2008 IEEE International Conference on Data Mining Workshops

Hunting for Coherent Co-clusters in High Dimensional and Noisy Datasets

Meghana Deodhar,Joydeep Ghosh,Gunjan Gupta

Department of ECE
University of Texas at Austin
Austin, TX, USA

deodhar,ghosh,ggupta@ece.utexas.edu

Abstract

Clustering problems often involve datasets where only a
part of the data is relevant to the problem, e.g., in microar-
ray data analysis only a subset of the genes show cohesive
expressions within a subset of the conditions/features. The
existence of a large number of non-informative data points
and features makes it challenging to hunt for coherent and
meaningful clusters from such datasets. Additionally, since
clusters could exist in different subspaces of the feature
space, a co-clustering algorithm that simultaneously clus-
ters objects and features is often more suitable as com-
pared to one that is restricted to traditional “one-sided”
clustering. We propose Robust Overlapping Co-clustering
(ROCC), a scalable and very versatile framework that ad-
dresses the problem of efficiently mining dense, arbitrar-
ily positioned, possibly overlapping co-clusters from large,
noisy datasets. ROCC has several desirable properties that
make it extremely well suited to a number of real life appli-
cations. Through extensive experimentation we show that
our approach is significantly more accurate in identifying
biologically meaningful co-clusters in microarray data as
compared to several other prominent approaches that have
been applied to this task. We also point out other interesting
applications of the proposed framework in solving difficult
clustering problems.

1. Motivation

When clustering certain real world datasets, it has been
observed that only a part of the data forms cohesive clus-
ters. For example, in the case of microarray data, typically
only a small subset of the genes cluster well and the rest can
be considered non-informative [16]. Problems addressed by
eCommerce businesses, such as market basket analysis and
fraud detection involve huge, noisy datasets with coherent
patterns occurring only in small pockets of the data. More-
over, for such data, coherent clusters could be arbitrarily
positioned in subspaces formed by different, possibly over-

978-0-7695-3503-6/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDMW.2008.20

654

Hyuk Cho,Inderjit Dhillon
Department of CS
University of Texas at Austin
Austin, TX, USA
hyukcho,inderjit@cs.utexas.edu

lapping subsets of features, e.g., different subsets of genes
may be correlated across different subsets of experiments
in microarray data. Additionally, it is possible that some
features may not be relevant to any cluster.

Traditional clustering algorithms like k-means do not ad-
dress either issue since they assign every data point to a
cluster based on a similarity measure computed across all
the features. Feature selection or feature clustering [9, 11]
improve clustering results on high dimensional and noisy
datasets, but do not allow clusters existing in different sub-
sets of the feature space to be detected easily. Co-clustering
simultaneously clusters the data along multiple axes, e.g.,
in the case of microarray data it simultaneously clusters
the genes as well as the experiments [6] and can hence
detect clusters existing in different subspaces of the fea-
ture space. In this paper we focus on real life datasets,
where co-clusters are arbitrarily positioned in the data ma-
trix, could be overlapping and are obfuscated by the pres-
ence of a large number of irrelevant points. Our goal is
to discover dense, arbitrarily positioned and overlapping
co-clusters in the data, while simultaneously pruning away
non-informative objects and features.

2. Related Work

Density based clustering algorithms have a motivation
similar to our proposed approach and use the notion of lo-
cal density to cluster only a relevant subset of the data into
multiple dense clusters. DBSCAN [12] and its improved
versions such as OPTICS rely on the notion of density to
find arbitrarily shaped clusters in large spatial databases
in the presence of noise. These approaches however, are
not scalable to high dimensional datasets and are limited
to Euclidean or related distance measures. The One Class
Information Bottleneck algorithm [8] and the Batch Ball
One Class Clustering algorithm [15] are efficient and scal-
able algorithms that can work with a large class of dis-
tance measures. However, both algorithms find only a sin-
gle dense region. The Bregman Bubble Clustering (BBC)

IEEE
computer
psouety

technique [16] addresses the problem of discovering mul-
tiple, dense regions in a dataset while discarding the rela-
tively non-coherent parts of the data. BBC provides a ro-
bust, scalable framework for clustering only a relevant frac-
tion of the data. However, all of these approaches are de-
veloped for one-sided clustering only, where the data points
are clustered based on their similarity across the entire set
of features.

In contrast, both co-clustering (biclustering) and sub-
space clustering approaches locate clusters in subspaces of
the feature space. The literature is both areas is recent but
explosive, so we refer to the surveys and comparative stud-
ies in [20, 22, 24] as good starting points. As we shall see
in Section 3, none of the existing methods provide the full
set of capabilities that the proposed method provides.

Co-clustering was first applied to gene expression data
by Cheng and Church [6], who used a greedy search
heuristic to generate arbitrarily positioned, overlapping co-
clusters, based on a homogeneity constraint. However, their
iterative insertion and deletion based algorithm is expen-
sive, since it identifies individual co-clusters sequentially
rather than all at once. The algorithm also causes random
perturbations to the data while masking discovered biclus-
ters, which reduces the clustering quality. The plaid model
approach [18] improves upon this by directly modeling
overlapping clusters, but still cannot identify multiple co-
clusters simultaneously. These algorithms are not very gen-
eral as they assume additive Gaussian noise models. Nei-
ther can they effectively handle missing data. The xMotif
algorithm [21] is an iterative search method that identifies
submatrices with genes that have near constant expression
levels across a subset of experiments. Therefore, most gen-
erated biclusters are not very interesting from the biological
point of view.

In addition to the greedy, iterative algorithms discussed
above, deterministic algorithms such as BiMax [24] and
OPSM [3] have also been proposed. The BiMax approach,
proposed by Prelic et al. is based on a simple, binary data
model. Accordingly, the expression data has to be dis-
cretized before application of the BiMax algorithm, which
could cause loss of useful information. The algorithm ex-
actly finds all the inclusion maximal biclusters consisting of
genes that jointly respond across a subset of experiments.
The number of co-clusters identified by BiMax is exponen-
tial in the number of genes and experiments, making it in-
feasible to store and evaluate all the co-clusters in case of
large datasets. The order preserving sub matrix algorithm
(OPSM) looks for submatrices in which the expression lev-
els of all the genes induce the same linear ordering of the
experiments. This algorithm although very accurate, is de-
signed to identify only a single co-cluster. A recent exten-
sion to OPSM [30] finds multiple, overlapping co-clusters
in noisy datasets, but is very expensive in the number of

655

features.

Bregman Co-clustering (BCC), proposed by Banerjee
et al. [1], is a highly efficient, generalized framework for
partitional co-clustering [20] that works with any distance
measure that is a Bregman divergence, or equivalently any
noise distribution from the regular exponential family. BCC
includes several previously developed co-clustering algo-
rithms like information theoretic co-clustering [10] and
minimum sum squared co-clustering [7] as special cases.
The BCC framework is however restricted to grid-based,
partitional co-clustering and assigns every point in the data
matrix to exactly one co-cluster i.e., the co-clustering is ex-
haustive and exclusive.

Parsons et al. [22] present a survey of subspace cluster-
ing algorithms, which includes bottom-up grid based meth-
ods like CLIQUE and iterative top-down algorithms like
PROCLUS. However, most of them are computationally
intensive, need extensive tuning to get meaningful results
and identify uniform clusters with very similar values rather
than clusters with coherent trends or patterns. The pCluster
model proposed by Wang et al. [26] generalizes subspace
clustering and aims at discovering scaling or shifting pat-
terns in clusters. Yoon et al. [29] improve upon this model
and propose a biclustering algorithm that uses specialized
data structures such as zero-suppressed binary decision di-
agrams to improve efficiency. Their algorithm is however
very complex and is exponential in the number of features
in the worst case. The more recent reg-cluster model [28]
is designed to identify arbitrary scaling and shifting co-
regulations patterns along with negative correlations. How-
ever, unlike our proposed approach, these pattern based,
heuristic approaches do not use a principled cost function
and do not scale well due to high complexity in the number
of features.

3. Our Contributions

We propose Robust Overlapping Co-clustering (ROCC),
a novel approach for discovering dense, arbitrarily po-
sitioned co-clusters in large, possibly high dimensional
datasets. Our approach is robust in the presence of noisy
and irrelevant objects as well as features, which our algo-
rithm automatically detects and prunes during the cluster-
ing process. ROCC is based on a systematically developed
objective function, which is minimized by an iterative pro-
cedure that provably converges to a locally optimal solution.
ROCC is also robust to the noise model of the data and can
be tailored to use the most suitable distance measure for the
data, selected from a large class of distance measures known
as Bregman divergences.

The final objective of ROCC is achieved in two steps.
In the first step, the Bregman Co-clustering algorithm is
adapted to automatically prune away non-informative data

points and perform feature selection by eliminating non-
discriminative features and hence cluster only the relevant
part of the dataset. This step finds co-clusters arranged in
a grid structure, but only a predetermined number of rows
and columns are assigned to the co-clusters. Note how-
ever that this result cannot be achieved by simply removing
some rows/columns from the BCC result. An agglomer-
ation step then appropriately merges similar co-clusters to
discover dense, arbitrarily positioned and even overlapping
co-clusters. Figure 1 contrasts the nature of the co-clusters
identified by ROCC with those found by BCC and illus-
trates the way in which they are conceptually derived from
the partitional model of BCC.

i Step 1

F -
H —_

: o

i
Bregman Co-clustering |
(BCC)

Step 2

features

data points

Intermediate

Robust Overlapping
Co-clustering

Co-Clustering (ROCC)

Figure 1. Nature of clusters identified by BCC and
ROCC. Shaded areas represent clustered elements, rear-
ranged according to cluster labels, while non-shaded areas
denote discarded values.

The ROCC framework has the following key features that
distinguish it from existing co-clustering algorithms.

1. The ability to mine the most coherent co-clusters from
large and noisy datasets.

2. Detection of arbitrarily positioned and possibly over-
lapping co-clusters in a principled manner by itera-
tively minimizing a suitable cost function.

3. Generalization to all Bregman divergences, including
squared Euclidean distance, commonly used for clus-
tering microarray data and I-divergence, commonly
used for text data clustering [10].

4. The ability to naturally deal with missing data values,
without introducing random perturbations or bias in
the data.

5. Efficient detection all the co-clusters simultaneously
rather than sequentially, enabling scalability to large
and high-dimensional datasets.

As far as we know, no existing co-clustering algo-
rithm [30, 28, 1, 6] has all of the above features. Our con-
tribution is significant, since as described in Section 1 there
exist several applications where all these features are nec-
essary for discovering meaningful patterns. Through ex-
tensive experimental evaluation on synthetic and real mi-
croarray data we illustrate that ROCC does significantly

656

better than a variety of prominent, previously proposed co-
clustering techniques. The application of ROCC to the si-
multaneous feature selection and clustering problem dis-
cussed in Section 7.1 highlights the ability of our approach
to improve upon human curated feature selection in a com-
pletely unsupervised manner.

4. Problem Definition

We begin with the formulation of the first step of the
ROCC algorithm that prunes away irrelevant data points and
features and clusters the rest into a grid of co-clusters (Re-
fer to Figure 1). Let m be the total number of rows (data
points) and n the total number of columns (features). The
data can be represented as an m X n matrix Z of data points
and features. Let s, and s, be the specified number of rows
and columns respectively, to be retained after pruning. If
the exact values are not known, it is sufficient to set s, and
s. conservatively to large values since the algorithm (Sec-
tion 5.3) does a second round of pruning as needed. Our
aim is to simultaneously cluster s,- rows and s, columns of
Z, into a grid of k row clusters and ! column clusters. The
co-clusters will hence be comprised of s, X s, entries se-
lected from the m X n entries of Z. Let K and L denote
the sets consisting of the s, clustered rows and the s, clus-
tered columns respectively. Let p be a mapping from the s,
rows € K to the k row clusters and v be a mapping from
the s. columns € L to the [column clusters. Let squared
Euclidean distance be the selected distance measure '. We
want to find a co-clustering defined by (p,~) and sets K
and L for the specified s, and s. that minimize the follow-
ing objective function

Z Z Z Z wuv(zuv - éuv)z , (1)

9=1h=1ueK:p(u)=g veL:y(v)=h

where z,, is the original value in row u, column v of the
matrix, assigned to row cluster g and column cluster A and
Zuv 18 the value approximated within co-cluster g-h. wy, is
the non-negative weight associated with matrix entry 2,
which allows the algorithm to deal with missing values and
data uncertainties. For example, the weights for known val-
ues can be set to 1 and missing values can be effectively
ignored by setting their weights to 0. The objective func-
tion is hence the element-wise squared error between the
original and the approximated value, summed only over the
clustered elements (s, X s.) of the matrix Z. The value 2,
can be approximated in several ways, depending on the type
of summary statistics that each co-cluster preserves. This is
analogous to the notion of approximation schemes used by

' A more general description, which allows any Bregman divergence as
the loss function, is given in Section 5.3.

Bregman co-clustering [1], where the data matrix is recon-
structed to preserve a certain set of statistics within each
co-cluster. Banerjee et al. [1] identify six possible sets of
summary statistics, of increasing complexity, that one might
be interested in preserving in the reconstructed matrix Z,
which lead to 6 different co-clustering bases. Two of these
approximation schemes for Z,,,, are described in Section 5.3.

In the next step of ROCC, the goal is to agglomerate
similar co-clusters to recover the arbitrarily positioned co-
clusters. In order to agglomerate co-clusters, we first define
a distance measure between two candidate co-clusters (ccl
and cc2) as follows. Let cc denote the co-cluster formed
by the union of the rows and columns in ccl and cc2. The
matrix entries 2, in cc are approximated using the selected
approximation scheme. The average element-wise error e
for cc is computed as e = % EzuUECc(Z“” — Zuv)?, where
N is the number of elements in cc. The error e is defined to
be the distance between ccl and cc2.

5. ROCC Algorithm
5.1. Solving Step 1 of the ROCC Problem

A co-clustering (p,), that minimizes the objective func-
tion (1), can be obtained by an iterative algorithm. The ob-
jective function can be expressed as a sum of row or column
errors, computed over the s, rows and s, columns assigned
to co-clusters. If row w is assigned to row cluster g, i.e.,
p(u) = g, the row error is the error summed over the appro-
priate s. elements in the row as

l
Bu(@) =30 3wl — fw(9)’,

h=1veL:y(v)=h

For a fixed +, the best choice of the row cluster assign-
ment for row u is the ¢ that minimizes this error, i.e.,
p" (u) = argmin, E,(g). After computing the best row
cluster assignment for all the m rows, the rows are sorted
in increasing order of their row errors and the top s, rows
with minimum error are selected to participate in the current
row clusters. A similar approach is used to assign columns
to column clusters. Note that the rows/columns that are not
included in the current s,./s. rows/columns assigned to co-
clusters are still retained since they could be included in the
co-clusters in future iterations. The row cluster update step
hence selects that fraction of rows that minimize the error
among the entire set of rows. Also, the assignment of the
selected rows to their corresponding row clusters is done
in such a way that it directly minimizes the error. Hence,
row cluster updates and similarly column cluster updates
reduce the objective function. Updating column cluster as-
signments could cause the best row assignments to change

and visa versa. Optionally, the row and column cluster re-
assignment steps can be repeated several times, in arbitrary
order until row and column cluster memberships converge.

Given the current row and column cluster assignments
(p,7y), the values Z,, within each co-cluster have to be
updated by recomputing the required co-cluster statistics
based on the approximation scheme. This problem is iden-
tical to the Minimum Bregman Information (MBI) problem
presented in [1] for updating the matrix reconstruction Z.
Solving the MBI problem for the update step is guaranteed
to decrease the objective function.

This iterative procedure is described in Figure 2. Step
1(i) decreases the objective function due to the property of
the MBI solution, while Steps 1(ii) and 1(iii) directly de-
crease the objective function. The objective function hence
decreases at every iteration. Since this function is bounded
from below by zero, the algorithm is guaranteed to con-
verge. Note that the co-clustering problem is NP-complete,
so convergence to only a local minimum is possible.

5.2. Solving Step 2 of the ROCC Problem

We now provide a heuristic to hierarchically agglomerate
similar co-clusters. The detailed steps are as follows.

1. Pruning co-clusters. Since the desired number of co-
clusters is expected to be significantly smaller than the
number of co-clusters at this stage of the algorithm, co-
clusters with the largest error values can be filtered out
in this step. Filtering also reduces the computation ef-
fort required by the following merging step. If one has
no idea of the final number of co-clusters, a simple and
efficient filtering heuristic is to select the error cut-off
value as the one at which the sorted co-cluster errors
show the largest increase between consecutive values.
The co-clusters with errors greater than the cut-off are
filtered out. Alternatively, if the final number of co-
clusters to be found is pre-specified, it can be used to
prune away an appropriate number of co-clusters with
the largest errors.

2. Merging similar co-clusters. This step involves hi-
erarchical, pairwise agglomeration of the co-clusters
left at the end of the pruning step (Step 1) to recover
the true co-clusters. Each agglomeration identifies the
“closest” pair of co-clusters that can be well repre-
sented by a single co-cluster model and are thus prob-
ably part of the same original co-cluster, and merges
them to form a new co-cluster 2. “Closest” here is in
terms of the smallest value of distance as defined in
Section 4. The rows and columns of the new co-cluster

2A variant of this algorithm can be derived by adopting Ward’s
method [27] to agglomerate co-clusters. Empirically we found little dif-
ference between the two approaches.

consist of the union of the rows and columns of the two
merged co-clusters. Merging co-clusters in this man-
ner allows co-clusters to share rows and columns and
hence allows partial overlap between co-clusters. If the
number of co-clusters to be identified is pre-specified,
one can stop merging when this number is reached.
If not, merging is continued all the way until only a
single co-cluster (or a reasonably small number of co-
clusters) is left. The increase in the distance between
successively merged co-clusters is then computed and
the set of co-clusters just before the largest increase is
selected as the final solution.

5.3. Overall ROCC Meta-Algorithm

In this Section we put together the procedures described
in Sections 5.1 and 5.2 and present the complete ROCC al-
gorithm. The key idea is to over-partition the data into small
co-clusters arranged in a grid structure and then agglom-
erate similar, partitioned co-clusters to recover the desired
co-clusters. The iterative procedure (Section 5.1) is run with
large enough values for the number of row and column clus-
ters (k and [). Similarly, the s, and s. input parameters are
set to sufficiently large values. Since the pruning step (Step
2 in Section 5.2) takes care of discarding less coherent co-
clusters, setting s, > sTU€ and 5. > s!TU€ i sufficient. The
resulting k * [clusters are then merged as in hierarchical ag-
glomerative clustering until a suitable stopping criterion is
reached. The pseudo-code for the complete algorithm is il-
lustrated in Figure 2.

Approximation Schemes. The ROCC algorithm can use
each of the 6 schemes (co-clustering bases) listed by Baner-
jee et al. [1] for approximating the matrix entries Zy..
For concreteness, we illustrate two specific approximation
schemes with squared Euclidean distance, which give rise
to block co-clusters and pattern-based co-clusters respec-
tively 3. The meta-algorithm in Figure 2 uses C to refer to
the selected co-clustering basis.

Block co-clusters. Let the co-cluster row and column in-
dices be denoted by sets U and V respectively. In this
case, a matrix entry is approximated as Z,, = zyy, where
2uy = WZ%UWGV Zuw 18 the mean of all the entries
in the co-cluster.

Pattern-based co-clusters. z,, is approximated as Z,,, =
ZuV + zuw — Zuv, Where 2,y = ﬁzvev Zuw 18 the mean
of the entries in row u whose column indices are in V' and
Uy = |—[1]‘ Zu cU Zuv is the mean of the entries in column v
whose row indices are in U. This approximation can iden-
tify co-clusters that show a coherent trend or pattern in the
data values, making it suitable for clustering gene expres-
sion data [7].

3These co-cluster definitions correspond to basis 2 and basis 6 defined
by the BCC framework [1] respectively.

658

Distance Measures. In Section 4 we developed the objec-
tive function (1) assuming squared Euclidean distance as the
distance measure. The objective function and the iterative
procedure to minimize it can be generalized to all Bregman
divergences [1]. The selected Bregman divergence is de-
noted by dy in Figure 2.

Algorithm: ROCC
Input: Z,,«n, 5r, ¢, k, 1, basis C, dg
Output: Set of co-clusters

Step 1

Begin with a random co-clustering (p,)
Repeat

Step (i): Update co-cluster models, ¥[g]%, [n]},
Update statistics for co-cluster (g, i) based on
basis C' to compute new £ values

Step (ii): Update p
(iia). V[u]7",
. ! s
p(u) = argming 3, 32 e (w)=h Wuvde(Zuv, Zuv(9))
(iib). K = the set of s, rows with least error
from among the m rows

Step (iii): Update
(iiia). V[v]?,
. k .
Y () = argming, S5 5 e uy—g Wants (Zuns Zu(h))
(iiib). L = the set of s. columns with least error
from among the n columns

until convergence

Step 2: Post-process (see text for details)

(i) Prune co-clusters with large errors.

(ii) Merge similar co-clusters until stopping criterion is reached.
return identified co-clusters.

Figure 2. Pseudo-code for ROCC Meta-Algorithm

Time Complexity. The iterative procedure (Step 1) for
squared Euclidean distance and I-divergence is linear in the
size of the input data with a time complexity of O(mn +
mkl + nkl) per iteration, for all six bases [1]. O(mn) op-
erations are due to the co-cluster model update step (Step
(1)), the O(mkl) operations are due to the computation of
the distance of all the m rows from the k row clusters.
Note that each such computation involves O(l) operations
rather than O(n). Similarly, column reassignment involves
O(nkl) operations. The selection steps in the iterative pro-
cedure (Steps (iib) and (iiib)) can be performed in linear
time by the efficient order statistics based algorithm pro-
posed by Blum et al. [5]. The size of the data that Step
2 operates on is small as compared to the original dataset
since only the most relevant matrix entries are retained at
the end of Step 1. Although the merging procedure in Step 2
requires O(M?) operations for computation of all pairwise
co-cluster distances, where M is the number of co-clusters
to be merged, M is typically small since several co-clusters
are discarded in the pruning step (Step 2(i)).

Special Cases. The ROCC framework is very general with
a lot of known algorithms as its special cases. Step 1 of
ROCC with s, = m and s. = n is the same as BCC for
all six bases and a selected Bregman divergence. With [=
n, S¢ = n and basis 2 it is identical to Bregman Bubble
Clustering [16]. With [= n, s, = n, s, = m and basis 2 it
becomes Bregman Clustering and additionally with squared
Euclidean distance it is the same as k-means.

5.4. ROCC with Pressurization

The iterative minimization procedure in Step 1 of the
ROCC algorithm begins with random initialization for p
and v, which could lead to poor local minima. The prob-
lem is particularly severe for small s, and s, since row and
column clusters may not move much and the final cluster-
ing may be very heavily influenced by the initialization.
This problem can be addressed by using the pressuriza-
tion technique applied by BBC [16]. Pressurization begins
by clustering all the data and iteratively shaving off data
points and features till s, rows and s. columns are left. Let
579 ;) and sZ7°*% .y denote the number of data points
and features to be clustered using the Step 1 procedure
(Figure 2) in the jth iteration of pressurization. S
and sB"¢%® (1) are initialized to m and n respectively, af-
ter which these parameters are decayed exponentially till
5779 ;) = srand sg7°°%) = 5. The rate of decay is con-
trolled by parameters (4, and f..;, which lie between 0
and 1. Atiteration j, sP"**) = s, +[(m—s;)* 1| and
PSS 5y = Sc + [(m — sc) * 37" |. The intuition behind
pressurization is that by beginning with all the data being
clustered and then slowly reducing the fraction of data clus-
tered, co-clusters can move around considerably from their
initial positions to enable the discovery of small, coherent
patterns. For speed, each pressurization iteration need not
be run to convergence and can be run for a small, fixed num-
ber of iterations. This gives competitive results in practice,
without a large increase in run time.

5.5. Generative Model for Soft ROCC

The formulation of Step 1 of the ROCC algorithm is
based on a very intuitive generative model, which consists
of a mixture of £ x [exponential family distributions, corre-
sponding to the k x [co-clusters, and a background uniform
distribution, corresponding to the non-informative data ma-
trix entries. Each element z;; of the data matrix Z is as-
sumed to be generated from this mixture model as follows

Zzaufw (2ij0i,5,1,0) + copo , [i]1", [5]1,

I=1J=1

Z”

where a;; denotes the co-cluster priors, fy, is an exponen-
tial family distribution with cumulant ¢(.) and 0; ; 1 s is

659

the natural parameter. The form of 6; ; r ; depends on the
co-clustering basis. «g and py denote the prior probabil-
ity and the probability density of the uniform distribution.
Note that the co-cluster assignments here are soft, i.e., each
matrix element belongs to multiple co-clusters and to the
background with different probabilities. By assuming that
the matrix elements are generated i.i.d. with weights w;;,
the data log-likelihood is given by

L(©|Z) = ii wijlogP(zj),

where © denotes all the model parameters. An EM based
technique, with latent variables for cluster memberships can
be used to fit this mixture model.

@

6. Experimental Results
6.1. Synthetic Datasets

We first tested the ROCC algorithm in a controlled set-
ting using synthetically generated data, with true co-cluster
labels available for the data matrix entries. The synthetic
data is generated by creating a matrix Z of values randomly
selected from a uniform distribution (range 0-10), which
forms the background. Rectangular blocks of coherent val-
ues representing co-clusters are arbitrarily placed in Z and
are made to overlap in some datasets. The embedded co-
clusters are either block (basis 2) or pattern-based (basis 6).
The rows and columns of Z are then randomly permuted
to generate the data matrix. Table 1 describes the synthetic
datasets used for experimentation.

Dataset m,n # co-clusters | basis
1 500, 500 3 2
2 500, 200 4 2
3 500, 500 3 6
4 500, 200 4 6

Table 1. Synthetic Datasets

The evaluation metric used is the relative non-
intersection area (RNIA) metric [23] that compares co-
clustering solutions when cluster labels for individual ma-
trix entries are available. Given two co-clustering solutions
Sy and Ss, RNIA(S:,S5) is given by 'U“gl‘f || where |U]
and |I| are the number of matrix elements in the union
and intersection of S; and Sy respectively. RNIA can
be applied to overlapping co-clusters by defining |U| =
;.; max(n 1_53_1’ n;?)and |I| = 37, ;min(n Z-Sjl,nff) where
and ns are the number of co- clusters in S7 and S5 re-
spectlvely that contain the matrix element z;;. The RNIA
is hence 0 if S; and S, are identical and 1 if they are com-
pletely disjoint.

Sl

Figure 3 compares the RNIA of the co-clusters identified
by ROCC (with pressurization (Section 5.4)) and Cheng
and Church’s Biclustering algorithm [6] with the true co-
clusters, across the 4 synthetic datasets. Note that the ob-
jective function optimized by the Biclustering algorithm
is equivalent to the ROCC basis 6 objective with squared
Euclidean distance, computed over a single bicluster, so
datasets 3 and 4 actually match the underlying generative
model of Biclustering. On these datasets, the ROCC algo-
rithm is run with an additional local refinement step, which
uses each identified co-cluster to seed the iterative proce-
dure described in Section 5.1 with k = 1 and [= 1. This
can help each co-cluster to move around locally, leading to
a better solution. This step can be run in parallel for all the
co-clusters, to refine all of them simultaneously. The true
s, and s. values are the only inputs to the ROCC algorithm.
The error cut-offs for the ROCC pruning and merging steps
(Steps 2(i) and 2(ii)) are determined as described in Sec-
tion 5.2 and the number of co-clusters is automatically dis-
covered. On the other hand the number of co-clusters is
input to Biclustering. For each dataset, the o parameter
for Biclustering is set to the average H-score [6] of the
true co-clusters. On datasets 1 and 2 which are relatively
easy, ROCC does slightly better than Biclustering, while on
datasets 3 and 4 ROCC performs significantly better.

0.8

IlROCC

0.7/ IBiclustering

Data 1 Data 2 Data 3 Data 4

Figure 3. Comparison of ROCC and Biclustering with
respect to RNIA on the 4 synthetic datasets.

Figure 4 displays the RNIA values for BCC and ROCC
as s, and s, are varied from m and n to small values on
synthetic datasets 3 and 4. The X-axis represents different
fractions of the data being clustered, as rows and columns
are pruned. Since BCC clusters all the data, pruning is car-
ried out by a post-processing step. This step sorts the rows
and columns by their distance to the corresponding clus-
ter representatives and selects the s, rows and s. columns
with smallest errors. Note that in case of ROCC, the ac-
tual fraction of the data clustered could be smaller than the
corresponding X-axis value, due to the pruning of irrele-
vant co-clusters. The RNIA of the Biclustering solution,
given the true number of clusters and a suitable «, is also

660

displayed as a line on the same plot for comparison. Each
plotted value is averaged over 10 randomly initialized runs.
On these datasets the ROCC approach consistently achieves
a significantly lower RNIA than BCC and does better than
Biclustering, in the region near the true s, and s. values.
We observed that on all the synthetic datasets, ROCC is able
to identify the co-clusters and reconstruct the original data
matrix very accurately. In almost all cases, ROCC also cor-
rectly recovers the true number of co-clusters.

m=500, n=500

m=500, n=200

|
|

< |4 <

E 0.7] \ E 0.6]
D S
s R
0.6] \
\\ 0.4]
Y —=-ROCC
08 -=-BCC 03
0.

——Biclustering

SR

——Biclustering|

—=-ROCC

1 0 2 04 06 08
Fraction of data clustered

(b) Dataset 4

2 04 06 0.
Fraction of data clustered

(a) Dataset 3

Figure 4. RNIA Plots comparing co-clustering ap-
proaches on synthetic data.

6.2. Real Microarray Datasets

We now evaluate the performance of ROCC on two
yeast microarray datasets, the Lee dataset [19] and the
Gasch dataset [13]. The Lee dataset consists of gene ex-
pression values of 5612 yeast genes across 591 experi-
ments and can be obtained from the Stanford Microar-
ray Database (http://genome-www5.stanford.
edu/). The Gasch dataset consists of the expression val-
ues of 6151 yeast genes under 173 environmental stress
conditions and is available at http://genome-www.
stanford.edu/yeast_stress/. Since the ground
truth for both datasets is available only in the form of pair-
wise linkages between the genes that are known to be func-
tionally related, we compare the quality of the co-clusters
identified by different co-clustering algorithms by comput-
ing the overlap lift [16] for the genes in each co-cluster.
Overlap lift measures how many times more correct links
are predicted as compared to random chance and is related
to a normalized version of the proportion of disconnected
genes measure used by [24]. On these datasets, the aim
is to find the most coherent and biologically useful 150 to
200 co-clusters. We run ROCC (with pressurization) on the
Lee dataset with the input parameters set to s, = 2000,
s. = 400, k = 50 and [= 10 and on the Gasch dataset with
s, = 500, s, = 120, £ = 80, ! = 15. Based on the final
number of clusters to be identified, Step 2 of ROCC prunes
all but the best 200 co-clusters and then continues merging
until 150 co-clusters are left. The set of co-clusters just be-
fore the largest increase in merge distance is returned as the

solution.

Figure 5 compares the performance of ROCC with
prominent co-clustering algorithms, i.e., Cheng and
Church’s Biclustering algorithm, the Order Preserving Sub-
matrix algorithm (OPSM) [3], the BiMax algorithm [24],
and the BCC algorithm on the Lee and Gasch microar-
ray datasets. Through extensive experimentation, Prelic et
al. [24] show that the OPSM and the BiMax algorithms
outperform other well known co-clustering algorithms like
Samba [25], ISA [4] and xMotif [21] on real microarray
data. The BiMax and OPSM results were generated us-
ing the BicAT software(http://www.tik.ee.ethz.
ch/sop/bicat/) [2]. For application of the BiMax al-
gorithm, we discretized the datasets using the discretization
threshold suggested in [24]. Since it would be infeasible
to evaluate the exponential number of co-clusters identified
by BiMax, we selected the first 200 co-clusters for com-
parison. Though OPSM is designed to return only the best
co-cluster, it is extended in BicAT to return upto 100 largest
co-clusters among those that achieve the optimal score. The
value of the [parameter for OPSM was set to 10. The Bi-
clustering algorithm * is run with the number of clusters
equal to 200. The value of the parameter o for the Lee
dataset is set to the average H-score [6] of the clusters in
the ROCC co-clustering solution with the highest overlap
lift from Figure 7(a), i.e. a = 0.032. Similarly o is set
to 0.017 for the Gasch dataset °>. We also attempted com-
parison with the state-of-art subspace clustering algorithm
proposed by Yoon et al. [29], but due to its worst case expo-
nential complexity in the number of features this technique
did not scale to our datasets. In the Lee and Gasch datasets
respectively, around 15% and 3% of the matrix entries are
missing. As described in Section 5, ROCC and BCC can
ignore missing entries by appropriately setting the weight
matrix. The missing entries in the data matrix input to the
other algorithms are replaced by random values in the same
range as the known expression values. Both ROCC and
BCC use squared Euclidean distance and find pattern-based
co-clusters. BCC uses the same s, and s, values as ROCC
for the post processing step as described in Section 6.1. The
ROCC, BCC and Biclustering results are averaged over 10
trials, while OPSM and BiMax are deterministic.

Figure 5 shows that on both datasets, ROCC does much
better than the other co-clustering approaches in terms of
the overlap lift of the gene clusters. The figure also dis-
plays above each bar, the percentage of the data matrix en-
tries clustered by the corresponding algorithm. On the Lee
dataset, it is interesting that although ROCC clusters a much
larger fraction of the data matrix entries than Biclustering,
OPSM and BiMax, the co-clusters are of superior quality.

4We used the implementation provided by Cheng and Church.
SWe found the biclustering results to not be very sensitive to the choice
of o (range of « values from 0.005 to 0.04 were tried).

661

The exact execution time values are not given since the al-
gorithms were implemented in different languages and ex-
ecuted on different platforms, however it was evident that
ROCC is faster than OPSM and BiMax, but slower than
BCC and Biclustering.

8
HElROCC
ElBCC
[IBiclustering
6 I OPSM
£ Il BiMax
-
Q.
© 4
=
>
(@]
2 6.2% 20.6%
1.4%1.3% " 2.7%0.8%

Lee Dataset Gasch Dataset

Figure 5. Comparison of ROCC with other co-clustering
algorithms on the Lee and Gasch datasets. The number
above each bar indicates the percentage of the data matrix
entries clustered by each algorithm.

Most of the gene clusters identified by ROCC on the
Lee dataset were biologically significant, with very low p-
values ©. Table 2 summarizes some of the identified high
purity gene clusters. The coverage (z/y) indicates that x
out of the y known members of a category were found. In
contrast, the 10 best gene clusters identified by Biclustering
had an average p-value of 5.50e-04.

genes Category(Coverage) p-value
20 tRNA ligase (8/36) 6.63e-14
63 Endoplasmic reticulum membrane (14/84) 3.886e-14
108 Structural constituent of ribosome (104/206) <le-14
20 PF00270-DEAD (12/51) <le-14
12 Glycolysis (8/16) <le-14
37 Threonine endopeptidase (23/30) <le-14
24 PF00660-SRP1-TIP1 (22/30) <le-14

Table 2. Examples of biologically significant clusters
found by ROCC on the Lee dataset.

7. Other Applications of the ROCC Algorithm

We now discuss two interesting applications of ROCC,
which show that it can be very useful in diverse settings.

7.1. Simultaneous Feature Selection and
Clustering

A particular instance of the ROCC algorithm can be used
to perform feature selection along one axis, while simulta-

6The p-values were obtained using Funspec (http://funspec.
med.utoronto.ca/)

neously clustering along the other. ROCC interleaves fea-
ture selection with clustering and iteratively improves both,
which is intuitively better than independently performing
feature selection a priori and then clustering using the iden-
tified features [17]. Additionally, ROCC also clusters re-
lated features, achieving simultaneous dimensionality re-
duction.

We now consider an exemplary application of ROCC in
the above context to a lung cancer microarray dataset [14]
represented as a matrix of 12533 genes and 181 human
tissue samples. The samples belong to two lung cancer
classes, malignant pleural mesothelioma (31 samples) and
adenocarcinoma (150 samples). In this application, the aim
is to cluster the samples, to recover the 2 existing sample
groups in an unsupervised manner, using the expression val-
ues of the genes as features. Of the thousands of genes
present, many of them are known to be non-informative,
redundant and have noisy expression values, which makes
feature selection an important issue. We use a version of
the dataset that is pre-processed based on domain knowl-
edge, where genes that do not show substantial variation
in expression values across the samples are removed as
described in [7], resulting in a set of 2401 genes. Even
though the preprocessing step results in removing several
non-discriminative genes, we apply ROCC to test if any
more genes can be identified, that on pruning will improve
sample cluster accuracy further. For this application, ROCC
(with pressurization) is set up to cluster all the samples and
prune along the “gene” axis. Note that the agglomeration
procedure (Step 2) is not required for this application.

Sample clustering solutions are evaluated by comput-
ing the accuracy of the cluster labels with respect to the
true class labels as defined in [7]. Figure 6 displays the
sample cluster accuracy of ROCC at different fractions of
genes clustered. For comparison, the sample cluster ac-
curacy values of BCC, which uses all the genes to obtain
a co-clustering of genes and samples, and k-means, which
uses all the genes as features to cluster the samples are also
plotted as straight lines in the same Figure. These exper-
iments are performed on the column standardized dataset,
where every column has zero mean and unit variance. BCC
and ROCC use basis 6 with squared Euclidean distance and
k = 20 and [2. The results are averaged over 20
runs. One can see that ROCC gives almost perfect cluster-
ing, even with only 10% of the genes selected, significantly
better than BCC and k-means.

7.2. Simultaneous Pruning of Irrelevant
Data Points and Features

Identifying arbitrarily positioned, overlapping clusters in
noisy datasets is a very challenging problem. However, in
several datasets, simply identifying and pruning irrelevant
data points and features results in substantially better clus-

662

m=2401, n=181

N T

I T T I 1%y
D S A S S

Accuracy

——ROCC
ork —=-BCC
——k-means|

o 01 02 08 09 1

0.3) 04 05 06 0.7
Fraction of genes clustered

Figure 6. Lung Cancer data: sample clustering accuracy

ters than with clustering all the data. We illustrate the ability
of ROCC to do this on the Lee and Gasch datasets. Fig-
ure 7 compares the overlap lift of the gene clusters identi-
fied by ROCC (with pressurization), BCC, BBC [16] and
k-means at varying fractions of the data matrix clustered.
The number of genes and experiments clustered are grad-
ually increased from very small values to the entire set of
genes and experiments and the fraction of the data matrix
entries actually assigned to clusters is represented along the
X-axis. Since BCC, BBC and k-means assign every row to
some row cluster, for a fair comparison of these algorithms
with ROCC, pruning is carried out by a post-processing step
as described in Section 6.1. Note that in these experiments
we only use Step 1 of ROCC, thus needing much less com-
putation.

The missing gene expression values in both datasets are
set to zero in the data matrix input to BBC and k-means.
All the algorithms are run with squared Euclidean distance,
ROCC and BCC are run with basis 6, and £ = 20,/ = 10
for the Lee dataset and k = 50, = 5 for the Gasch dataset.
ROCC shows a dramatic improvement in performance over
all the other approaches. One can observe from Figure 7
that the overlap lift reduces as the fraction of genes and
experiments clustered increases, highlighting the fact that
the dense clusters existing in the data involve only a small
fraction of the dataset. P-value evaluation of the clusters
identified in the Lee dataset shows that ROCC has a higher
percentage (65%) of clusters with p-values below 10~% as
compared to the other approaches.

8. Concluding Remarks

In this paper, we have presented Robust Overlapping Co-
clustering as a comprehensive framework capable of deal-
ing with several challenges in clustering real life datasets.
ROCC is robust to the presence of irrelevant data points
and features and discovers coherent co-clusters very accu-
rately as illustrated in Section 6. Moreover, though ROCC
requires several input parameters to be supplied, i.e., s,, Sc,
k and [, it is relatively very robust to the choice of these pa-

Overlap Lift
SN

m=5612, n=591

m=6151, n=173

—e—ROCC
—=—BCC
BBC k
k-mean: [\

——ROCC

—&-BCC
BBC
k-means|

Overlap Lift

01 om0z om 08
Fraction of data clustered

(b) Gasch Dataset

02 04 056 08
Fraction of data clustered

(a) Lee Dataset

Figure 7. Overlap lift at different fractions of the data
clustered on the Lee and Gasch datasets.

rameters because of the post-processing steps as detailed in
Section 5.3. While in this paper we focused on clustering
microarray data, it would be worthwhile to investigate the
applicability of suitable instances of the ROCC framework
to clustering problems in different domains like text mining
and market basket analysis.

Acknowledgments. This research was supported by NSF
grants IIS 0325116, IIS 0307792, IIS 0713142 and CCF
0431257.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]
(9]

[10]

[11]

A. Banerjee, L. Dhillon, J. Ghosh, S. Merugu, and D. Modha.
A generalized maximum entropy approach to bregman co-
clustering and matrix approximation. JMLR, 8:1919-1986,
2007.

S. Barkow, S. Bleuler, A. Prelic, P. Zimmermann, and E. Zit-
zler. Bicat: a biclustering analysis toolbox. Bioinformatics,
22(10):1282-1283, 2006.

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering
local structure in gene expression data: the order-preserving
submatrix problem. In Proc. RECOMB ’02, pages 49-57,
2002.

S. Bergmann, J. Ihmels, and N. Barkai. Iterative signature al-
gorithm for the analysis of large-scale gene expression data.
Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 67, 2003.

M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time
bounds for selection. J. Comput. Syst. Sci., 7(4):448-461,
1973.

Y. Cheng and G. M. Church. Biclustering of expression data.
In Proc. ICMB ’00, pages 93—103, 2000.

H. Cho and I. Dhillon. Co-clustering of human can-
cer microarrays using minimum sum-squared residue co-
clustering. To appear in IEEE/ACM TCBB, 2008.

K. Crammer and G. Chechik. A needle in a haystack: Local
one-class optimization. In Proc. ICML *04, 2004.

1. Dhillon, S. Mallela, and R. Kumar. A divisive
information-theoretic feature clustering algorithm for text
classification. JMLR, 3:1265-1287, 2003.

1. Dhillon, S. Mallela, and D. Modha. Information-theoretic
co-clustering. In Proc. KDD ’03, pages 89-98, 2003.

J. Dy and C. Brodley. Feature selection for unsupervised
learning. JMLR, 5:845-889, 2004.

663

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In Proc. KDD ’96, 1996.

A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, et al. Ge-
nomic expression program in the response of yeast cells to
environmental changes. Molecular Cell Biology, 11:4241—
4257, 2000.

G. J. Gordon, R. V. Jensen, L. Hsiao, S. R. Gullans, et al.
Translation of microarray data into clinically relevant cancer
diagnostic tests using gene expression ratios in lung cancer
and mesothelioma. Cancer Research, 62:4963-4967, 2002.
G. Gupta and J. Ghosh. Robust one-class clustering using
hybrid global and local search. In Proc. ICML ’05, pages
273-280, 2005.

G. Gupta and J. Ghosh. Bregman bubble clustering: A
robust, scalable framework for locating multiple, dense re-
gions in data. In Proc. ICDM’06, pages 232-243, 2006.

M. Law, M. Figueiredo, and A.K.Jain. Simultaneous feature
selection and clustering using a mixture model. /[EEE Trans.
PAMI, 26(9):1154-1166, 2004.

L. Lazzeroni and A. B. Owen. Plaid models for gene expres-
sion data. Statistica Sinica, 12(1):61-86, 2002.

I. Lee, S. Date, A. Adai, and E. Marcotte. A probabilistic
functional network of yeast genes. Science, 306:1555-1558,
2004.

S. C. Madeira and A. L. Oliveira. Biclustering algorithms
for biological data analysis: A survey. [EEE/ACM TCBB,
1(1):24-45, 2004.

T. Murali and S. Kasif. Extracting conserved gene expres-
sion motifs from gene expression data. Pacific Symposium
on Biocomputing, 8:77-88, 2003.

L. Parsons, E. Haque, and H. Liu. Subspace clustering for
high dimensional data: a review. SIGKDD Explor. Newsl.,
6(1):90-105, 2004.

A. Patrikainen and M. Meila. Comparing subspace cluster-
ings. IEEE TKDE, 18(7):902-916, 2006.

A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, and et. al. A
systematic comparison and evaluation of biclustering meth-
ods for gene expression data. Bioinformatics, 22(9):1122—
1129, 2006.

A. Tanay, R. Sharan, and R. Shamir. Discovering statisti-
cally significant biclusters in gene expression data. Bioin-
Sformatics, 18:136-144, 2002.

H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by pattern
similarity in large data sets. In Proc. SIGMOD 02, pages
394-405, 2002.

J. Ward. Hierarchical grouping to optimize an objec-
tive function. Journal of American Statistical Association,
58(301):236 — 244, 1963.

X. Xu, Y. Lu, A. Tung, and W. Wang. Mining shifting-and-
scaling co-regulation patterns on gene expression profiles.
In Proc. ICDE °06, page 89, 2006.

S. Yoon, C. Nardini, L. Benini, and G. D. Micheli. Dis-
covering coherent biclusters from gene expression data us-
ing zero-suppressed binary decision diagrams. IEEE/ACM
TCBB, 2(4):339-354, 2005.

M. Zhang, W. Wang, and J. Liu. Mining approximate order
preserving clusters in the presence of noise. In Proc. ICDE
"08, pages 160-168, 2008.

