high relative accuracy by Lc and Dc.
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This means that if L̄cD̄cL̄
t
c is a small componentwise perturbation of LcDcL

t
c, i.e.,

L̄c(i, i + 1) = Lc(i, i + 1) · (1 + ηi), D̄c(i, i) = Dc(i, i) · (1 + δi), |ηi | < ξ, |δi | <

ξ, ξ � 1, then the perturbed quantities λ̄i and S
L̄cD̄cL̄

t
c

�c
must satisfy

|λ̄i − λi | � K1nξ |λi |, λi /= 0, (6)

sin ∠
(
S

LcDcL
t
c

�c
,S

L̄cD̄cL̄
t
c

�c

)
� K3nξ

relgap(�c; LcDcLt
c)

. (7)

The angle between two subspaces is taken to be their largest principal angle, see
[9, Section 12.4.3]. Additionally, for the parent representation LDLt and the same
index set �c,

sin ∠
(
SLDLt

�c
,SL̄D̄L̄t

�c

)
� K3nξ

relgap(�c; LDLt)
, (8)

where L̄D̄L̄t is a small componentwise perturbation of LDLt. Note that SLDLt

�c
and

relgap(�c; LDLt) are quantities associated with the parent representation LDLt,

but the child index set �c. The constants K1 and K3 are independent of the matrix
and are of modest size (�10 say).

Property II (Conditional element growth). Let spdiam[A] denote the spectral dia-
meter of a symmetric matrix A, i.e., spdiam[A] = λmax[A] − λmin[A]. For every
representation LDLt, with index set �, and every computed eigenvector z, ‖z‖ = 1,
with eigenvalue λ belonging to � (i.e., λ = λj (LDLt), j ∈ �) we require

‖Dz‖ � C · spdiam[L0D0L
t
0], (9)

‖ o

L D
o

L
t

z‖ � C · spdiam[L0D0L
t
0], where

o

L:= L − I. (10)

Notice that both D and
o

L D
o

L
t
are diagonal matrices and D+ o

L D
o

L
t
= diag(LDLt).

Here C is a modest constant, say C < 10, but often in practice C < 1. Note that this
condition does allow large element growth in the factorization but only at indices
that correspond to small entries in the computed vectors z.

Property III (Relative gaps). The eigenvalues of LDLt in � are divided into subsets
called children according to Step 3 of Algorithm MR3. The purpose of this partition
is to have relative gaps larger than tol between the children. To be specific, the shift
τc must be chosen so that

relgap(�c; LDLt) � tol. (11)

Moreover, the relative gap of the index set �c must increase on going down the tree,
i.e., the relative gap with respect to the child representation,

relgap(�c; LcDcL
t
c) � relgap(�c; LDLt) � tol. (12)
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In (11) and (12) the reference is to computed quantities and so LcDcL
t
c = LDLt −

τcI may not hold. When it does then (12) follows from (11) as we now show. If
LcDcL

t
c = LDLt − τcI then the eigenvalues of LcDcL

t
c equal λi − τc where λi is

the ith eigenvalue of LDLt. The shift τc is typically chosen very close to one end of
the subset {λi, i ∈ �c} of LDLt’s spectrum in order that |λi − τc| � |λi |, i ∈ �c.
For an arbitrary index pair (i, j) such that i ∈ �c, j �∈ �c we have

|(λj − τc) − (λi − τc)|/|λi − τc| � relgap(�c; LDLt) · |λi |/|λi − τc|
� relgap(�c; LDLt).

Then, by (11),

relgap(�c; LcDcL
t
c) = min

i∈�c,j �∈�c
|(λj − τc) − (λi − τc)|/|λi − τc| � tol.

Thus the relevant relative gaps should increase as we go down the tree; see Remark
5 in Section 4 for an example. Of course, Algorithm MR3 does not know the exact
eigenvalues of each representation, instead it uses estimates λ̂i in order to approx-
imate (11) and (12). By (6), it is possible to obtain estimates λ̂i that have high
relative accuracy.

Although we have given Properties I and II separately, we suspect that they are
very similar. Note that Property I is guaranteed for factorizations LDLt that are
definite [7], which is often our choice for the root representation L0D0L

t
0, and also

for LDLt with L well conditioned for inversion [6].
Properties I and II are not as difficult to achieve as might appear at first sight.

Except for �0 every representation LDLt need be an RRR for only the eigenvalues
in � and these are the small eigenvalues λ − τc (see Step 4b in Fig. 2). We conjecture
that every almost singular factorization LDLt is an RRR for the tiny eigenvalues but
that is outside the scope of this paper, see [6,13]. Note that LDLt always defines a
zero eigenvalue to high relative accuracy.

Note also that we are free to choose the shifts τc to satisfy Properties I–III. A
successful strategy for τc has been to try both the left and right extremes of �c,
choosing the end that leads to smaller element growth, i.e., minimizes ‖Dc‖. There
is also an O(n) check for Property I, which can be used to validate the choice of
τc. If both extremes fail we back off the cluster by the average gap. The triangu-
lar factorization LDLt − τI is a rational function of τ and contains poles. We are
only concerned with small neighborhoods just outside clusters of close eigenvalues
and need only ensure that any shift τc not be too close to poles, if any, in these
neighborhoods.

We will not say more about the choice of shifts or satisfaction of the three proper-
ties above since this material is beyond the scope of this paper; the reader is referred
to [5,6,13] for more details. The purpose of this paper is to prove that Algorithm
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MR3 computes approximate eigenvectors that are numerically orthogonal and have
small residual norms, assuming that the above properties hold.

3.2. Examples

We now present further examples to illustrate how a representation tree captures
the action of Algorithm MR3 on a given matrix. We urge the reader not to skip these
examples.

Example 1 (Nested clusters). Consider a 13 × 13 real irreducible symmetric tridiag-
onal matrix T with spectrum ε, 1, 1 ± 10−15, 1 ± 10−12, 1 ± 10−9, 1 ± 10−6, 1 ±
10−3, 2. Note that if it happens that the factorization T − µI = L0D0L

t
0, with µ =

1 + O(ε), is an RRR (Property I in Section 3.1 then it could be used as the initial rep-
resentation instead of the positive definite factorization of T . The advantage would be
that all the (shifted) eigenvalues would have large relative gaps; for example, for λ =
(1 + 10−6) − µ, relgap(λ) would approximately equal min{10−6 − 10−9, 10−3 −
10−6}/10−6 = 1 − 10−3. Hence all eigenvectors could be computed using this L0
D0L

t
0. However, we pass over this pleasant possibility in order to convey the way

Algorithm MR3 treats the general case.
For the initial representation T = L0D0L

t
0 only the two extreme eigenvalues, ε

and 2, have large relative gaps. The remaining eigenvalues are clustered around 1 and
so it is reasonable to maintain that it is only the 11-dimensional invariant subspace
associated with 1, 1 ± 10−15, 1 ± 10−12, 1 ± 10−9, 1 ± 10−6, 1 ± 10−3 that is well
determined by L0 and D0, not the individual eigenvectors.

The first step in the algorithm is to invoke Algorithm Getvec, using L0 and D0,
to compute eigenvectors for the extreme eigenvalues {1} and {13}, with values ε

and 2 respectively. We also locate a shift τ1 at, or very little less than, the eigenvalue
1 − 10−3 so that L1D1L

t
1 := L0D0L

t
0 − τ1I yields an RRR for all the interior ei-

genvalues (other than ε and 2). These eigenvalues must be now refined so that they
have high relative accuracy with respect to L1D1L

t
1. The above computations are

summarized by the partial representation tree in Fig. 4.
Now we describe the next levels of the tree produced by Algorithm MR3. Eigen-

values {2} and {12} of L1D1L
t
1 have the values 0 (or ε) and 2 × 10−3 and are

Fig. 4. Initial computations in the 13 × 13 example.
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relatively well separated from {3, 4, . . . , 11}. However, there are no large relative
gaps in {3, 4, . . . , 11} although each eigenvalue is determined to high relative accu-
racy by L1 and D1. Thus Algorithm Getvec is invoked for {2} and {12} after these ei-
genvalues are refined using L1 and D1, and we get two leaves as children of L1D1L

t
1

as shown in Fig. 5.
We must also find a shift τ2 at, or very little less than, the eigenvalue {3}, with

value (1 − 10−6) − (1 − 10−3), so that L2D2L
t
2 := L1D1L

t
1 − τ2I yields an

RRR for the eigenvalue subset {3, 4, . . . , 11}. It is not essential to locate τ2 close
to {3}. A value near {11} = 10−3 + 10−6 that gives an RRR would be equally
satisfactory.

Fig. 5. The entire representation tree for the extreme 13 × 13 example.
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For simplicity we have assumed that shifts at the extreme left eigenvalue of each
cluster yield RRRs. A shift within a cluster is also valid provided that an RRR is
obtained but the danger of the shift failing is greater.

In this particular example, with shifts chosen from the left, each internal node has
three children; two are leaves and the middle one is associated with a cluster. Finally
we obtain the complete representation tree with depth 6 shown in Fig. 5. This is the
maximum depth possible in IEEE double precision arithmetic when the tolerance for
relative gaps, tol is set to min(10−3, 1/n). Our analysis in Sections 5 and 6 will show
why eigenvectors computed from different leaf nodes are numerically orthogonal
and enjoy small residual norms with respect to the original representation L0D0L

t
0.

For example, why are the computed eigenvectors z3 and z7 numerically orthogonal,
why is ‖(L0D0L

t
0 − λ9I )z9‖ small, etc.?

The above 13 × 13 example is extreme. To restore a sense of reality we mention
a test matrix of order 966 that arose in the calculation of the energy levels in the
biphenyl molecule, see [5, Section 6.4.1]. In this example, the root node had 805
children that were leaf nodes, and 63 children that were internal nodes or clusters. Of
these 63 nodes, there were 49 with 2 eigenvalues each, 7 nodes with 3 eigenvalues
each, 3 nodes with 4 eigenvalues each, 1 cluster of 5 eigenvalues, 2 clusters of 8
eigenvalues and 1 node with 9 eigenvalues. All nodes at the next level were leaf
nodes, and the depth of the entire tree was 2.

Most matrices that we have encountered in our numerical experience have repre-
sentation trees with depth 2 or 3. The 13 × 13 matrix of Example 1 has one cluster
of eigenvalues with varying degrees of closeness, however all the eigenvalues are
distinct. Although eigenvalues of irreducible tridiagonals are distinct they can be
identical to working accuracy. The reader may wonder how Algorithm MR3 can
handle such a case.

Example 2 (Eigenvalues identical to working accuracy). Consider the 101 × 101
Wilkinson matrix W+

101 that has various eigenvalue clusters, each containing a pair
of eigenvalues. The rightmost cluster is the tightest, with λ100 and λ101 identical to
working accuracy. To 16 digits, the eigenvalues are

λ100 = 50.74619418290335, λ101 = 50.74619418290335,

while λ99 = 49.21067864733310, and thus the rightmost cluster is well separated
from the rest of the spectrum.

The seeming danger is that Algorithm MR3 will not be able to “break” this tight
cluster; the argument is that the eigenvalues are so close that shifting by a 16-digit
floating point number τ will still lead to shifted eigenvalues that have all digits in
common. Thus it seems that repeated shifting would be required to break a very
tight pair.

However, this fear turns out to be unfounded. It is the inevitable roundoff
errors that come to the rescue. In the case of W+

101, if τ is chosen to equal µ +
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λ100 = µ + λ101 (where µ is the initial shift, W+
101 + µI = L0D0L

t
0) then the differ-

ential qd transform is used to compute L0D0L
t
0 − τI = L1D1L

t
1. There is roundoff

error in computing L1 and D1 and due to this roundoff error, the smallest eigenvalues
(in magnitude) of the computed L1D1L

t
1, found after refinement, turn out to be

�λ100 = 6.4332181165285×10−14 and �λ101 = 6.9956115177461×10−14.

The shifted eigenvalues δλ100 and δλ101 now have a large relative gap! The contam-
ination in the eigenvalues, due to roundoff, prevents the shifted eigenvalues from
sharing more digits. However, δλ100 and δλ101 have high relative accuracy with
respect to the computed L1D1L

t
1 and this allows Algorithm MR3 to proceed and de-

liver numerically orthogonal eigenvectors. We have observed such behavior for many
other matrices, for example, W+

501, etc. Note also that in a software implementation,
the value of τ can be varied if unfortunate symmetries in the data arise.

4. Commutative diagram

The representation tree involves various representations LcDcL
t
c that are formed

by triangular factorization of LDLt − τcI . Accuracy in this calculation is crucial to
the success of the algorithm. If Lc and Dc are computed in a straightforward manner
by forming LDLt − τcI and then factoring it, Algorithm MR3 and Getvec would
not always deliver accurate eigenvectors. The same verdict applies to Rutishauser’s
qd algorithm [14]. In [6] it was shown that if the differential form of the stationary
qd algorithm (dstqds) is used, then special tiny relative changes in L, D and the
computed L̂c, D̂c, yield ideal L̄, D̄, L̄c, D̄c such that the relation

L̄cD̄cL̄
t
c = L̄D̄L̄t − τcI (13)

holds exactly. This relationship is captured by the commutative diagram in Fig. 6.
Our goal is to show that vectors zi and zj computed by Algorithm MR3 from

different representations are orthogonal to working accuracy. The proof is somewhat
complicated and brings in diverse aspects of the algorithm. Consequently we must
break the argument into pieces and must introduce some notation.

Angle with parent subspace. Consider the commutative diagram in Fig. 6, which
corresponds to the computation of a typical child node (LcDcL

t
c, �c) of the parent

(LDLt, �). Assume that �c is not a singleton. There are two subspaces associated

with �c; one is S
LcDcL

t
c

�c
, the subspace invariant under LcDcL

t
c, the other is SLDLt

�c
,

the subspace invariant under LDLt. We define the angle

��c := ∠
(
S

LcDcL
t
c

�c
,SLDLt

�c

)
, 0 � ��c � π

2
, (14)

to be the largest principal angle between the two subspaces [9, Section 12.4.3]. In
exact arithmetic, i.e., if there were no roundoff errors in computing LcDcL

t
c, by the
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Fig. 6. Commutative diagram (the acronym ulp stands for units in the last place held).

translation invariance of subspaces, S
LcDcL

t
c

�c
and SLDLt

�c
would be identical and ��c

would be zero. Reassuringly, as shown below in Lemma 1, thanks to the properties of
differential qd algorithms the subspaces are close even in finite precision arithmetic.

Lemma 1. Let (LDLt, �) be a non-leaf node in the representation tree and let
(LcDcL

t
c, �c) be one of its child nodes, where LcDcL

t
c is the factorization of LDLt −

τcI computed by the dstqds transform. Then the commutative diagram in Fig. 6 holds
and

sin ��c := sin ∠
(
S

LcDcL
t
c

�c
,SLDLt

�c

)
� Rnε,

where R is a constant that depends on perturbation properties of LDLt and LcDcL
t
c,

on the error analysis of the dstqds transform and on the relative gap tolerance tol
used in Step 3 of Algorithm MR3.

Proof. Since the dstqds transform is used to compute LcDcL
t
c, Theorem 2 in [6]

shows that the commutative diagram of Fig. 6 holds; in particular the relation (13)
holds. By translation invariance of invariant subspaces

SL̄D̄L̄t

�c
= S

L̄cD̄cL̄
t
c

�c

and so, taking all angles as acute,

��c = ∠
(
S

LcDcL
t
c

�c
,SLDLt

�c

)

� ∠
(
SLDLt

�c
,SL̄D̄L̄t

�c

) + ∠
(
S

LcDcL
t
c

�c
,S

L̄cD̄cL̄
t
c

�c

)
. (15)

Informally the first term on the right in (15) reflects the sensitivity of the left side of
the commutative diagram, while the second reflects the sensitivity of the right side.
We next show that both these terms are small under our assumptions.
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Looking at both sides of the commutative diagram we see that no entry changes by
more than (1 + 3ε). By assumption, LcDcL

t
c is an RRR for �c, so by (7) of Property

I of an RRR,

sin ∠
(
S

LcDcL
t
c

�c
,S

L̄cD̄cL̄
t
c

�c

)
� K3n(3ε)

relgap(�c; LcDcLt
c)

� K3n(3ε)

tol
,

where the last inequality follows from (12). Similarly, by (8) and (11),

sin ∠
(
SLDLt

�c
,SL̄D̄L̄t

�c

)
� K3n(3ε)

relgap(�c; LDLt)
� K3n(3ε)

tol
.

Insert these bounds in (15) to obtain

sin ��c = sin ∠
(
S

LcDcL
t
c

�c
,SLDLt

�c

)
� Rnε with R := 6K3/tol. (16)

�

Remark 5. The example in Fig. 5 shows that the relevant relative gaps can be
far greater than tol, and illustrates the general phenomenon that relgap(�) tends to
increase as � moves down the representation tree. For example,

relgap({6, 7, 8}; L3D3L
t
3) ≈ (10−9 + 10−12) − (10−9 + 10−15)

10−9 + 10−15
≈ 10−3,

relgap({6, 7, 8}; L4D4L
t
4) ≈ 2 × 10−12 − (10−12 + 10−15)

10−12 + 10−15
≈ 1,

while

relgap({6, 7, 8}; L5D5L
t
5) ≈ (10−12 + 10−15) − 2 × 10−15

2 · 10−15
= 1

2
(103 − 1).

The reader may find it beneficial to instantiate the proof of Lemma 1 for any
non-leaf node of the representation tree in Fig. 5.

5. Orthogonality

Algorithm MR3 begins with a symmetric tridiagonal matrix in factored form
L0D0L

t
0 that defines all the desired eigenvalues to high relative accuracy. The root

node of the representation tree is the pair (L0D0L
t
0, �0), �0 being the initial

index set. Leaf nodes are given by the pairs (Nj�jN
t
j , {j}), and signify the com-

putation of the approximate eigenvector zj by Algorithm Getvec using the twis-
ted factorization Nj�jN

t
j . The computed vector zj has the attractive property that

it differs from the eigenvector of the parent LDLt for eigenvalue {j} by O(nε),
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under prescribed conditions (see Theorem 1). To show accuracy of the computed
eigenvectors we will relate them to representations up the tree; however, it is not
possible to show that each computed vector is within O(nε) of the corresponding
eigenvector of the root L0D0L

t
0 since individual eigenvectors of L0D0L

t
0 may not

be determined to such high accuracy. Instead, in this section we show why the
vectors computed from different representations are orthogonal to working accu-
racy.

Note that each node of the representation tree has a distinct index set �, and thus
we will often denote the node by its index set. The quantity of interest is

dot� = max
i∈�,j∈�

cos ∠(zi , zj ), i /= j, (17)

where zi and zj are the computed eigenvectors. As our main result, in Theorem 3 we
give a bound on dot�0 where �0 is the index set for the root node.

To present our main orthogonality result, we need some additional notation. Re-
call that eigenvectors are invariant under translation and consequently we denote
eigenvalues simply by an index; {q} denotes the qth eigenvalue from the left, λq <

λq+1. As in Section 4, let SLDLt

� denote the subspace invariant under LDLt associ-

ated with �. For ease of use, we will often denote SLDLt

� by S� for the internal node
(LDLt, �). In addition there is a set of computed normalized vectors associated with
�, i.e., {zi; i ∈ �}. To understand how the quantity defined in (17) propagates up the
tree we need to define the following additional angle associated with the subspace
S�.

Angle with computed vectors. For any internal node � and any k ∈ �, define

�k,� := ∠ (zk,S�) , (18)

where, as usual, ∠(zk,S�) denotes the smallest angle made by zk with any vector
in the subspace S�, i.e., the principal angle between S� and the 1-dimensional
subspace spanned by zk . Trivially, �k,�0 = 0 when �0 = {1, . . . , n}.
At a leaf: As a special case consider the parent (LDLt, �) of the leaf node {k} at
which zk is computed by Algorithm Getvec. The main result of [6] is that there is
an eigenvector vk of LDLt such that sin ∠(zk, vk) � Gnε, for a small constant G
(= O(1)) that incorporates the large relative gap of {k} in the spectrum of LDLt; see
Theorem 1 and (3). Since k ∈ �, vk ∈ S� and thus

sin �k,� � sin ∠(zk, vk) � Gnε. (19)

Away from the leaf: For nodes (LDLt, �) nearer the root, the index set � that
includes k increases and �k,� should (weakly) decrease. In fact, if there were no
roundoff error in computing each new representation, the �’s would decrease mono-
tonically as we go up the tree. However, in the presence of roundoff errors the
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situation is more complicated and the angle �� defined in Section 4 comes into
play, as shown in Lemma 2 below.

Consider an internal node (LDLt, �). Let Sparent
� denote the subspace associated

with the index set � that is invariant under the parent matrix of the node (LDLt, �).
We contrast �k,� with �� (≡ ∠(S�,S

parent
� )) defined in (18) and (14) respectively.

The angle �� is independent of Algorithm Getvec and depends on how well the
parent and child representations determine their invariant subspaces Sparent

� and S�

(≡ SLDLt

� ) respectively. On the other hand, �k,� depends on the eigenvector zk

computed at the leaf node by Algorithm Getvec. Note that we have defined �k,� and
�� only for the internal nodes of the representation tree; there is no need to define
these angles for leaf nodes.

Our assumption that each representation is an RRR for its index set � guarantees,
by Lemma 1, that the �� are small. The bound (19) which follows from [6] guaran-
tees that �k,� is small at the parent (�) of the leaf node {k}. The following lemma
gives a recurrence for �k,� that allows us to understand how this angle grows as we
go up the tree to the root node.

Lemma 2. We consider zj computed by Getvec. Let � be an internal node in the
representation tree with j ∈ �. Let �α be the (unique) child node, i.e., immediate
descendant, of � such that j ∈ �α (as illustrated in Fig. 7). Then

sin �j,� � sin �j,�α + sin ��α . (20)

Proof. Taking all angles as acute, for any subspace U

sin �j,� = sin ∠(zj ,S�) � sin ∠(zj ,U) + sin ∠(U,S�).

It is convenient to take U = S�α . Note that the subspaces S�α and S� are of dif-
ferent dimensions and ∠(S�α ,S�) is again the largest principal angle between the
subspaces. Since �α is an immediate descendant of �, �α ⊆ � and S

parent
�α

⊆ S�(
in Fig. 7, by definition, Sparent

�α
equals SLDLt

�α
while S� equals SLDLt

�

)
. Thus

sin ∠(S�α ,S�) � sin ∠
(
S�α ,S

parent
�α

) = sin ��α , (21)

and the result (20) holds. �

Given two different leaf nodes {j} and {k} in the representation tree, they have a
unique least common ancestor, which is the first internal node up the tree that is an
ancestor of both the leaves. For example, in Fig. 5, the least common ancestor of {3}
and {7} is (L2D2L

t
2, {3, . . . , 11}). In ascending the tree the level of orthogonality

among the computed eigenvectors is governed by the following lemma.
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Fig. 7. Relation of � to �α and �β .

Lemma 3. Consider the pair of computed eigenvectors zj and zk, and let (LDLt, �)

be their least common ancestor. Let �α and �β be the child nodes (immediate
descendants) of � that contain the indices j and k respectively (�α ∩ �β = φ).

Assuming that both zj and zk satisfy (19), then

cos ∠(zj , zk) �




sin �j,�α + sin ��α + sin �k,�β + sin ��β

if �α and �β are internal nodes,
Gnε + sin �k,�β + sin ��β

if only �α is a leaf node,
Gnε + sin �j,�α + sin ��α

if only �β is a leaf node,
2Gnε

if �α and �β are leaf nodes.

Proof. Consider the case when both �α and �β are internal nodes with parent � as
illustrated in Fig. 7. Recall the subspaces S�α , Sparent

�α
, S�β and S

parent
�β

. Since �

is the parent of �α and �β both S
parent
�α

and S
parent
�β

are subspaces contained in S�.

Since LDLt is real and symmetric, and �α ∩ �β = φ,

S
parent
�α

⊥ S
parent
�β

.

Hence, taking all angles as acute,

cos ∠(zj , zk) � sin ∠
(
zj ,S

parent
�α

) + sin ∠
(
zk,S

parent
�β

)

� sin ∠(zj ,S�α ) + sin ∠
(
S�α ,S

parent
�α

)
(22)+ sin ∠(zk,S�β ) + sin ∠

(
S�β ,S

parent
�β

)
= sin �j,�α + sin ��α + sin �k,�β + sin ��β

by definitions (18) and (14).
We now consider the special case when one or both of the children are leaves. If

�α is a leaf, i.e., �α = {j}, we can directly use (19) to give

sin ∠
(
zj ,S

parent
�α

)
� Gnε.

When both �α and �β are leaves then, by (22),

cos ∠(zj , zk) � 2Gnε,
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while if only �α is a leaf then

cos ∠(zj , zk) � Gnε + (sin �k,�β + sin ��β ). �

Theorem 2. Consider the pair of computed eigenvectors zj and zk, and let
(LDLt, �) be their least common ancestor. Let depth(�, j) and depth(�, k) be the
number of edges on the path from node � to the leaf nodes {j} and {k} respectively.
Let the vectors zj and zk satisfy the bound in (19) (due to Algorithm Getvec), and
let all internal nodes in the representation tree satisfy (16). Then

cos ∠(zj , zk) � 2Gnε + {depth(�, j) + depth(�, k) − 2}Rnε.

Proof. The proof follows by applying the recurrence for sin �k,� given in Lemma
2 to the bound for cos ∠(zj , zk) in Lemma 3. �

Finally, we get the desired bound on the worst dot product between the eigenvec-
tors computed by Algorithm MR3.

Theorem 3. Let � be a non-leaf node and let dot� be as defined in (17). Using the
notation of Theorem 2,

dot� � 2Gnε + max
j,k∈�

{depth(�, j) + depth(�, k) − 2}Rnε.

Thus, for the root node �0,

dot�0 � 2Gnε + 2(ndepth − 1)Rnε,

where ndepth is the depth of the representation tree.

We now illustrate the above theorems on the 13 × 13 example of Fig. 5. Consider
z3 and z7. Their least common ancestor is (L2D2L

t
2, �2) with �2 = {3, . . . , 11},

depth(�2, 3) = 1 and depth(�2, 7) = 4. Thus, according to Theorem 2,

cos ∠(z3, z7) � 2Gnε + 3Rnε.

Examining Fig. 5, it is instructive to follow the path taken by the proof of Theorem
2 for this pair:

cos ∠(z3, z7) � sin ∠
(
z3,S

parent
{3}

) + sin ∠
(
z7,S

parent
{4,...,10}

)
,

by (22),

� Gnε + sin ∠
(
z7,S{4,...,10}

) + sin ∠
(
S{4,...,10},Sparent

{4,...,10}
)
,

by (19),

= Gnε + sin �7,{4,...,10} + sin �{4,...,10},
by (18) and (14),

� Gnε + sin �7,{5,...,9} + sin �{5,...,9} + Rnε,

by (20) and (16),

� Gnε + 2Rnε + sin �7,{6,7,8} + sin �{6,7,8},
by (20) and (16),
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� 2Gnε + 3Rnε,

by (19) and (16).

6. Residual norms

The remaining question to settle in this paper is: do the computed eigenvectors
enjoy small residual norms relative to the initial representation T0 = L0D0L

T
0 , i.e.,

Is ‖(L0D0L
T
0 − λiI

)
zi‖ = O(nε spdiam [T0]) for all i ∈ �0?

Here spdiam[T0] is the spectral diameter of T0.
We will need the following technical lemma that is of some interest in its own

right. The proof uses two less than obvious results; one is the Demmel–Kahan result
on tridiagonals with zero diagonal [4], the second concerns minimizing the spectral
diameter.

Lemma 4. Let (T = LDLt, �) be an internal node, with T irreducible, in the
representation tree satisfying Property II given in Section 3.1 namely

‖Dz‖ � C spdiam[T0], ‖ o

L D
o

L
t

z‖ � C spdiam[T0], (T0, �0) is the root

for all computed normalized eigenvectors z associated with � (recall that
o

L=
L − I ). Consider small perturbations li −→ li (1 + ηi), di −→ di(1 + εi), where
|ηi | � η̄, |εi | � ε̄. Write the perturbed matrix as T + �T . Then, for all the z,

‖�T z‖ � (2C + 1/2)(ε̄ + η̄) spdiam[T0] + O(nε2),

where max{ε̄, η̄} = O(ε) and ε is the roundoff unit.

Proof. Let D = diag(d1, . . . , dn) and Li+1,i = li , so αi := Tii = di + di−1l
2
i−1 and

βi := Ti,i+1 = dili . Observe that

�Ti,i+1 = dili(1 + ηi)(1 + εi) − βi = βi[εi + ηi + O(ε2)],
�Ti+1,i+1 = di+1(1 + εi+1) + dil

2
i (1 + εi)(1 + ηi)

2 − αi+1 for i � 1,

= di+1εi+1 + dil
2
i [εi + 2ηi + O(ε2)],

and

�T1,1 = (1 + ε1)d1 − α1 = ε1d1.

For any unit vector u,

(�T u)i+1 = βiui(εi + ηi) + βi+1ui+2(εi+1 + ηi+1)

+ di+1εi+1ui+1 + dil
2
i (εi + 2ηi)ui+1 + O(ε2),

(�T u)1 = d1ε1u1 + β1u2(ε1 + η1 + ε1η1).
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Let |M| denote the matrix of absolute values (|mij |). Then

‖�T u‖ � (ε̄ + η̄)‖|T − diag(T )||u|‖ + ε̄‖Du‖ + (ε̄ + 2η̄)‖ o
L D

o
L

t
u‖ + O(ε2).

(23)
Since T is symmetric tridiagonal

‖|T − diag(T )|‖ = ‖T − diag(T )‖ = 1
2 spdiam[T − diag(T )].

The next task is to relate T − diag(T ) to T0 − diag(T0). In exact arithmetic they
are identical because each representation LDLT is a translate of T0. Suppose LDLt

is computed from L1D1L
t
1 (using the differential qd transform represented by Fig.

6). Then by analyzing the rounding errors (see Theorem 2 in [6]), (LDLt)i,i+1 =
(L1D1L

t
1)i,i+1(1 + ξi), |ξi | � 6ε where ε is the roundoff unit. Note that this rela-

tionship holds even if there is element growth in computing LDLt. So, at a node
with separation ν from the root we have, element by element,

|T − diag(T )| � (1 + ε)6ν |T0 − diag(T0)|.
The seminal paper [4] showed that a symmetric tridiagonal matrix with zero diag-
onal determines all of its eigenvalues to high relative accuracy; the relative change
to any eigenvalue is bounded by the product of the relative changes to all the off-
diagonal entries. In particular, the above inequality and Corollary 1 of Theorem 2 in
[4] together imply that for each positive eigenvalue λ,

λ[T − diag(T )] � ((1 + ε)6ν)n−1λ[T0 − diag(T0)].
Since λn[T − diag(T )] = −λ1[T − diag(T )] where the ordering is λ1 � · · · � λn,

spdiam[T − diag(T )] � (1 + ε)(n−1)6νspdiam[T0 − diag(T0)]. (24)

Now we can bound the first term in (6). Since u is a unit vector,

‖|T − diag(T )||u|‖ � ‖T − diag(T )‖ = 1
2 spdiam[T − diag(T )]

� 1
2 (1 + ε)(n−1)6νspdiam[T0 − diag(T0)], by (24).

Replace u by the computed vector z, invoke the hypothesis (Property II) for the
second and third terms in (6) to find

‖�T z‖ � 1
2 (ε̄ + η̄)(1 + ε)(n−1)6νspdiam[T0 − diag(T0)] + ε̄C spdiam[T0]
+ (ε̄ + 2η̄)C spdiam[T0] + O(ε2).

Finally Theorem 2 in [11], applied to the irreducible symmetric tridiagonal T0, gives

spdiam[T0 − diag(T0)] � spdiam[T0],
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so

‖�T z‖ � (ε̄ + η̄) spdiam[T0](2C + (1/2)(1 + ε)6νn).

Specific values will be given to η̄ and ε̄ in Theorem 4. �

6.1. Propagation of residual norms

Recall that we designate eigenvalues by indices because the actual values change
with the shift. Consider a typical unit vector zk computed at some leaf node by Algo-
rithm Getvec. By (19), zk is extremely close to an eigenvector vk of the parent LDLt

of that leaf node. Thus the residual norm ‖(LDLt − {k}I )zk‖ is small for the parent
of a leaf node. However our goal is to bound ‖(L0D0L

t
0 − {k}I )zk‖ where L0D0L

t
0

is the root representation.

Theorem 4. Let T0 = L0D0L
T
0 be the initial representation for which Algorithm

MR3 computes eigenvectors zk, k ∈ �0, the initial index set. Assume that all inter-
nal nodes (LDLT, �) satisfy Property II in Section 3.1 and that Algorithm Getvec
computes zk such that

sin ∠(zk, vk) � Gnε, (25)

where vk is the corresponding eigenvector of {k}’s parent node (see (19)). Then the
residual norm satisfies

‖(T0 − λ̂kI )zk‖ � Gnε + 9(ndepth − 1)(2C + 1/2)εspdiam[T0] + O(nε2),

(26)
where ndepth is the depth of the representation tree and λ̂k is the value (with respect
to the root T0) of the kth computed eigenvalue.

Proof. We will obtain this bound by following the residual norm up the tree. Our
tool on ascending an edge will be the commutative diagram in Fig. 6 for the parent
to child transformation

LDLt − τI −→ LcDcL
t
c,

where LDLt and LcDcL
t
c are intermediate representations formed in computing zk .

Let λ̂ be the value of the computed eigenvalue {k} for the representation LcDcL
t
c,

k ∈ �c. Corresponding to the four matrices in Fig. 6 we have four residual norms,

‖rc‖ := ‖(LcDcL
t
c − λ̂I )zk‖,

‖r̄c‖ := ‖(L̄cD̄cL̄
t
c − λ̂I )zk‖,
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‖r̄‖ := ‖(L̄D̄L̄t − (λ̂ + τ)I )zk‖,
and

‖r‖ := ‖(LDLt − (λ̂ + τ)I )zk‖.
By the exact relation L̄D̄L̄t − τ = L̄cD̄cL̄

t
c we have

‖r̄c‖ = ‖r̄‖. (27)

With �Tc := L̄cD̄cL̄
t
c − LcDcL

t
c, and similarly for �T := L̄D̄L̄t − LDLt,

‖r̄c‖ = ‖rc + �Tczk‖ � ‖rc‖ + ‖�Tczk‖,
‖r‖ = ‖r̄ + �T zk‖ � ‖r̄‖ + ‖�T zk‖.

So, using (27),

‖r‖ � ‖rc‖ + ‖�Tczk‖ + ‖�T zk‖. (28)

Both �Tc and �T have the structure determined by the error analysis of the dstqds
transform. On the path from leaf to root each internal node contributes twice to the
augmentation of the residual norm, once as a parent and once as a child; the two
perturbations differ but the bound on them is very close. The ulp changes in Fig. 6
show that

As a parent: ε̄ = 1 · ε, η̄ = 3 · ε,

As a child: ε̄ = 2 · ε, η̄ = 3 · ε,

where ε̄ and η̄ are as in Lemma 4. See [6, Section 5] for the error analysis. Substitute
these values in Lemma 4 to find,

‖�T zk‖ � 4(2C + 1/2)ε spdiam [T0] + O(nε2),
(29)‖�Tczk‖ � 5(2C + 1/2)ε spdiam[T0] + O(nε2).

Now apply (28) at each internal node on the path from the leaf for eigenvalue {k} to
the root and invoke (29) to get

‖(T0 − λkI)zk‖ � ‖rinitial‖ +
∑

node∈path

(‖�Tczk‖ + ‖�T zk‖),

� ‖rinitial‖ + (2C + 1/2)ε
∑
path

9 spdiam[T0] + O(nε2), (30)

the sum being over internal nodes on the path. Here rinitial is the residual at the
leaf node with respect to the corresponding twisted factorization. By the proof of
Theorem 15 in [6],
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‖rinitial‖ � Gnε

and thus by (30)

‖(T0 − λkI)zk‖ � Gnε + 9(ndepth − 1)(2C + 1/2)ε spdiam[T0] + O(nε2),

where ndepth is the depth of the representation tree. �

7. Conclusions

In this paper, we have presented Algorithm MR3 that computes k eigenvectors of
a symmetric tridiagonal in O(kn) time. The salient feature of the proposed algorithm
is that multiple representations LDLt are used, and each eigenvector is computed
to high accuracy with respect to the appropriate representation. No Gram–Schmidt
orthogonalization is needed.

Proving that the computed eigenvectors are numerically orthogonal and have
small residual norms has been a major concern of this paper. Due to the multiple
representations involved the proof is somewhat complicated. The proofs require that
each representation be a relatively robust representation (RRR) for the eigenpairs
that are to be computed using that representation. For the purpose of this paper, we
have assumed that each representation is an RRR. There has been considerable work
in showing the conditions under which RRRs exist, such as in [6,13], however this
is beyond the scope of this paper. In practice, finding appropriate RRRs is easy and
checkable; indeed Algorithm MR3 has been realized as the software routine xSTEGR
that is included in LAPACK [1].
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