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Abstract
The robust principal component analysis (robust
PCA) problem has been considered in many ma-
chine learning applications, where the goal is to
decompose the data matrix to a low rank part plus
a sparse residual. While current approaches are
developed by only considering the low rank plus
sparse structure, in many applications, side infor-
mation of row and/or column entities may also be
given, and it is still unclear to what extent could
such information help robust PCA. Thus, in this
paper, we study the problem of robust PCA with
side information, where both prior structure and
features of entities are exploited for recovery. We
propose a convex problem to incorporate side in-
formation in robust PCA and show that the low
rank matrix can be exactly recovered via the pro-
posed method under certain conditions. In par-
ticular, our guarantee suggests that a substantial
amount of low rank matrices, which cannot be
recovered by standard robust PCA, become re-
coverable by our proposed method. The result
theoretically justifies the effectiveness of features
in robust PCA. In addition, we conduct synthetic
experiments as well as a real application on noisy
image classification to show that our method also
improves the performance in practice by exploit-
ing side information.

1. Introduction
Robust principal component analysis (robust PCA) has re-
ceived much attention in recent studies for its ability to re-
cover the low rank model from sparse noise. Such sparse
structure of noise is common in many real applications
such as image processing and bioinformatics (Wright et al.,
2009). Formally, assuming that the given observation R ∈
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Rn×n is in the form of:

R = L0 + S0,

where L0 is a low rank matrix and S0 is a sparse noise
matrix with unknown support and magnitude, the goal of
robust PCA is to recover L0 given R. One state-of-the-art
approach is to decompose R into a low rank and a sparse
component via a simple convex program. This approach
has been shown to be advantageous for several reasons.
First, it overcomes the weakness of standard PCA where
the solution could be extremely skewed even if a single
entry is corrupted, and second, exact recovery of L0 can
be guaranteed under certain assumptions (Chandrasekaran
et al., 2011; Candès et al., 2011).

Despite these strengths, one criticism of robust PCA is that
it disregards side information, or features, in the recov-
ery process even if it is provided. For example, imagine
that data matrix R represents the gene-disease association
where few entries are corrupted due to some contamination
in experiments, and furthermore, some additional features
of each gene (e.g. its gene-expression profile) and each dis-
ease (e.g. co-occurrence of diseases for a patient) are also
given in advance. Then, instead of simply applying robust
PCA to filter out the noise, one would expect to incorporate
this side information in order to better recover the clean as-
sociation. To the best of our knowledge, however, it is still
unclear as to how much side information could help the re-
coverability of robust PCA.

With the above motivation, in this paper, we consider the
problem of robust PCA with side information, where the
goal is to recover the underlying matrix by utilizing both
the “low rank plus sparse structure” and additional feature
information. Our approach is to link feature information
to the underlying matrix via an implicit bilinear function,
which leads us to solve the problem via a feature-embedded
convex program. Furthermore, to justify the usefulness
of features theoretically, we show that under certain as-
sumptions, exact recovery could be attained by the pro-
posed method if the rank of underlying low rank matrix is
O(n2/(d log n log d)), with up to O(n2) corrupted entries,
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where d is the dimensionality of features. Compared to the
result of standard robust PCA (Candès et al., 2011) where
the recovery could be guaranteed if rank is O(n/(log n)2),
our result shows that the boundary of rank could be signifi-
cantly improved by the proposed method if d� n. In addi-
tion, we conduct several synthetic experiments and an ap-
plication on noisy image classification to show that the pro-
posed method achieves better performance than standard
robust PCA. Our results thus conclude that side informa-
tion is indeed useful in the robust PCA in both theoretical
and practical aspects. Our contribution can be summarized
as follows.

• We propose a feature-embedded objective for robust
PCA which learns the underlying low rank matrix us-
ing both prior structure and side information simulta-
neously.

• We provide an exact recovery guarantee of our model
under certain conditions. As a consequence, our result
asymptotically improves the guarantee of standard ro-
bust PCA by taking side information into account.

• Experimental results show that the proposed method
improves the performance on both synthetic datasets
and a real application on noisy image classification.

Connection to prior work. Robust PCA is one of the
most prominent examples to demonstrate the power of con-
vex programs in matrix recovery. Researchers have inves-
tigated several approaches for providing theoretical guar-
antees of robust PCA (Wright et al., 2009; Chandrasekaran
et al., 2011; Candès et al., 2011). Perhaps the most remark-
able milestone is the strong guarantee provided by Candès
et al. (2011) (see Corollary 1 for details). Compared to ex-
isting work where the recoverability completely relies on
the separability between the low rank and sparse structure,
our problem setting is more general since it aims to exploit
the strength of both structure and side information for re-
covery, and therefore an improved guarantee could be de-
rived with the aid of features. We will discuss the improve-
ment in detail in Section 3.

On the other hand, side information has been shown to be
useful in several related problems such as matrix comple-
tion (Jain & Dhillon, 2013; Chiang et al., 2015) and com-
pressed sensing (Mota et al., 2014). In particular, since ro-
bust PCA shares several similarities with the matrix com-
pletion problem 1, it may appear a positive sign for the ef-
fect of side information in robust PCA. However, the robust
PCA problem is still essentially different—in fact harder—
from matrix completion. In matrix completion, it is of-
ten assumed that the observed entries are generated from a
low rank matrix without substantial noise (Candès & Tao,
2010), while in robust PCA the observations are corrupted

1For example, both robust PCA and matrix completion try to
recover a low rank matrix from imperfect observations.

with unknown support and magnitude. This fundamen-
tal difference can be illustrated by comparing this work
with inductive matrix completion and its extension (Jain
& Dhillon, 2013; Chiang et al., 2015), in which features
are used to improve matrix completion. In Jain & Dhillon
(2013), the observed entries are generated from XHY T

where X,Y are row/column features. This is essentially a
special case of our formulation (3). In Chiang et al. (2015),
the observed entries are assumed to beXHY T +M , where
M is a low-rank part of the underlying matrix that can-
not be explained by features. In this paper, we assume the
model is XHY T +S, where S represents the sparse noise.
Also, we provide an exact recovery guarantee while Chi-
ang et al. (2015) only show that the expected error decays
as n→∞.

Our model also shares certain similarity with Low-Rank
Representation (LRR) (Liu et al., 2010), which assumes
that the clean data could be represented by a linear com-
bination of a given dictionary. Interestingly, LRR could be
thought of as a special case of our model where the dic-
tionary is like one of our features X (or Y ). Our model is
more general as we incorporate both row and column fea-
tures to help the recovery.

Organization of the paper. In section 2, we state the setup
and assumptions of our problem. We then present the exact
recovery guarantee and an algorithm in Section 3. In Sec-
tion 4, we provide an overview of the proof and a follow-up
discussion. We then show experimental results in Section 5
and state conclusions in Section 6.

2. Problem Setup
Let L0 ∈ Rn1×n2 be the underlying model matrix, where
rank(L0) = r � min(n1, n2) so L0 is low rank. Let
S0 ∈ Rn1×n2 be the sparse noise matrix whose support set
Ω is unknown and values could be arbitrary. R = L0 + S0

will be the noisy data we observe in practice. In addi-
tion, let X ∈ Rn1×d1 , Y ∈ Rn2×d2 be the feature matrix
where xi (yi) denotes the feature of i-th row (column) en-
tity. Without loss of generality, we assume both X,Y are
orthogonal. 2 For simplicity, throughout the analysis we
will consider the case n1 = n2 = n and d1 = d2 = d.

2.1. Robust PCA with Features
We begin with the standard setting of robust PCA which
aims to recover the underlying matrix without using any
feature information. The most popular approach in pre-
vious studies (Chandrasekaran et al., 2011; Candès et al.,
2011) is to consider a matrix separation objective, in which
the matrix R is decomposed to a low rank term L and a
sparse term S, whose structures are forced by minimizing
nuclear norm and `-1 norm respectively. Specifically, they

2In practice, one could conduct QR factorization to orthogo-
nize the given feature sets.
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consider the following Principal Component Pursuit (PCP)
objective (Candès et al., 2011):

min
L,S
‖L‖∗ + λ‖S‖1 s.t. L+ S = R, (1)

where ‖L‖∗ :=
∑rank(L)
i=1 σi is the nuclear norm of L, and

‖S‖1 :=
∑
i,j |Sij | is the elementwise one norm of S.

Remarkable theoretical foundations have also been estab-
lished for PCP beyond heuristics, which will be discussed
in more detail in Section 3.

However, as stated in the motivation, side information may
also be given in real-world problems. The question is thus
how to incorporate useful feature information in robust
PCA so that one could possibly learn L0 more effectively.
A natural approach is to assume that features X and Y re-
veal clean information via a bilinear mapping φ, i.e.

Lij = φ(xi,yj) = xTi Hyj (2)

with some unknown φ (or equivalently H) that aims to be
learned. Such a bilinear form is commonly considered for
incorporating side information in recent matrix recovery
literature, e.g. Jain & Dhillon (2013); Xu et al. (2013);
Zhong et al. (2015), and it also enjoys several properties
such as low model complexity in some settings. There-
fore, by linking feature information using (2), we propose
to solve the following convex objective PCP with Features
(PCPF in brief):

min
H,S
‖H‖∗ + λ‖S‖1 s.t. XHY T + S = R. (3)

Let (H∗, S∗) be the optimal solution of the problem (3),
and the low rank matrix will be recovered by L∗ =
XH∗Y T . Note that the proposed PCPF is more general
beyond standard robust PCA, as X and/or Y could be set
as identity when (one of) features are absent, and the prob-
lem reduces to standard PCP when both X = Y = I .

2.2. Assumptions
Observant readers may already notice that it is not always
possible to recover the underlying low rank model from
sparse noise even with the aid of side information in (3).
Certain assumptions have to be made in order to make the
problem well-posed.

Feasibility Condition. First of all, since PCPF aims to
recover the low rank matrix L0 by learning a matrix H0

such that XH0Y
T = L0, a modest necessary condition

is that the solution H0 has to be feasible. In PCPF, the
following condition has to be provided for feasibility:

col(X) ⊇ col(L0), col(Y ) ⊇ col(LT0 ), (4)

where col(X) represents the column space of X . Such
a condition is standard for matrix recovery with bilinear
models, see e.g. Xu et al. (2013); Yi et al. (2013). Intu-
itively, the condition suggests that feature matrices X and
Y have to be correlated to the underlying true low rank

space (i.e. they have to be truly informative), so that one
could utilize hidden information in X and Y by seeking a
matrix spanned jointly by col(X) and col(Y ).

Incoherence Condition. Even if the feasibility condition
holds, recovery can still be naturally hard due to an iden-
tifiability issue. For example, consider the case where
XH0Y

T is also “sparse”, then one cannot identify whether
the solution XH0Y

T is produced by sparse noise or not.
Typically, an incoherence assumption on the underlying
low rank space has to be made in order to avoid sparse so-
lutions. In this work, we extend the incoherence condition
to the given feature sets X,Y in the following sense. Let
H0 = UΣV T be the reduced SVD of H0. We assume that
the feature matrix is incoherent w.r.t. the matrix H0:

max
i
‖UTxi‖2 ≤

√
µ0r

n
,max

j
‖V Tyj‖2 ≤

√
µ0r

n
, (5)

max
i,j
|xTi UV Tyj | ≤

√
µ0r

n
. (6)

Also, the feature matrices X,Y are self-incoherent as:

max
i
‖xi‖2 ≤

√
µ1d

n
, max

j
‖yj‖2 ≤

√
µ1d

n
. (7)

Incoherence conditions are quite standard in matrix recov-
ery literature (e.g. Candès & Tao (2010); Candès & Recht
(2012)). Intuitively, such conditions imply that a matrix
cannot be too spiky, eliminating the possibility of underly-
ing matrix being sparse in our problem.

On the other hand, we shall also avoid the case where the
underlying sparse noise matrix is also low rank. This could
happen when the noise appears only in few columns or
rows of S0. To avoid such cases, we assume that noise
S0 appears uniformly at random.

Finally, though both assumptions are presented for the
analysis of exact recovery (stated in Theorem 1), it should
be noted that in real applications, our algorithm may
achieve good performance even when these conditions are
not satisfied. We will see an example in Section 5.

3. Main Results and Algorithm
The core question we focus on is to what extent side infor-
mation is able to help the recovery of robust PCA in theory.
As noted, previous theoretical results have shown that PCP
could surprisingly recover a large class of matrices given
only limited information (Chandrasekaran et al., 2011;
Candès et al., 2011). Roughly speaking, the main reason
of such success is because the low rank and sparse sub-
space are naturally distinguishable under incoherence as-
sumptions, which makes separation become possible even
without any hint on how the subspace looks like. Upon
this realization, one may doubt the effect of features since
such information seems to be redundant. However, we have
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found that side information is in fact powerful as it makes
a broader class of low rank matrices become recoverable.
The following main Theorem states the result:

Theorem 1 (Main result: Exact Recovery of PCPF). Let
L0 ∈ Rn×n be a low rank matrix with rank r. Let S0

be an arbitrary sparse matrix with cardinality m whose
support set Ω is distributed uniformly at random but loca-
tion is unknown. Suppose we are given orthogonal features
X,Y ∈ Rn×d which satisfy the feasibility and incoherence
conditions (4) ∼ (7). Then there exists universal constants
ρr, ρs > 0, such that if:

r ≤ ρr(µ0µ1)
−1
n2(d log n log d)

−1
,

m ≤ ρsn2,

then with probability at least 1 − O(d−10), the solution
(H∗, S∗) of the convex problem (3) with λ = 1/

√
n exactly

recovers the underlying low rank matrix in the sense that
XH∗Y T = L0 and S∗ = S0.

Several interesting results could be further inferred from
Theorem 1. First, the Theorem indicates that the recover-
ability depends not only on the rank of underlying matrix r
and sparsity ρs but also on the feature dimension d. In addi-
tion, lower d yields a better rank boundary. The reasoning
behind the Theorem is quite intuitive: when d is small, H
has much lower degree of freedom compared with L and
thus is much easier to recover. Another interesting fact is
that in the special case where X = Y = I , problem (3) re-
duces to the standard PCP and moreover, the guarantee of
Theorem 1 coincides with the guarantee of PCP provided
by Candès et al. (2011):

Corollary 1 (Exact Recovery of PCP). SupposeX = Y =
I andL0, S0 all follow the same assumptions of Theorem 1.
Then with high probability, the solution (H∗, S∗) of PCPF
with λ = 1/

√
n is exact in the sense that H∗ = L0 and

S∗ = S0, provided that

r ≤ ρrµ0
−1n(log n)−2, m ≤ ρsn2.

More generally, Theorem 1 suggests that the rank boundary
is on the same order of PCP when d = O(n) as the worse
case. However, for informative features, it is expected that
d� n since it should reveal the low rank structure ofL0, in
which case Theorem 1 suggests that a substantial improve-
ment of rank boundary of L0 could be made. For example,
if d is on the order of r, the rank could be approximately up
to the order of O(n/

√
log n), which significantly increases

the rank constraint of low rank matrices (As an instance,
for modern full-HD images where n ≈ 2000, n/(log n)2 is
on the order of 30, while n/

√
log n is on the order of 700).

Therefore, Theorem 1 shows that the effect of features in
robust PCA problem can be significant because it asymp-
totically improves the boundary of rank constraint, making
a larger class of matrices to be recoverable.

Algorithm 1 ALM method for PCPF
Input: Observation R, feature X,Y , max iteration tmax

λ← 1/
√
n, µ← 1/‖R‖, t← 0

H ← 0, S ← 0
while not converged and t < tmax do
M ← Dµ−1(R− S + µ−1Z)
H ← XTMY
S ← Sλµ−1(R−XHY T + µ−1Z)
Z ← Z + µ(R− S −XHY T )
t← t+ 1, µ← µ/0.95

end while
return L∗ ← XH∗Y T

Finally, as a remark, there is no parameter tuning required
for λ in PCPF, since Theorem 1 proves that λ = 1/

√
n

always succeeds. This advantage is inherited from the re-
sult of PCP on top of uniformly random sparse noise, and
detailed discussions can be found in Candès et al. (2011).

3.1. Solving PCPF Objective
Many algorithms have been proposed to solve the PCP ob-
jective (1), which is convex but non-smooth as it includes
both `-1 and nuclear norm regularization, e.g. SDP (Chan-
drasekaran et al., 2011), APG (Lin et al., 2009) and
ALM (Yuan & Yang, 2009; Lin et al., 2010). Among many
of them, ALM method is shown to be competitive for its
stability and fast convergence in empirical studies (Candès
et al., 2011). Thus, we consider to extend the ALM method
to PCPF objective (3). ALM converts the equality con-
straint to a soft penalty term and a Lagrangian term, result-
ing in the following function L(H,S,Z):

L(H,S,Z) = ‖H‖∗ + λ‖S‖1 + 〈Z,R− S −XHY T 〉

+
µ

2
‖R− S −XMY T ‖2F .

It then iteratively updates H,S,Z until converged. In
each iteration, ALM first updates variables H,S by al-
ternatively solving single variable minimization problems,
minH L(H,S,Z) and minS L(H,S,Z). It then updates
the Lagrange multiplier Z by Z + µ(R− S −XHY T ).

We now briefly state how to solve each subproblem of up-
datingH and S. Let Sx(M) := sgn(M)◦max(|M |−x, 0)
be the soft thresholding operator on elements of M , where
◦ denotes the elementwise product. Similarly, let Dx(M)
be the thresholding operator on singular values of M , i.e.
Dx(M) := UMSx(ΣM )V TM where UMΣMV

T
M is the SVD

of M . Then, solving for H given fixed S,Z is equivalent
to solving the following problem:

min
H
‖H‖∗ +

µ

2
‖M ′ −XHY T ‖2F

where M ′ = R−S+µ−1Z, and the solution is thus given
by XTDµ−1(M ′)Y . On the other hand, the update rule for
S given fixedH,Z can be written as Sλµ−1(R−XHY T +
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µ−1Z). This means that each subproblem can be efficiently
solved by a simple closed form solution.

Finally, as a heuristic, we also apply the continuation tech-
nique described in Lin et al. (2009) for faster convergence,
where we set µ = 1/‖R‖ at the beginning and increase
µ a bit for each iteration. The convergence criterion is set
to be ‖R − S − XHY T ‖F /‖R‖F < 10−7 as suggested
in Candès et al. (2011). Our algorithm can be summarized
as Algorithm 1 and will be used in our experiments.

4. The Sketch of Proof
We now give a high-level overview of the proof for The-
orem 1. The roadmap of the proof consists of two main
steps. The first step is to provide a sufficient condition that
guarantees the optimal solution is exact if certain “dual cer-
tificates” exist. The second step is then showing that under
conditions of Theorem 1, a valid set of dual certificates can
be constructed with high probability, which concludes the
proof. Such proof technique is popular in matrix recovery
literatures (Candès & Tao, 2010; Candès et al., 2011; Xu
et al., 2013). While our proof structure is mainly built on
Candès et al. (2011), the proof is fundamentally different
as side information X , Y now plays an important role. We
will revisit the differences in the end of this section.

4.1. Reduction of Sampling Model
First, note that in Theorem 1 S0 is assumed to be sampled
from the set {Ω | |Ω| = m} uniformly at random. How-
ever, in the proof we consider the support of S0 to be sam-
pled via Bernoulli model instead, i.e. (i, j) ∈ Ω with prob-
ability ρ, and |Ω| = m in expectation when ρ = m/n2.
Standard analysis showed that these two models are equiv-
alent (see Candès & Tao (2010)), and thus guarantees on
Bernoulli model will also hold on the uniform model.

Another useful sampling reduction lemma (first introduced
by Candès et al. (2011)) is to further reduce the signs
of nonzero entries (i, j) from fixed to Bernoulli random.
Specifically, in Theorem 1, the values of S0 is fixed, and
therefore sgn(S0) is also fixed. However, it turns out to be
easier to consider the model where each nonzero of S0 is
an independent symmetric Bernoulli variable that takes ±1
with equal probability. The following theorem shows that
proving recovery on this “random sign model” is sufficient.

Theorem 2. LetL0,X and Y be the model and feature ma-
trices which satisfy conditions in Theorem 1, and S0 is sup-
ported on Ω where Ω ∼ Ber(2ρs). In addition, suppose
the sign of each nonzero S0 takes ±1 with equal probabil-
ity (and independent to its location). Then, if PCPF recov-
ers L0 from such S0 with high probability, with at least the
same probability PCPF will also recover the model where
signs of S0 are fixed and location of S0 ∼ Ber(ρs).

This theorem facilitates the analysis since we could now

focus on random sign model, without being worried by ar-
bitrary values that may appear in sparse noise.

4.2. Dual Certification
We now introduce our proposed dual certification, which is
a sufficient condition for the solution of (3) to be exact. We
first define some linear operators and projections. Recall
H0 = UΣV T is the reduced SVD of H0. Let the space T
to be defined as:

T := {UAT +BV T | A,B ∈ Rd×r},

and PT is the orthogonal projection onto T . Similarly, we
extend the definition of Ω for the set representation, where
Ω denotes the set of n × n matrices with the same support
as S0, and PΩ is the orthogonal projection onto Ω. We also
define the following linear transformation:

TS(A) := XTAY, A ∈ Rn×n

TL(B) := XBY T , B ∈ Rd×d

which maps n × n matrices to d × d and vice versa. Note
that since X and Y are orthogonal, TSTL = I. Finally, we
define the space Q as:

Q := {XXTAY Y T | A ∈ Rn×n}.

The orthogonal projection PQ onto Q is simply TLTS .

With these definitions, now we can present our dual certifi-
cation lemma:

Lemma 1 (Dual Certification). Suppose ‖PΩTLPT ‖ ≤
1/2 and λ < 1. Then, (H0, S0) is the unique solution of
problem (3) if there exists W,F,M and D such that:

TL(UV T +W ) +M = λ(sgn(S0) + F + PΩD),

where W ∈ T⊥, ‖W‖ ≤ 1
2 , M ∈ Q⊥, F ∈ Ω⊥, ‖F‖∞ ≤

1
2 , and ‖PΩD‖F ≤ 1

4 .

Therefore, from Lemma 1, it is sufficient to prove that the
pair (H0, S0) is the unique solution of (3) by providing dual
certificates (W,M) obeying:

W ∈ T⊥

M ∈ Q⊥

‖W‖ ≤ 1
2

‖PΩ(TL(UV T +W ) +M)− λsgn(S0)‖F ≤ λ
4

‖PΩ⊥(TL(UV T +W ) +M)‖∞ ≤ λ
2

4.3. Construction of Dual Certificates
Our proposed dual certificates are independently con-
structed from two parts: One is constructed using golf-
ing scheme to handle low rank part and the other is con-
structed using inverse of operator to handle sparse noise
part. Golfing scheme (Gross, 2011) is a clever technique
to construct dual certificates in many recovery proofs. The
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idea is as follows. Consider the noise set Ω ∼ Ber(ρ),
or equivalently ΩC ∼ Ber(1 − ρ). The complement set
ΩC can also be viewed as being jointly sampled from j0
i.i.d. Bernoulli procedures, each of which follows Ber(q).
Formally, ΩC =

⋃j0
j=1 Ωj , Ωj ∼ Ber(q) if:

(1− q)j0 = ρ. (8)

Therefore, a certificate can be additively constructed upon
each Ωj . Via such procedure, the norm of constructed cer-
tificates will exponentially decrease step by step for each
Ωj , and thus, it will be useful for proving that the con-
structed certificate has a small magnitude in certain norm.

Certificates of low rank part. Fix j0 ≥ d2 log ne. Let
ΩC =

⋃j0
j=1 Ωj , Ωj ∼ Ber(q) i.i.d. for each Ωj where q

satisfies (8). Let Yj , Zj ∈ Rd×d, Y0 = 0, and define Yj , Zj
recursively as:

Yj = Yj−1 + q−1TSPΩj
TL(Zj),

Zj = UV T − PTYj .

We then set

WL = PT⊥Yj0 ,

ML = PQ⊥
∑
j

q−1PΩj
TLZj−1.

Certificates of sparse noise part. Again, assume
‖PΩTLPT ‖ ≤ 1/2, then ‖PΩTLPTTSPΩ‖ ≤ 1/4 and
thus the operator PΩ−PΩTLPTTSPΩ mapping Ω→ Ω is
invertible. We then set:

WS = λPT⊥TS(PΩ − PΩTLPTTSPΩ)
−1sgn(S0),

MS = λPQ⊥(PΩ − PΩTLPTTSPΩ)
−1sgn(S0).

From above construction, we propose to produce dual cer-
tificates W = WL +WS and M = ML +MS . Note that
each part consists of two components, which is different
from certificates in PCP provided by Candès et al. (2011).

4.4. Proving Validity of Dual Certificates
Obviously, W ∈ T⊥ and M ∈ Q⊥ by construction. Fur-
thermore, observe that:

PΩTLWS + PΩM
S

=λPΩTL(I − PT )TS(PΩ − PΩTLPTTSPΩ)−1sgn(S0)

+ λPΩPQ⊥(PΩ − PΩTLPTTSPΩ)−1sgn(S0)

=λPΩ(I − TLPTTS)(PΩ − PΩTLPTTSPΩ)−1sgn(S0)

=λsgn(S0).

Therefore, it is clear that (W,M) is a pair of dual certifi-
cates if WL,WS ,ML and MS obey:
‖WL +WS‖ ≤ 1

2

‖PΩTL(UV T +WL) + PΩM
L‖F ≤ λ

4

‖PΩ⊥TL(UV T +WL+WS)+PΩ⊥(MS+ML)‖∞ ≤ λ
2

under the condition ‖PΩTLPT ‖ ≤ 1/2. However, we can
further prove that such condition will naturally hold with
large probability (see Lemma 5 in Appendix for details).
Therefore, the Theorem can be concluded by proving the
following two lemmas.

Lemma 2 (Validity of Certificates of Low Rank Part). Let
Ω ∼ Ber(ρ) where 0 < ρ ≤ ρs, and j0 = d2 log ne. Then
under the conditions of Theorem 1, WL and ML obey:

a. ‖WL‖ ≤ 1
4 ,

b. ‖PΩTL(UV T +WL) + PΩM
L‖F ≤ λ

4

c. ‖PΩ⊥TL(UV T +WL) + PΩ⊥M
L‖∞ ≤ λ

4 .

Lemma 3 (Validity of Certificates of Sparse Noise Part).
Suppose Ω is sampled via Bernoulli model Ber(ρ). As-
sume the sign of each nonzero in S0 is i.i.d. symmetric
whose randomness is independent to the location. Then
under conditions of Theorem 1, WS and MS obey:

a. ‖WS‖ ≤ 1
4 ,

b. ‖PΩ⊥TLWS + PΩ⊥M
S‖∞ ≤ λ

4 .

Detailed proofs of these lemmas are provided in Appendix.

4.5. Discussions
Although our proof structure is based on the proof of
PCP (Candès et al., 2011), the proof is essentially differ-
ent as the side information comes in. We now highlight
some high-level differences between our analysis and pre-
vious analysis on standard robust PCA.

The first major difference comes from the dual certification
Lemma 1, in which we introduce a crucial term M ∈ Q⊥.
Compared to the previous dual certification lemmas (Chan-
drasekaran et al., 2011; Candès et al., 2011), the term M
absorbs the part outside the feature space and enables us to
build a bounded certificate W under a smaller d× d space
in the later proof. However, to deal with the additional
term M , we have to carefully develop a more sophisticated
set of certificates WL,WS ,ML and MS . This is different
from Candès et al. (2011) in which breaking the certificate
into WL and WS is sufficient.

Another major difference comes from the different dimen-
sions of low rank space T and sparse support Ω. While the
technique of handling this issue varies under different con-
texts, a major approach used in many steps in the proof is to
apply linear transformation TL and TS to resolve the mis-
match of dimensionality. However, such modification is far
from trivial for at least two reasons. First, many arguments
in the previous proof become implausible under that modi-
fication (e.g. key lemmas 4 and 6 for Golfing scheme), and
second, some steps may even become incorrect by directly
converting dimensions using TS and TL, in which case al-
ternative arguments are required. For instance, in Candès
et al. (2011), a key property that makes low rank and sparse
components distinguishable is to show that Ω ∩ T = {0}
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where both Ω and T are a set of n× n matrices. However,
in our analysis where matrices in T are d × d, showing
TS(Ω) ∩ T = {0} becomes invalid since with large proba-
bility TS(Ω) will be rank d, which must span a non-trivial
subspace of T . Thus, we have to prove a key lemma 5 to
show that the opposite argument (i.e. Ω ∩ TL(T ) = {0})
holds with high probability instead.

Finally, we emphasize that the above complication is a
blessing rather than a curse to the result. In some sense,
by considering more sophisticated dual certificates, The
bounded norm requirement of W becomes easier to sat-
isfy because its dimension is reduced from n to d (see
Lemma 1). As a consequence, valid certificates become
producible for higher rank matrices, and thus the rank
boundary of Theorem 1 is improved.

5. Experimental Results
We now conduct experiments to show that side information
is indeed useful in the robust PCA problem. In synthetic
experiments, we show that PCPF is able to recover a set
of low rank matrices which cannot be recovered by PCP as
stated in Theorem 1. We then consider an application on
noisy image classification. We will see that by incorporat-
ing features, images denoised by PCPF will be classified
more accurately. The parameters λ in both PCP and PCPF
are set as 1/

√
n by default as Theorem 1 suggested.

Synthetic experiments. We first examine the effect of fea-
tures in robust PCA on synthetic datasets. We create a
true low rank matrix L0 = UV T , where U, V ∈ Rn×r,
Uij , Vij ∼ N(0, 1/n) with n = 200 and different r. We
also generate a sparse error matrix S0 whose support fol-
lows Ber(ρs), with its values determined by either ran-
dom sign model (i.e. each non-zero value takes ±1 with
equal probability) or coherent sign model (where S0 =
PΩ(sgn(L0))). In addition, we generate feature matrices
X,Y ∈ Rn×d, d = r + 10 that both satisfy (4). We then
take R = L0 +S0 as the observation, and input R to PCP 3

and R, X and Y to PCPF. We regard the recovery to be
successful if the output low rank matrix L∗ obeys:

‖L∗ − L0‖F
‖L0‖F

< 10−4. (9)

We first consider the recoverability of PCP and PCPF while
varying rank of L0 (r) and sparsity of S0 (ρs) under both
random and coherent sign model. For each pair of (r, ρs),
we create three random problems, and deem the recovery
of an algorithm to be attained if it successfully recovers
all problems. We then mark the grid to be white if recov-
ery is attained by both PCP and PCPF and black if both

3We use the ALM solver available at http:
//perception.csl.illinois.edu/matrix-rank/
sample_code.html for PCP, which is an implementation of
Lin et al. (2010).

fail. We also observe that in several cases recovery can-
not be attained by PCP, but can be attained by PCPF, and
these grid points are marked as gray. The results are shown
in Figure 1a and 1b. First, we see that for both PCP and
PCPF, the recovery results under random or coherent sign
model are of the same order. This supports the argument
in Theorem 1 that only the location of support (and not
signs) matters for both algorithms to succeed in the recov-
ery. More importantly, there exists a substantial gray region
where matrices in such region could be recovered only by
PCPF. The result shows that PCPF is more effective as it
recovers a larger class of matrices by leveraging feature in-
formation.

Furthermore, Theorem 1 suggests that the improvement of
PCPF is also determined by the feature dimension d. To
conduct a supporting experiment, we consider the same
construction of L0, and create S0 under random sign model
with ρs = 0.2. For each choice of rank(L0), we construct
several sets of features X,Y ∈ Rn×d satisfying (4) with
different d by varying d from r to n and applying PCP and
PCPF to each (d, r). The results are shown in Figure 1c.
We again observe that there exists a substantial gray re-
gion where matrices are not able to be recovered by PCP
because of higher rank, but become recoverable by PCPF
given feature information. Moreover, recovery of higher
rank matrices could be achieved with a smaller d. The re-
sult matches the discussion in Section 3 that higher rank
matrices would be recovered with a smaller d, and it also
empirically supports Theorem 1.

Application: multiclass classification on noisy images.
One application of robust PCA is (sparse) noise removal
for images. In the problem, we are given a set of noisy
yet correlated images, and the noise is known to be sparse.
Since the underlying clean images are correlated and thus
share an implicit low rank structure, standard robust PCA
could be used to identify sparse noise. However, in cer-
tain cases, low-dimensional features of images may also
be available from other sources. For example, suppose the
set of images are human faces, then the principal compo-
nents of general human faces—known as Eigenface (Turk
& Pentland, 1991)—could be used as features, and such
features could be helpful in the denoising process.

Motivated by the above realization, here we conduct an ex-
periment on multiclass classification on a set of noisy im-
ages. We consider the digit recognition dataset MNIST,
which includes 50, 000 training images and 10, 000 testing
images, and each image is a handwriting digit described as
a 784 dimensional vector. We first take the training image
set to produce “Eigendigit” features X ∈ R784×d where
d = 300. We then take testing image set to generate noisy
images. Precisely, letL0 ∈ R784×10000 be the set of (clean)
testing images, and S0 be the sparse noise matrix in which

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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Figure 1. Synthetic experiments on recovery of PCP and PCPF under different rank(L0), sparsity of noise ρs and feature dimension d.
Both algorithms succeed in recovery in white region and fail in black region. However, there exists a substantial region marked as gray
where PCP fails yet PCPF succeeds to recover these low rank matrices, justifying the usefulness of features.

ρs 0.05 0.1 0.2 0.3
PCP 0.3643 0.3781 0.3913 0.4265

PCPF 0.3424 0.3444 0.3607 0.4036
Table 1. Relative error between clean images L0 and recovered
images L∗. Images recovered by PCPF achieve smaller relative
error than PCP under various different sparsity of noise ρs.

ρs of entries are randomly picked to be corrupted (by set-
ting the value to be 255). Then given a set of noisy images
R = min(L0 + S0, 255) and Eigendigit features X , the
goal is to denoise the noisy images for classification.

We again compare PCP and PCPF for noise removal in this
experiment. For PCP, we directly input R to derive a de-
noised L∗pcp. For PCPF, we take Eigendigit features X as
row features in objective (3) and set Y = I as there are no
column features given in this problem. The denoised im-
age from PCPF is given by L∗pcpf = XH∗. Both L∗pcp and
L∗pcpf will be low rank approximations of the clean image
set. Note that though X will no longer satisfy (4), it could
be used in PCPF in practice since X is still expected to
contain much information on how does the low rank ap-
proximation of clean digits looks like. 4

We compare the quality of denoised solutions from PCP
and PCPF using two metrics. First, we could again directly
evaluate the relative error between ground-truth images L0

and denoised images L∗ (equation (9)). The error is re-
ported in Table 1. As shown, PCPF consistently achieves
lower relative error than PCP under different ρs from 0.05
to 0.3, showing that numerically the low rank approxima-
tion derived from PCPF is closer to the ground-truth L0.

To further justify the quality of denoised images in terms of
practical metrics in real application, we consider the classi-
fication accuracy achieved by denoised images as the sec-
ond metric. We pre-train both multiclass linear and kernel
SVM classifiers on 50000 clean training images to predict
the digit from input vector space using LIBLINEAR (Fan

4Rigorously speaking, the ground-truth image L0 is not low
rank, but only approximately low rank.

Classification with trained linear SVM classifiers
ρs Clean Noisy PCP PCPF

0.05

91.96

77.93 86.94 87.51
0.1 59.63 86.33 87.88
0.2 38.16 85.94 87.48
0.3 25.63 78.52 79.84

Classification with trained kernel SVM classifiers
ρs Clean Noisy PCP PCPF

0.05

98.33

66.14 95.17 95.74
0.1 18.47 94.85 95.89
0.2 10.32 94.55 95.48
0.3 10.32 87.00 87.78

Table 2. Classification accuracy of denoised images on linear and
kernel SVM under various sparsity of noise ρs. The column Clean
shows the accuracy on L0, and the column Noisy shows the ac-
curacy on R. Denoised images from both PCP and PCPF achieve
much higher accuracy than noisy images, and PCPF further out-
performs PCP by utilizing Eigendigit features.

et al., 2008) and LIBSVM (Chang & Lin, 2011). We then
use these trained classifiers to classify the denoised images
from PCP and PCPF. The results are reported in Table 2.
The column “Clean” denotes the accuracy on clean test-
ing images (i.e. L0), and the column “Noisy” denotes the
accuracy on noisy images (i.e. R) without any denoising
process. The last two columns are accuracies on denoised
images from PCP and PCPF respectively. Both methods are
somehow effective for denoising sparse noise, since accu-
racy achieved by denoised images are much closer to the
clean images. Furthermore, PCPF consistently achieves
better accuracies than PCP, showing that incorporating side
information as in PCPF is indeed helpful in denoising pro-
cess in real-world applications.

6. Conclusions
We propose a convex problem that incorporates side infor-
mation to robust PCA. An improved exact recovery guar-
antee of the proposed method is provided, and the advan-
tage of side information is discussed. The theoretical im-
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provement is further empirically supported by several ex-
periments. These results conclude the usefulness of side
information in robust PCA in both theory and practice.
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7. Appendix
7.1. Preliminaries

We first revisit some basic properties of defined linear op-
erators and projections. Recall that H0 = UΣV T is the
reduced SVD of H0, and the space T is defined as:

T := {UAT +BV T | A,B ∈ Rd×r},

and PT is the orthogonal projection onto T . It is known
that any subgradient of ‖H0‖∗ has the form UV T + W ,
where PTW = 0, ‖W‖ ≤ 1.

Similarly, we have defined Ω to be the set of matrices
whose entries supported as the same as S0, and PΩ is the
orthogonal projection onto Ω. It is also known that any
subgradient of ‖S0‖1 takes the form sgn(S0) + F , where
PΩF = 0, ‖F‖∞ ≤ 1.

Under the incoherence assumptions, we also introduce a
norm inequality on rank-1 matrices which we will use fre-
quently in the proof. Given any matrix with the form
xiy

T
j ∈ Rd×d, we have

‖PT (xiy
T
j )‖2F = 〈PT (xiy

T
j ),xiy

T
j 〉

≤ ‖UTxi‖22‖yj‖22 + ‖V Tyj‖22‖xi‖22

≤ 2µ0µ1rd

n2
. (10)

In particular, if we let p be any probability that satisfies:

p ≥ 2Cε−2µ0µ1rd log d

n2
(11)

with a numerical constant C > 0, then the inequality be-
comes:

‖PT (xiy
T
j )‖2F ≤ ε2

p

C log d
. (12)

7.2. Proof of Lemma 1

Here, we provide a proof of dual certification lemma
(Lemma 1).

Proof. Consider any feasible perturbation (H0 + ∆, S0 −
X∆Y T ) from the claimed optimum. We will prove the
lemma by showing that such perturbed pair increases the
objective (3) unless ∆ = 0. Let UV T + W0 be any sub-
gradient of ‖H0‖∗ and sgn(S0) + F0 be any subgradient
of ‖S0‖1, then by the definition of subgradient, W0 ∈
T⊥, ‖W0‖2 ≤ 1, F0 ∈ Ω⊥, ‖F0‖∞ ≤ 1, and

‖H0 + ∆‖∗ + λ‖S0 −X∆Y T ‖1
≥‖H0‖∗ + λ‖S0‖1 + 〈UV T +W0,∆〉
− λ〈sgn(S0) + F0, X∆Y T 〉.

Select W0 and F0 such that 〈W0,∆〉 = ‖PT⊥∆‖∗ and
〈F0, X∆Y T 〉 = −‖PΩ⊥(X∆Y T )‖1 5, then we have:

‖H0 + ∆‖∗ + λ‖S0 −X∆Y T ‖1
≥‖H0‖∗ + λ‖S0‖1 + ‖PT⊥∆‖∗ + λ‖PΩ⊥(X∆Y T )‖1

+ 〈UV T ,∆〉 − λ〈sgn(S0), X∆Y T 〉. (13)

Now, since 〈UV T ,∆〉 = 〈TL(UV T ), TL∆〉, we can bound
the inner product terms by:

|〈UV T ,∆〉 − λ〈sgn(S0), X∆Y T 〉|
=|〈TL(UV T )− λsgn(S0), X∆Y T 〉|
≤|〈TL(W ), X∆Y T 〉|+ |〈M,X∆Y T 〉|

+ |λ〈F,X∆Y T 〉|+ |λ〈PΩD,X∆Y T 〉|

≤1

2
‖PT⊥∆‖∗ +

λ

2
‖PΩ⊥X∆Y T ‖1 +

λ

4
‖PΩX∆Y T ‖F ,

where in the third inequality we use the fact that
〈M,X∆Y T 〉 = 〈M,PQ(X∆Y T )〉 = 0. Thus, equation
(13) can be reduced to:

‖H0 + ∆‖∗ + λ‖S0 −X∆Y T ‖1

≥‖H0‖∗ + λ‖S0‖1 +
1

2
(‖PT⊥∆‖∗ + λ‖PΩ⊥(X∆Y T )‖1)

− λ

4
‖PΩX∆Y T ‖F . (14)

We can further bound the term ‖PΩX∆Y T ‖F by:

‖PΩX∆Y T ‖F
≤‖PΩTLPT∆‖F + ‖PΩTLPT⊥∆‖F

≤1

2
‖∆‖F + ‖PT⊥∆‖F

≤1

2
(‖PΩTL∆‖F + ‖PΩ⊥TL∆‖F ) + ‖PT⊥∆‖F .

By definition, PΩTL∆ = PΩ = X∆Y T , so

‖PΩTL∆‖F ≤ ‖PΩ⊥TL∆‖F + 2‖PT⊥∆‖F
≤ ‖PΩ⊥TL∆‖1 + 2‖PT⊥∆‖∗.

Therefore, equation (14) becomes:

‖H0 + ∆‖∗ + λ‖S0 −X∆Y T ‖1
≥‖H0‖∗ + λ‖S0‖1

+
1

2

(
(1− λ)‖PT⊥∆‖∗ +

λ

2
‖PΩ⊥(X∆Y T )‖1

)
.

(15)

However, by assumption, ‖PΩTLPT ‖ ≤ 1
2 < 1 implies

that TL(T )∩Ω = {0}. Therefore, for any ∆ 6= 0, if ∆ /∈ T
then ‖PT⊥∆‖ > 0, and if ∆ ∈ T then ‖PΩ⊥TL∆‖1 > 0.
Thus the LHS of (15) will be strictly larger than RHS unless
∆ = 0, which concludes the proof.

5SuchW0 and F0 exist. See Candès et al. (2011) for an exam-
ple of such matrices.
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7.3. Preliminary Lemmas

We need several lemmas to prove the validity of con-
structed dual certificates introduced in Section 4.3. For fol-
lowing lemmas, when we say the equation holds with large
probability, we mean that the event will hold with probabil-
ity at least 1−O(d−10).

Most of the probability bounds in our results are from the
Bernstein inequality stated as below.

Proposition 1 (Noncommutative Matrix Bernstein In-
equality (Recht, 2011)). Let X1 · · ·Xk be k independent,
zero-mean random matrices where each Xi ∈ Rn1×n2 .
Suppose for each Xi, ‖Xi‖ ≤ R, and the norm of the sum
of covariance matrices is bounded by:

max

{
‖

k∑
i=1

E
[
XiX

T
i

]
‖, ‖

k∑
i=1

E
[
XT
i Xi

]
‖
}
≤ σ2.

Then for any t > 0:

Pr(‖
k∑
i=1

Xi‖ > t) ≤ (n1 + n2) exp

(
−t2/2

σ2 +Rt/3

)
.

We begin with a core lemma which generalizes the result
of Theorem 4.1 in Candès & Recht (2012).

Lemma 4. Suppose Ω0 ∼ Ber(ρ). Then with large prob-
ability,

‖PT − ρ−1PTTSPΩ0TLPT ‖ ≤ ε

provided that ρ ≥ C0ε
−2(2µ0µ1rd log d)/n2 with some

constant C0 > 0.

Proof. First we decompose the matrix (PT −
ρ−1PTTSPΩ0

TLPT )Z as:

(PT − ρ−1PTTSPΩ0
TLPT )Z

=(PTTS(I − ρ−1PΩ0)TLPT )Z

=
∑
(i,j)

(1− ρ−1δij)〈Z,PT (xiy
T
j )〉PT (xiy

T
j ).

This yields us to define a linear operator Sij as:

Sij(Z) = (1− ρ−1δij)〈Z,PT (xiy
T
j )〉PT (xiy

T
j ),

which maps any Z ∈ Rd×d to Rd×d. The operator is sym-
metric, zero in expectation (i.e., E

[
Sij(Z)

]
= 0) and its

operator norm, by definition, is bounded by:

sup
Z 6=0

‖Sij(Z)‖F
‖Z‖F

.

Thus, the original operator PT − ρ−1PTTSPΩ0TLPT can
be viewed as a sum of independent, zero-mean operators

Sij , where each operator has a bounded operator norm as:

‖Sij(Z)‖F ≤ ρ−1|〈Z,PT (xiy
T
j )〉|‖PT (xiy

T
j )‖F

≤ ρ−1‖PT (xiy
T
j )‖2F ‖Z‖F

≤ ε2

C0 log d
‖Z‖F ,

where the last line is derived by applying (12). Also, we
can bound the quantity ‖

∑
(i,j) E

[
S2
ij

]
‖ similarly. Since

‖
∑
(i,j)

E
[
S2
ij(Z)

]
‖F

=

∥∥∥∥∑
(i,j)

E
[
(1− ρ−1δij)

2
]
〈Z,PT (xiy

T
j )〉

‖PT (xiy
T
j )‖2FPT (xiy

T
j )

∥∥∥∥
F

,

and E
[
(1− ρ−1δij)

2
]

= (1− ρ)/ρ ≤ 1/ρ, therefore,

‖
∑
(i,j)

E
[
S2
ij(Z)

]
‖F

≤ ε2

C0 log d
‖PT

∑
(i,j)

〈PTZ,xiyTj 〉xiyTj ‖F

=
ε2

C0 log d
‖PTTSTLPT (Z)‖F

≤ ε2

C0 log d
‖Z‖F

With above bounds, the claim follows by applying matrix
Bernstein inequality.

An important fact from this lemma is that it implies
‖PΩTLPT ‖ will not be too large provided that |Ω| is not
extremely large. More formally, we can prove the follow-
ing Lemma:

Lemma 5. Suppose Ω ∼ Ber(ρ) where 1 − ρ ≥
C0ε
−2(2µ0µ1rd log d)/n2. Then with high probability, we

have ‖PTTSPΩ‖ ≤
√
ρ+ ε.

Proof. Suppose 1 − ρ ≥ C0ε
−2(2µ0µ1rd log d)/n2, then

from Lemma 4, we know that with high probability,

‖PT − (1− ρ)
−1PTTSPΩ⊥TLPT ‖ ≤ ε.

Now, by the fact that PΩ⊥ = I − PΩ, we can rewrite the
operator as:

PT − (1− ρ)
−1PTTSPΩ⊥TLPT

=(1− ρ)
−1

(PTTSPΩTLPT − ρPT ),

from which we can conclude that

‖PTTSPΩTLPT ‖ ≤ ε(1− ρ) + ρ‖PT ‖ = ρ+ ε(1− ρ)
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by the triangle inequality. The claim is thus proved by the
fact that ‖PTTSPΩTLPT ‖ ≤ ‖PTTSPΩ‖2.

Lemma 4 implies that if Z ∈ T , then its Frobenius norm
will decrease sufficiently large after applying the operator
I − PTTSPΩ0TL. The next lemma says that, after apply-
ing such operator, its “TL infinity norm” will also decrease
sufficiently large.
Lemma 6. Suppose Ω0 ∼ Ber(ρ) and Z ∈ T . Then with
large probability,

‖TL(Z − ρ−1PTTSPΩ0
TLZ)‖∞ ≤ ε‖TLZ‖∞

provided that ρ ≥ C0ε
−2(2µ0µ1rd log d)/n2 with some

constant C0 > 0.

Proof. LetK = TL(Z−ρ−1PTTSPΩ0
TLZ). Observe that

any element Kab can be represented as a sum of indepen-
dent variables, i.e. Kab =

∑
(i,j) sij , where sij is defined

as:

sij = (1− ρ−1δij)〈Z,xiyTj 〉〈PT (xiy
T
j ),xay

T
b 〉.

Again, each sij has zero mean (E
[
sij
]

= 0), and each |sij |
can be bounded by:

|sij | ≤ ρ−1|xTi Zyj |‖PT (xiy
T
j )‖F ‖PT (xay

T
b )‖F

≤ ε2

C0 log d
‖TLZ‖∞.

Also, |
∑

(i,j) E
[
s2
ij

]
| can be bounded by:

|
∑
(i,j)

E
[
s2
ij

]
| ≤ |

∑
(i,j)

ρ−1(xTi Zyj)
2〈xiyTj ,PT (xay

T
b )〉2|

≤ ρ−1‖TLZ‖2∞|
∑
(i,j)

〈xiyTj ,PT (xay
T
b )〉2|

≤ ρ−1‖TLZ‖2∞‖TLPT (xay
T
b )‖2F

≤ ε2

C0 log d
‖TLZ‖2∞.

Note that in both bounds we apply the inequality (12) be-
cause ρ obeys (11). Therefore, by Bernstein inequality, we
have:

Pr(|Kab| > ε‖TLZ‖∞) ≤ 2 exp

(
− 3

8
C0 log d

)
,

and the claim is proved by applying an union bound.

Lemma 7. For any fixed matrix Z ∈ Rd×d, with large
probability,

‖(I − ρ−1TSPΩ0TL)Z‖ ≤ C ′0

√
d log d

ρ
‖TLZ‖∞

with some constant C ′0 > 0, provided that ρ ≥
C0µ

2
1d log d/n2 with some constant C0 > 0.

Proof. Again we can decompose the matrix (I −
ρ−1TSPΩ0TL)Z as

∑
(i,j) Sij , where Sij is defined as:

Sij = (1− ρ−1δij)〈Z,xiyTj 〉xiyTj .

Each Sij is independent with zero means (i.e. E
[
Sij
]

= 0).
Furthermore, we can bound ‖Sij‖ by:

‖Sij‖ ≤ ρ−1|xTi Zyj |‖xi‖2‖yj‖2 ≤ ρ−1µ1d

n
‖TLZ‖∞,

and the term ‖
∑

(i,j) E
[
STijSij

]
‖ can be bounded by:

‖
∑
(i,j)

E
[
STijSij

]
‖

=‖
∑
(i,j)

E
[
(1− ρ−1δij)

2
]
(xTi Xyj)

2yjx
T
i xiy

T
j ‖

≤ρ−1‖TLZ‖2∞‖
∑
i

‖xi‖22
∑
j

yTj yj‖

=ρ−1d‖TLZ‖2∞‖Y TY ‖
=ρ−1d‖TLZ‖2∞.

Same bound on ‖
∑

(i,j) E
[
SijS

T
ij

]
‖ can be derived simi-

larly. Thus, the lemma follows by applying matrix Bern-
stein inequality.

Equipped with the above lemmas, now we are able to prove
Lemma 2. For convenience, we will take ε ≤ e−1 in the
proof.

7.4. Proof of Lemma 2

proof of 2a. Recall that by the definition of Yj and Zj ,
Yj0 =

∑
j q
−1TSPΩj

TLZj−1. Thus,

‖WL‖ = ‖PT⊥Yj0‖

≤
∑
j

‖q−1PT⊥TSPΩjTLZj−1‖

=
∑
j

‖PT⊥(q−1TSPΩj
TLZj−1 − Zj−1)‖

≤
∑
j

‖q−1TSPΩj
TLZj−1 − Zj−1‖,

where the second equality comes from PT⊥Zj−1 = 0. As
q is chosen to obey (11), we can apply Lemma 7 so that:

‖WL‖ ≤ C ′0

√
d log d

q

∑
j

‖TLZj−1‖∞

≤ C ′0

√
d log d

q

∑
j

εj−1‖TL(UV T )‖∞

≤ C ′0(1− ε)−1

√
d log d

q

√
µ0r

n
.
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From here we can conclude that

‖WL‖ ≤ C ′ε ≤ 1

4

for some universal constantC ′, by choosing a small enough
ε.

proof of 2b. We have

PΩTL(UV T +WL) + PΩM
L

=PΩTL(UV T − PTYj0) + PΩTLYj0 + PΩM
L

=PΩTL(Zj0) + PΩ(TLYj0 +ML)

=PΩTL(Zj0),

where the last equation holds because:

TLYj0 +ML

=
∑
j

q−1TLTSPΩj
TLZj−1 + PQ⊥

∑
j

q−1PΩj
TLZj−1

=
∑
j

q−1PΩj
TLZj−1 (16)

is a matrix only supported on ΩC . Now, by applying
Lemma 4, we have

‖PΩTLZj0‖F ≤‖TL(Zj0)‖F = ‖Zj0‖F
≤εj0‖UV T ‖F = εj0

√
r.

Since ε ≤ e−1 and j0 ≥ 2 log n, the above quantity is less
than λ/4.

proof of 2c. By construction, TL(UV T + WL) + ML =
TLZj0 + TLYj0 +ML. From part b we have ‖TLZj0‖∞ ≤
‖TLZj0‖F ≤ λ/4, and the matrix TLYj0+ML is supported
on ΩC . Thus, the claim is proved if we can show:

‖TLYj0 +ML‖∞ ≤
λ

8
.

Using (16), we have:

‖TLYj0 +ML‖∞ ≤ q−1
∑
j

‖PΩj
TLZj−1‖∞

≤ q−1
∑
j

‖TLZj−1‖∞

≤ q−1
∑
j

εj−1‖TL(UV T )‖∞

≤ q−1(1− ε)−1
√
µ0r

n
.

For q obeys (11), we have:

‖TLYj0 +ML‖∞ ≤ Cε2
√

n2

µ2
0µ1rd2(log d)2

,

which will be smaller than λ/8 if:

ε ≤ C ′
(
µ2

0µ1rd
2(log d)2

n3

)1/4

.

In summary, the proof above shows that 2a ∼2c hold if q
is chosen to obey (11) and ε is chosen to be sufficiently
small. As we fix a j0 ≥ d2 log ne and a small enough
ε, a well-defined q can always be set to obey 1 > q ≥
2Cε−2(µ0µ1rd log d)/n2. This concludes the proof.

7.5. Proof of Lemma 3

For convenience, define E = sgn(S0) whose sign is ran-
domly distributed as:

Eij :=


1, w.p. ρ/2
0, w.p. 1-ρ
−1, w.p. ρ/2

In the following two parts of proof, we will focus on the
event ‖PΩTLPT ‖ < σ. Notice that by Lemma 5, for any
σ > 0, the event holds with large probability given a small
enough ρ.

Proof of 3a. By construction, we have:

WS = λPT⊥TS(PΩ − PΩTLPTTSPΩ)
−1
E

= PT⊥TSK(1) + PT⊥TSK(2), (17)

where K(1), K(2) is defined by

K(1) = λE,

K(2) = λ
∑
k≥1

(PΩTLPTTSPΩ)kE.

We first bound the first term of (17). Since
‖PT⊥TSK(1)‖ ≤ ‖K(1)‖ ≤ ‖λE‖, thus, using the argu-
ment in both Vershynin (2010); Candès et al. (2011), with
high probability,

‖E‖ ≤ 4
√
nρ.

As λ = 1/
√
n, it implies:

‖PT⊥TSK(1)‖ ≤ ‖λE‖ ≤ 4
√
ρ. (18)

Now consider the second term ‖PT⊥TSK(2)‖. For
convenience, set the operator R :=

∑
k≥1(PΩ −

PΩTLPTTSPΩ)k. Then, ‖PT⊥TSK(2)‖ ≤ ‖K(2)‖ ≤
‖λR(E)‖, and a standard covering argument could bound
this operator norm. By Lemma 5.2 in Vershynin (2010),
There exists a 1/2−net N for a hypersphere Sn−1 with its
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size ≤ 5n. Then, From Lemma 5.3 in Vershynin (2010),
we have:

‖R(E)‖ = sup
a,b∈Sn−1

〈a,R(E)b〉 ≤ 4 sup
a,b∈N

〈a,R(E)b〉.

Thus, consider any arbitrary pair (a,b) ∈ N × N with
‖a‖2 = ‖b‖2 = 1, we can define a random variable
S(a,b) as:

S(a,b) = 〈a,R(E)b〉 = 〈R(abT ), E〉

by the fact that R is self-adjoint. Moreover, observe that
given position of Ω is fixed, only random part of E is its
sign and since the distribution is i.i.d. symmetric, we could
apply Hoeffding’s inequality to bound the probability that:

Pr(|S(a,b)| > t) ≤ 2 exp

(
− 2t2

‖R(abT )‖2F

)
.

Note that by definition of operator 2-norm, ‖R‖ =

supâ,b̂ ‖R(âb̂T )‖F /‖âb̂T ‖F ≥ ‖R(abT )‖F . Therefore,
by an union bound:

Pr( sup
a,b∈N

|S(a,b)| > t) ≤ 2|N |2 exp

(
− 2t2

‖R‖2

)
,

which leads to:

Pr(‖R(E)‖ > t) ≤ 2|N |2 exp

(
− t2

8‖R‖2

)
.

Furthermore, on the event ‖PTTSPΩ‖ ≤ σ, we can bound
the operator norm by:

‖R‖ ≤
∑
k≥1

σ2k =
σ2

1− σ2
.

Putting all together, we can upper bound the second term
of (17) by:

Pr(λ‖R(E)‖ > t) ≤ 2× 52n exp

(
γ2t2

2λ2

)
+ Pr(‖PΩTLPT ‖ > σ)

where γ = (1−σ2)/2σ2. Thus, combining this bound with
(18), and set λ = 1/

√
n, we can conclude ‖WS‖ ≤ 1

4 with
high probability if ρ (and thus σ) is sufficiently small.

Proof of 3b. Let K be the matrix PΩ⊥TLWS + PΩ⊥M
S ,

and our goal is to bound ‖K‖∞. We first note that

K = PΩ⊥TLWS + PΩ⊥M
S

=λPΩ⊥(PQ − TLPTTS + PQ⊥)(PΩ − PΩTLPTTSPΩ)
−1
E

=− λPΩ⊥TLPTTS(PΩ − PΩTLPTTSPΩ)
−1
E.

Consider any Kij 6= 0. It must be in support of ΩC and the
element can be expressed as:

Kij = 〈K, eieTj 〉 = λ〈S(i, j), E〉,

where S(i, j) is an n× n matrix defined by:

S(i, j) = (PΩ − PΩTLPTTSPΩ)
−1PΩTLPTTS(eie

T
j ).

Now, conditional on Ω, the sign of E is i.i.d. symmetric
and again, by Hoeffding’s inequality, each Kij could be
bounded by:

Pr(|Kij | > tλ) ≤ 2 exp

(
− 2t2

‖S(i, j)‖2F

)
,

and thus, by an union bound, we have:

Pr(max
(i,j)
|Kij | > tλ) ≤ 2n2 exp

(
− 2t2

max(i,j) ‖S(i, j)‖2F

)
.

Furthermore, since (10) holds, we have:

‖S(i, j)‖F

≤‖(PΩ − PΩTLPTTSPΩ)
−1‖‖PΩTLPT ‖

√
2µ0µ1rd

n
.

In addition, on the event ‖PΩTLPT ‖ ≤ σ, we can also
bound ‖(PΩ − PΩTLPTTSPΩ)

−1‖ ≤ 1/(1 − σ2), and
therefore,

Pr(‖K‖∞ > tλ) ≤ 2n2 exp

(
− n

2γ2t2

µ0µ1rd

)
+ Pr(‖PΩTLPT ‖ > σ),

where γ = (1−σ2)/σ. The Lemma is thus proved provided
that r ≤ ρr(µ0µ1)

−1
n2/(d log n) with some small enough

ρr.


