N,
LINEAR ALGEBRA

&’i@ AND ITS
b APPLICATIONS

ELSEVIER Linear Algebra and its Applications 309 (2000) 121-151
www.elsevier.com/locate/laa

Relatively robust representations of symmetric
tridiagonals

Beresford N. Parleft*, Inderijit S. Dhillon®

@Mathematics Department and Computer Science Division, EECS Department, University of California,
Berkeley, CA 94720, USA
b|BM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099, USA

Received 12 February 1999; accepted 5 December 1999
Submitted by J.L. Barlow

Abstract

Let LDL! be the triangular factorization of an unreduced symmetric tridiagonal matrix
T — 1. Smallrelative changes in the nontrivial entries bfand D may be represented by
diagonal scaling matrices; and4,; LDL! —> A,LA1DAqL'A5. The effect of4, on the
eigenvalues,; — 7 is benign. In this paper we study the inner perturbations inducedsby
Suitable condition numbers govern tiedative changes in the eigenvalugs — . We show
that whenr = 1 ; is an eigenvalue then thelative condition number ok, — 1, m # j, is
the same for alh twisted factorizations, one of which IsD L', that could be used to represent
T — tI. See Section 2.

We prove thatas — 1 ; the smallest eigenvalue has relative condition number releond
1+ 0O(|tr — A;|). Each relcond is a rational function of We identify the poles and then use
orthogonal polynomial theory to develop upper bounds on the sum of the relcontisiu
eigenvalues. These bounds requir@Ooperations for an x n matrix. We show that the sum
of all the relconds is bounded lytrace(L|D|LY) and conjecture that < n/|LDLY||. The
quantity tracéL|D|LY) /||L DLY| is a natural measure of element growth in the context of this
paper.

An algorithm for computing numerically orthogonal eigenvectors without recourse to the
Gram-Schmidt process is sketched. It requires that there exist valuetosk to each cluster
of close eigenvalues such that all the relconds belonging to the cluster are modesti@gpy
the sensitivity of the other eigenvalues is not important. For this reason we devélgp O
bounds on the sum of the relconds associated with a cluster. None of our bounds makes
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reference to the nature of the distribution of the eigenvalues within a cluster which can be
very complicated. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Eigenvalue; Symmetric tridiagonal matrix

1. Discussion and summary

A real symmetric tridiagonal matrid permits triangular factorizatiol” =
L+D+Lt+ provided that no proper leading principal submatrixrag singular. The
main goal of this paper is to show that the entrie€inand D determine the very
small eigenvalues of to highrelative accuracy except in a few easily recognized
cases. This is in sharp contrast to eigenvalue dependence on the enfriesceipt
for special classes such as scaled diagonally domiffarjR]. An illustration and
precise statement of some of our results are given at the end of this section but first
it is proper to step back and explain why this recondite result in Perturbation Theory
is of general interest.

Current methods for diagonalizinguse the QR algorithm for the eigenvalues
and inverse iteration for the eigenvectors and have been considered very satisfactory.
They require only @:2) operations fofl’s of ordern except for certain cases. The
existence of such cases was first noted (by Dr. George Fann of Pacific Northwest
National Laboratories) in the early 1990s. Whehas a large cluster of, say, 100 or
more eigenvalues all agreeing to 4 or more decimal places then the execution time
dramatically increases. The cause is th@%) Gram—Schmidt process invoked to
make sure that all computed eigenvectors associated with the cluster are orthogonal
to working accuracy.

On the other hand the ‘true’ eigenvectorsiadre orthogonal and so if we can ap-
proximate them very accurately (error angle®) then orthogonality to working pre-
cision follows automatically. In [3,5] we have shown how to compute, despite round-
off errors, an accurate approximatiomts eigenvector under two conditions:

(i) A has few &3) decimal digits in common with its neighbors;

(ii) » is approximated to highelative accuracy (all bits but the last few must be

correct).

In order to achieve (i), the origin must be shifted close to each cluster, i.e., one uses
T — 71 instead ofT. To achieve (ii), the shifted eigenvalugs— t in the cluster
must bedefinedio highrelativeaccuracy byI" — t1. The trouble is that, in general,
this is not the case. So one must either give up this approach or find a new represen-
tation of 7 — 71 that does define its very small eigenvalues to the desired accuracy.
Our finding is that triangular factorization @f — 77 has the desired property except
in rare situations that can be detected i(mOoperations. We show that when there
is little element growth then all eigenvalues are usually defined to high relative accu-
racy. Sincer may be chosen anywhere in a small interval on either side of a cluster
there is a continuum of's that satisfy both (i) and (ii) for the whole cluster. See the
illustration below.
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In 1967, Kahan discovered a tricky proof that the Cholesky fadtdrsof a pos-
itive-definite T have the required property: smadlative changes in the entries bf
cause smalitelative changes in each eigenvaluebt! = T however small it may
be. That is what is meant by saying thadefineghe eigenvalues to higlelativeac-
curacy and that is the meaning of our title’s phrase ‘relatively robust representation’
of T. Only in the late 1990s have simple explanations of Kahan’s result been found.

Our task is to investigate the indefinite case. In Section 2, we introduce a condition
number relcond%1) for each eigenvalug — 7. In the definite case all relconds are
unity. We give a variety of small indefinite examples and show that wihénan
eigenvalue then all possible twisted factorizationgof ¢/ give the same value
for relcond; — t). That is why we stay with the famiIiaLJrDjLLEr and ignore
U_D_U"' . Here ends the motivation for our study.

An illustrationt The matrisz“L1 was introduced by Wilkinson [16] in the 1960s:
diag= (10,9,8,...,1,0,1,...,8,9, 10), the next to diagonal entries are all 1. The
eigenvalues are ordered < A2 < --- < A21. Eigenvaluesiyg and 121 are near
10.75 and differ by 103, A1g andi1g are near 9.21 and differ byy2= 5.6 x 10711,

X116 andi17 are near 8.1 and differ by 18. In Table 1, we exhibit some condition
numbers, relcond (defined in Section 2), when the shitclose to{A1g, A19}. The
top row in Table 1 is the index of the unshifted eigenvalue. Whea A1g trian-
gular factorization does not exist but nevertheless 115 — § gives an excellent
representation. The relconds shownf@g + § do not change as —> A1o.

One of our results, a realistic bound on the relative condition numbers for an in-
terior cluster, is given in Theorem 5, Section 8, but a crude corollary that establishes
our claim may be quoted here.

Consider a clusters of #(%) close eigenvalues with reasonable gaps on its
left end(gap-lef) and on its right endgap-righ) separating it from the rest
of the spectrum of T. Lat be chosen very close,tor at, the left end of¢, let

T —tl=LyD; LY, letw; = sign D, (k, k) then

> (LeIDyILY)y,
i=—1

Z relcond); — ) < #(%) +

oot gap—leftw

where|D, | = (D2)Y2. The point is that neithe#(%) nor tiny gaps inside
the cluster influence the second term. There is a similar result for the right
end of%.

Table 1

Condition numbers for selected

T 1 16 17 18 19 20 21
Ao+ 6 1.00 1.26 1.26 1.00 1.00 1.35 1.35
rg— 38 1.87 1.26 1.26 151 2.54 1.35 1.35

A1 — 8/100 101.9 1.26 1.26 1.99 198.8 1.35 1.35
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Our final result is a bound oj’) . ., relcond?; — 7) but it makes no reference
to element growth and is computable irix) operations. It illustrates a mechanism
by which the tiny eigenvalues can have small relconds while the large ones have
huge relconds.
We also show that, if triangular factorization exists with=1;, then, as
T —> Aj,

relcondx; —7) =1+ O(|r; —]).

The limit case, wherr = 1, is well known; whenD, (n, n) = 0 then norelative
perturbation can disturb its singularity nor make large relative changes to the eigen-
vector entries.

Let us sketch the sequential algorithm that is based on the results of this paper.
Suppose thal is positive-definite. Compute the Cholesky factorizatioht = T
and find all eigenvalues dfL! to high relative accuracy. Next compute the eigenvec-
tors for all» — = with large relative gaps by the method in [5]. If some eigenvalues
remain without eigenvectors, then pick a new shifat, or close to, one end of
the remaining spectrum. Perform a careful factorizatidnL! = LL! — (newr)!
using dqds algorithms described in [5] and monitor the bounds mentioned above. If
necessary perturb (away from the cluster) until the bounds are acceptable. Then
refine, to high relative accuracy, the shifted small eigenvalues with large relative
gaps and compute their eigenvectors. Repeat the process with suitable sinifils
all eigenvectors have been computed.

Our results do not provide easy reading but the analysis has been shortened signif-
icantly by invoking kernel polynomials and the Christoffel-Darboux identity. Thus,
Sections 3 and 4 present background material that may not be familiar to some read-
ers. Our analysis begins in Section 5, where we study the vector whose squared norm
is a relcond. Section 6 is an important digression to prove a conjecture made by one
of usin [3]. Section 7 shows clearly how the indefinite case differs from the definite
one, see (38), and leads us to a conjecture that gives an elegant bound on the sum of
all relconds in terms of element growth.

Our computable bounds for individual clusters, Theorems 5 and 6, are given in
Section 8.

2. Relative condition numbers

Consider the eigenvector equation for any eigenvegiaf T, ||s, | = 1,
L+D+Lt+sm =T —tDsy =$mm — 7). 1)

The eigenvalues have been shiftedrignd it is the robustness of these shifted values
that is our concern here.

An attractive property of tridiagonals is that arbitragjative perturbations to the
n — 1 parameters i, and then parameters irD,. may be represented as
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L, — EL,E™' and D, —> D, F?

for appropriately chosen diagonal scaling matrices closeSee [5] for details. The
tridiagonal matrix changes frorthrDJrLEr to

ELLE'FD,FE'L\E.

Outer perturbations correspondingfohave been studied by several authors [6,7,
9-11,15] and are known to cause smalative changes in each eigenvalue. A
preliminary study of inner perturbations, correspondingfto! F, was made by
Dhillon [13], and in his thesis he has introduced a single condition humber for
inner perturbations. Let us write

EYF =144, |4]<n. 2)
He applies standard first-order additive perturbation theory to
Li(I+ MDDy + ALY = LyDyLY +2LADLLY + L A?DL LY.
The changé) ; to A; — 7 is given by a Rayleigh quotient
Shj=2s' L AD{L's; + 0%,
162.j1<2ns% L4 | Dy |LY s + O,

since, by (2),
[v'AD v| < pvl|Dyv forall .
So
1531 SiL+1D4|Lys, 2, o SiL+IDslLis;
< +0M%) =2n—+———7— + 0.
[Aj — 7] [Aj — 7] |st+D+L+sj|

Dhillon defines the condition number far — = under small relative changes in the
entries ofLy andD_ as
[1D4 2L s |
A — 7l
In (3) the explicit reference to reminds the reader that the shiftzdis
Our main interest is in values afclose to or even equal to certain eigenvalues of
T. ConsequentlyD may be either ill-conditioned or singular and so we now derive
an alternative expression for relcond which reveals that relcond is independent of
D..
From (1) withm <« j,

DiLls;=L7's;(n; — 1)

and from the expression féi ; above

3)

relcondi; — 7v):=relcondir; —7; L4, Dy):=

8h;j=25L  ADLs; + O(n?)
=254 L AL s 50 — ©) + 0.



126 B.N. Parlett, I.S. Dhillon / Linear Algebra and its Applications 309 (2000) 121-151

For any positive-definite diagonal scaling matfix
8hj=28Y L TAT 'L 0 — 1)
so that, using (2)
|81
|Aj — 7l

calsar] |-

<2srer|- |riss |
<Ly T|| - (L D)7
=2ncondLI).

Thus,

relcond).; — 7)= HsthJrFH : Hr‘lL:Lls,-H (4)
<mrin cond L. 1I). (5)

One of us has shown that catid. ) can be computed in a stable way (nho overflows
or underflows) in @Qn) operations. See [4]. We say more about the best scaling matrix
I' in Section 2.2.
For the analysis in the remaining sections it is convenient to introduce an alternate

notation. Define

L:=L,|D.|*"? Q:=sign(D,).
In the event thaDy is singular, i.e.(D+), , = 0, we need a convention and choose
Qun=1,L,,=0.ThusQ? = I. Now

T—11=L.D.L, =LQL (6)

andQ will not be perturbed.
It is worth mentioning that there is an unsymmetric eigenvalue problem closely
related toLQL's,, = s,,(A,, — 7), Namely,

QL'L (QL's)) = (QL' 1) Oum — 1),

(st,L) QL'L=(r», — 7)s%, L.
Inner perturbations of. QL! become outer perturbations fL!L. Now the ordi-
nary (absolute) condition number bf, — t for QL!L equals the relative condition
number given in (3):
sy LLs,
st LQLYs, |
= secant/ (L's,,, QL's,,,)
:=cond(r, — 7; QL'L).

relconda,, — 1)
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In [16, Chapter 2], Wilkinson showed that it is impossible to have just one large
condition number among the eigenvalues of an unsymmetric matrix and so the same
is true for our relconds.

2.1. Examples

Here we give the reader a guide to our relative condition numbers by studying
various examples.

Example 1.Consider the Toeplitz matrix

2 1

1 2 1

1 2 1
1 2
with well-separated eigenvalues
A1 =0.3820 2, =13820 13=26180 i4=3.6180Q
Taker = A3(1+¢), e ~ 2.2 x 10716 to formT — t1 = LQLL. Thus,
0.786151
—1.272010 (0999999

N 1.000000 1272010
—0.786151 365002x 10°8

and

Q =diag—1,1, -1, —1).
At first glance, we might fear that
s5LL's3
A3 — 7]

may be large sincg.s — 7| = 4.44 x 10~16, L is nearly singular and the Cholesky-
like bound (5) withI” = | D |Y/2 gives

relcond’; — 7) < condL) =9.01x 10', 1<, <4
A closer look atl. shows that its rank is revealed by (&, 4) element and thus by
D, intheL, D, L', decomposition. The bound (5) with= I gives

relcondir; —7) <condLy) =6.975 1< <4

Despite the near singularity 6f LQL! determines all its eigenvalues to high rel-
ative accuracy. In fact, the relative condition numbers for all the eigenvaluesr
are 100, 189, 100 and 189, respectively.

relcondiz — 1) =
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Example 2.When there are close eigenvalues, the choicea#n be critical in get-
ting a relatively robust representation. For example, consider the 2L Wilkinson
matrix W2+1, which has several pairs of close eigenvalues. The(paig A15) is near
7 and has separations — A14 = 4.1 x 10~ /. Consider two factorizations, one with
11 = A14 — ¢ and the other withy = 115+ ¢ (¢ ~ 2 x 10716):

WZJE_ -1l = L14914L5_4, WZJE_ — 10l = L15915Lt15.

Thereis alarge element growthin4 (|| L14]|° = 1.9 x 10%), whereas there is no el-
ement growth in formind.15. The large element growth leads to some large relative
condition numbers:

relcondiis — 71; L14) = 2.8 x 108,
relcondis — t1; L1a) = 1.4 x 10°.

Note that here.is — r1 = 4.1 x 10~/ whereasi1 — t1 = —8.129. Due to the ele-
ment growth eigenvalues as large-a8.12 are not determined to relative or abso-
lute accuracy (with respect W/V;lll) by L14. Similarly, A3 — 71, A5 — 71, A7 — 11,

Ao — 71, A11 — 71, and A13 — 71 have large relconds. Somewhat surprisingly, the
smallest eigenvaluker 4 — 71 is determined to high relative accuracy with

relcondi14 — 71; L14) = 2.15.

See Section 6 for more on the relcond of the smallest eigenvalue-as A ;. On
the other hand, neans there is no element growth aadl eigenvalues oLlsQLt15
are relatively robust. In particular,

relcondi14 — 72; L15) = 1.0,
relcondi1s — 12; L1s) = 1.0

and the largest relcond is less than 2.1.

Example 3.In all examples we have tried, absence of element growth in the triangu-
lar factorization has given relative robustness, see Section 7. However, the converse
is not always true. Consider the tridiagonal [3, p. 114]

V2/2 V2/2 1
T=|1+n 1-3n 143 142
V2/2 V2/2 n

With & ~ 2.2 x 1016 andy = /¢ the eigenvalues arey ~ ¢, Ao ~ 1+ /€, A3 ~
1+ 2,/¢, Ag ~ 2.0. FormingT — I = LQL' gives

1.057x 104
6.688x 10° 6.688x 10°
—1.057x 104 2114x 104
4983x 10> 1.409x 104

L =
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with
Q =diag1, -1, 1, 1).

Now, ||L||2 = 8.95x 10" and condL) = 1.37 x 10®. The rather large element
growth suggests that the eigenvalfes — v} may not be relatively robust. Indeed

relcondis — 1) ~ relcondis — 1) ~ 4.5 x 10'.

However, the twaesmallesteigenvalues., — 1 andiz — 1 are relatively well condi-
tioned:

relcondiy — 1) = 1.666, relcondiz — 1) = 2.333 7
Here we have the remarkable situation in which the large eigenvalues are not relative-
ly robust, while the small eigenvalues are determined to high relative accuracy. The
nice relconds in (7are explained by small second components in the eigenvectors
s> andss — boths»(2) ands3(2) are Q10~8) and neutralize the large elements in the
second column of when formingL's, see (3).

Example 4.There are cases where no eigenvalue is relatively robust. For example,

0.7451
—0.6967 201x 107
1.81x 10°  1.81x 10°
151x 10714 0.2744

L=

with
Q =diag—1,1, -1, —1).
Eigenvalues of. QL' are
—-1.075 —-0.075 -—-0.075 0.924
with relative condition numbers
11x 10", 6.4x 102 68x 10/, 65x 102

In our primary application (computing orthogonal eigenvectors), we have no in-
terest in the above situation whefg|| is large and no eigenvalue 6L is small
(like £). On the contrary, we must chooseso thatL QL' is nearly singular.

2.2. Twisted factorizations

If T — =1 permits triangular factorization in both directions, from top to bottom
and from bottom to top, then
T—tI=L.D.LY =U_D_UL.

It is an interesting property of tridiagonal matrices that from these two representa-
tions one can create a one parameter family of (twisted) factoriza]ﬂpﬂﬁN,t with
essentially no extra work. Using Matlab notation,
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Ni(L:k,1:k) = Ly (1:k, 1:k),
Ny(kin, kin) = U_(k:n, k:n)

and these equations are consistent because
Li(k,k)=U_(k, k) =1
Finally,
i Dy (i,i), i<k,
Dy(i,i) = { D-(i,i), >k,
Vi, i =k.
There are various formulas fgg. The most symmetrical is
e = Dy (k) + D_(k) — (T(k, k) — 7).
We say thak is the twist index. o
For theoretical purposes it is convenient to defiie= Ni|Di|*? and ; =
sign(Dy).
At first sight the existence of these extra factorizations seems to complicate the
search for relatively robust representations. For each shife must consider the

best among the twisted factorizations. The following surprising result eases the situ-
ation significantly.

Theorem 1. Let T be an unreduced symmetric tridiagonal matrix with eigenpairs
(Aj,s7),j=1,...,n.lIf, andonlyif s; has no zero entrieshenT — A ;I permits a
twisted factorizatiorl” — A;1 = NkaN,E foreachk =1, ..., n andrelcondx,, —

Ajs Ni), m # j, is the same for all k.

Proof. By the convention introduced for formula (&) (k, k) = 1 andNy (k, k) =
0. If e, denotes théth column ofl then, because of the twist,

Nie, =€ - 0.

The existence of the twisted factorizations is an immediate consequence of well-
known formulae forL ., U_, etc. From (12) and (16) with; = T (i + 1, i):

DGy = —p D
s (@)
Dy(n,n) =0,
D_Giy= g 2D o
si(0)
D_(1,1) =0.

If no entry ofs; vanishes then both sets of pivots are nonzero until the end.and
Dy, U_, D_ are well defined angly = 0.

The claim for the relconds holds because all the twisted fadlpia 7 — 1 ;1 =
NkaN,E are closely related. Writé = N,, by columns as
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L=(1,42,...,4,-1,0)

and netl
T -l =LQL'=) tiwit; +0, o =Q(,i).

i=1

Recall that¢; is null except in positionsandi + 1. The crucial step in the proof is
to push column& throughn — 1 of L to the right for eaclt = 1,...,n — 1 to get

Ni =g, ..., b—1,0, €, ..., ¢,1),

Qk = (wlv cee wk*lv 15 a)k7 cee a)nfl)-
Note thatV; has its twist at indek. Thus,
n—1
NeQiNp = il +0=T — A;1.
i=1
So, by the analogue of (3),

| Visw|®
|)\m - )\j|

X (8sn)?

|)Lm _)Lj|

relcondi,, — Aj; Ny)=

and the right-hand side is independenkof [

Since our interest is in values ofvery close to or at eigenvalues we conclude
that we are not going to miss a good representation by stayinglwith L', .
_ However, the twists are relevant to obtaining good bounds. Reﬂik;mfI#LEr by
N DN} in (4) and sef” = I to see that

relcond,, — ;) =||s;, Nk | H N s

<cond(Ny) .

We conjecture that ik is chosen so that; (k)| = [|s[loc, then condNy) is close
to min condL_I") over all scaling matrices. GivenL,, D4, U_, D_ a suitablek
may be found in @) operations [12]. Theorem 1 justifies the notation relgapd—
2 ;) to replace relcon@.,, — A j; Ni, D).

3. Associated orthogonal polynomials
The material in this section is essential to our analysis.

Consider triangular factorization as a function of a real parametér: is not an
eigenvalue of a proper leading principal submatrix pthen
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T—tl=LyD.LY,

whereL is lower bidiagonal and- is diagonal. The symbea} indicates that the
elimination is made with increasing indices. It is convenient to write the factoriza-
tion in an unconventional way that ought to be called the Cholesky factorization of
T — =1, namely,

T —tI =LQL, (8)
where
L=Ly|Di|"?,  Q=sign(D,). 9)

The dependence @fandQ ont is suppressed. By this change of representation we
confine our concern with relative changes to the entries of one niatrigtead of
two matricesL+ andDy.
Let po(r) = 1 and define the vectar= p'”(t) = (po(t), p1(7), ..., pu—1(0))!

by

(T —thp= —€ypn(7), (10)
wheree; denotes columpnofI. Leto; = T(,i), ; = T(,i +1) > 0. Apply (10)
forj=1,2,...,n—1,tofind
T —0o1

B
(a2 —T)p1+frpo  def(Tz —t13]
—p2 B1B2
whereT; = T'(1:i, 1:i). Hence, by induction, fot < n,
def{7; — 71,
— (—1)f elTx — t 1]
BBz - Bk

and (11) holds fork = n as well if 8,:=1. We shall see that these polynomials
pi are intimately related to the matrix in (9). The leading coefficient op; is
1/(B1B2---Bj) >0, j <n, while that of p, is 1/(B1B2---B.—1) > 0. Note that
whent = A; thenp, (r) = 0 and the normalized eigenvectgrsatisfies
s (k)
sj(1)
Following Matlab notation leb(1: k) denote the subvector ofin positions 12, .. .,
k. If pr(t) = 0, thenp(1: k) is an eigenvector of the leading principal submatiix
In general,

(Tx — th)P(Lik) = —€ pi(7) Br- (13)
For future reference we note that, fox n,

pi(T) =

p2(7) =

Pk(T) (11)

Pk—1(}j) = (12)

@ - (PL0) = o) + aapson b (14)
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The eigenvector matrigof T is defined byS(k, i) = s; (k) and the orthogonality of
rowsk andm of Syields, by (12),

0= Stk,)Stm,i) =2 si(V?pr-1G) pm-1(), k #m.

i=1 i=1
The{p;} are notjust orthogonal but form an orthonormal system for the inner product
on the space of polynomials of degree less thagiven by

(0, )= si(DPp() ¥ (k). (15)
i=1
In what follows the expressiop; () will often be abbreviated by,. From (11)
def{ Ty — t1i]
= D =

di(7) +(k) delTi 1 — tli 1]

=25 (16)
Pk—1

and from (9) the entries df are given by:

Pk 12
Ik = |dk|l/2 = 'Bkﬂ s (17)
|y |12 By i1 |M?
lk+l,k = T = Wk ,ka? s (18)
wg = Sign(dy),
so that
pe |2 1 Y2

Ley = /B (ek p—‘ + € p1wg |— ) ,

2 2

Pi_1tp
ILecl)? = B [ 2—% ) > 264 (19)

| Pr—1Pkl

Expressions (15)—(19) are used in subsequent sections.

4. Kernel polynomials

Our results have been simplified by the Christoffel-Darboux formula (20) that we
now derive.

For a vectow letv(i : j) denote the subvector efhaving entries throughj. We
continue to abbreviatg; (t) by p;.
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Premultiply (14) bys!, to find
(T —©1) (” “ ")> — Bl k)i + 5 (k + D) pical

On the other hansf, (T — 1) = (A, — 7)s!,, SO

p(l:k)
o

s}”(r—)\jl)< >:(km—t)[sm(lzk)tp(lzk)].

Equate the two expressions on the right and divide, 1) to obtain a remarkable
formula,

k-1
O =) ) pi(0)pi )
i=0
_ Pk—-1 Pk—1(Am) _ _
_ﬁkdet[ S Gy ] k=12 ...,n—1. (20)

Formula (20) is the Christoffel-Darboux relation for orthogonal polynomials. See
[1, Chapter 1, Theorem 4.5].
Following standard notation, for fixedand variable define the polynomials,

J
Kj¢. 1)=> pi&pi(r). (21)
i=0
This function is called the reproducing kernel. For the space of polynomials
degree not exceedirjgendowed with the inner product given in (1%), plays the
role of the Dirac delta function,

(Ki(, D), 0()) = (1) (22)
In particular
(Ki(n1),K;j(n D) =Kj(t,t) = |pL: j + D% (23)

Itis known [1, Chapter 1] thap = K; (-, ) minimizes(g, ¢) over all polynomials
of degree< j that satisfy
p(t) = Kj(7, 7).

The zeros ofK; (-, 7) interlace those op; andp;_; in a special way.
In terms ofK ; the Christoffel-Darboux relation becomes

Pk-1  Pk—1(Am)
det[ pe prGon) }

Am—T

Ki—1(t, Am) = Bk (24)

and this is an identity in,,. LetA,, — , to find

P11 Pp_
Ki_1(t, 1) = Bi det[ k 1] .
P Pk Pi
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5. Expressions forL!s

Since relcon® — 1) depends on|Ls||? we develop expressions fd's to be
used in later sections.

First we use the pivotdy(r) defined in Section 3. Recall that, = sign(dy),
dy = Dy (k, k).

Theorem 2. LetT — t1 = LQL! exist and le{(x, s) be any eigenpair of . Then
w1(A — 1)s(1)

t —
(L's) (D) = lar — 7|52
di(7) — dr (V)
(Lts) (k):a)ks(k)W, 1<k<l’l,

(L's) (n) = s(m)|dy(0) Y2

Proof. By (12),s(k + 1) = px(A)s(1). Thus, fork = 1,...,n — 1, use (17) and (18)
to find

(L's)(k) = s (k) + hpa ks (k 4+ 1)

= |de (0)|Y?s (k) + (%) stk+ 1)
wis (k)

pr()
" k(D)2 Pr—1(A)
wys (k)

= o2 — d) (using(16).

Fork = n, (L's)(n) = |d,(7)|*?s(n) sinceL! is upper bidiagonal. O

|:dk( )+ Bk ] (by (12))

Corollary 1. Let p; denotepi (7). In terms of the polynomialgy (§), for k < n,

(L's) (k) = Sign(pi_1)s (D) B pipe—12 (”k‘—lm By (M) , (25)
Pk—-1 Dk
p 1/2
(L's) () = s() - pa-1().
Pn—1
Also
pn—l()‘). Pn 12

(L's) (n) = sign(p,—1(1))

P;, r) Pn—-1

Proof. Use (16) to rewrite Theorem 2. For the cédse n use
s(m)? = pu-1(V)/p(N) (26)
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from [14, Corollary 7.9.1]. O
The kernel polynomials let us rewrite Corollary 1 in a convenient form.

Theorem 3. Let 7T — 1 = LQL' and T's = sA. In terms of the vectop = p(r)

defined in(10), fork < n,
—sign(px)

| Bk Pk pr—11Y/2

The result holds fok = n if B, is defined a4.

(L's) (k) = s(D)Kie—1(z, M) (A — 7).

Proof. Recall the Christoffel-Darboux identity
_ _1(n)
det| et P ok ).
Bk |:Pk D) (A = D) Kg-1(7, 1)
Expand (25) from Corollary 1 to find, far < n,

| Bk i pr—1Y/2 det|:Pk—1()») Pk—l]

e
(L’s) (k) =sign(pr—1)s(1) P Pl pr

_ Sign(p)s (D) B q t[}?k—l()») Pk—1:|
| Bk Pk pr—11Y/2 pr(X) Pk
—sign(pi)s (1)

=— K 1(t, A)(A — 7).

\Beprpi_al2 " 1(m ¢ )
Fork = n use Corollary 1 an@, = 1 and note thap,(A) = 0. O

Finally, take the product of Theorem 3 and Corollary 1 to find a third representa-
tion. From (16)—sign(px - prx—1) = wg:

o (L's) ®)* _ 5(1)2 (Pk—l()\) )
AT Pr-1 Pk

> Ki_1(t, M). 27)

6. The caser — A;

This section shows that, as— ;, L's ;j/|1; — t|Y? — &, + O(|t — ;|Y/?).
It follows that relcond); — ) = 14+ O(|t — A;|) and thus proves Conjecture 2 in
Section 5.2.3 of [3]. We exhibit the constant hidden by O.

Recall from (8) that

T —tI=LQL", Q=diag=+1).

Let (A;,s;) be an eigenpair of such thats; has no zero entries anfd;|| = 1.
Recall that
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sj(k) = 5;(1) pr—1(%;).
ConsiderLs ;j for z close toa ;. Take the last entry first. By Corollary 1,
pn()  pn-1(hj)
pn-1(t)  pp(&j)
Definepl/ (t) by p.(t) = (r — 1) py (1) so that

(L'sj) m? =

(Ltsj) (n)2 _ pr(lj>(f) Pn—1(A}) . (28)
It — Ajl PpA) | | pn-1(7)
By (11)
i i (T —Ai)
p,ﬁ”(w:m’,,%l
Hi=1 ,Bi
=pi! ) + (@ = 2P () + O((x — 1))
Also
P ) =P, 0,
pi’ @=p' @Y (=17,
i#)
n—1
Pha(@=pa-1(0) Y (x =671
i=1
wherep,-1(6;) =0,i =1,...,n— 1. Thus,
()
Pn(f)_ Y ! Y
oy Lt @ x,)%@, 1)~ O((T = 1))%),
Pa-1(7) =
n— _ . gyl 32
o —14(c A]);(A, 0, +o((r ) )
and, asxr — Aj,
t. . 2 n—1
M:lﬂr —A) Y0y =T =D g =
T = 4jl it i—1
+0((r=2?), (29)

It remains to show that, far < n, (L's ;) (k) = O(tr — 4;).
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By Theorem 3, fok < n,

(L] _ 5 (DIKE (T, 2))]
T — Al | Bk pi pr—111/2
Si(DIKr—1(Xj, Aj)]
(k) = J J J
8 = g ) P )2

Letg;(n) = 0 to complete the definition ¢f;. Combine (29) and (30) to see that, as
T —> Aj,

ast — Aj. (30)

LtSj
|‘(—)»j|1/2

as claimed, and

=& + 7 = 4j1"%g; + Oz — ;1)

relcondi; — 1)
n—1
=1+t =20 llgi P+ ) =2t = > (- eol}
i+ i=1
+o(|z —,\j|3/2). (31)

It is useful to see howL's,,)(n) —> 0 form # j. By (28),
(L'sw) 2 | '@ [ pjGm)

It =2l | Pa-1(@®) [ pu-1CGim)

‘ pn—l()tm) pn—l()\j)
P;l (Am) P,Q ()\j)

_ (S'"(”))Z (32)

sj(n)

ast — Aj, using (26).

It is clear from (32) that the larger is;(n)| then the larger is the asymptotic
region in which(L's;)(n) — 1 and(L's,,)(n) — 0 ast — A;. In Section 2.2, it
was shown that for = A; all the twisted factorizations yield the same relconds.
Nevertheless, for ~ 1; some twisted factorizations will be more rank revealing
than others. In particular twists at the location of maximal entries iansure that
the critical diagonal entryy (k, k) = yy satisfiedyx| < n|t — A;|. See [12].

7. Summing the relconds

Now we employ the expressions in Sections 4 and 5 to obtain bounds on relcond
(A, — 1) for all the A,,’s, not necessarily the one closestrtovhich was discussed
in Section 6. The natural fear is that the eigenvalues in a tight cluster will be highly
sensitive to small changeslin The matrix_ is determined by the vectprt) defined
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in (10) and its approximatior(%) defined in (14), wherp® abbreviatep(1 : k). See
(17) and (18). Here are the pertinent relations. When the argument of a function is
it will be omitted, p; = p; ().

The tridiagonal form off shows, in (14), that fok < n,

o

r-on(®)

It will be useful to express (34) in terms of the kernel functiakig(o, 7):=

le:o pi(o)pi(t) from Section 4. Rewrite the left-hand side of (33) using the spec-
tral decomposition

(T —tI) (‘f) =S(A—1I)St ('f)

=Y il — Dsi(DKe-1(hi, ), (35)
i=1

(T —tI) <pk) = B, ...,0, —pr, pi-1,0,...,0), (33)

(Rt nf). (34)

sinces; (j) = s; (1) p;—1(%;). Hence, by (33) and (35),

(Dk>t (T —tI) <pk> = —Br Pk—1Pk

o o
=Y i = D (DKx-10hi, 7). (36)
i=1

Now recall Theorem 3 in Section 5 and replaei—1pi by (36). Fork < n,
(Ltsm) (k)z _ [Am — T

Am — Tl |Bepr—1pkl

hn = Tl Csm (D) Ki—1.(hm, 7))

(5m (D) Ki—1 (o, T))?

. . (37)
Y — D (i (D K12, 7))?
Lett — A, in (37) to recover (30) in Section 6.
To give meaning to (37) we sum ovex notk, to find
Xn: (Ltsm) (k)z B Z;:l [Am — t|sm(1)2Kk—l()\ma T)z
=l =Tl [ = Dsi(D2Kk—1(hi, ©)2|
P+ N (38)
CPe— Nel

where
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Ne= ) (@ = )si(DPKi-a(hi, 0% > 0.
Ai<t
Whent < A1, then, for eactk, Ny = 0 and(P; + Ni)/(Pr — Ni) = 1. Whent >
An then for eachk, P = 0 and (P, + Ny)/(Pr — Ny) = —1. That is why, inter-
changing the order of summation,

Zrelconc{k —7)= ZZ Msm )0 _ Zl:n,
k=1

Doy Pm— T
in the defmlte case. In addition (38) shows that, in the indefinite case, if there is
catastrophic cancellation betwe#a and Ny, even for onek, then some relconds
will be large. Now we analyze the indefinite case.
The denominator in (38) i$8xpr—1px| and vanishes when, and only when,
pr—1(7) pr(t) = 0 sinceT is assumed to be unreducgdi > 0). We doubt that there
is a closed expression for the numerator in termp®6fand we are forced to find

a bound. To this end we define two quantities that measure how (:‘ic)s’e to an
eigenvector ofl. The first is a Rayleigh quotient:

2o (2

pr = pi(T) == TaE

_ —Brpk-1pk

Ip*112

The second is a normalized residual

r-oft)

o]

1/2
_ A R o (40)
(sl
These expressions remain valid foe= n if we take 8, = 1 but we do not exploit
this fact.
Both (39) and (40) are easily computed for kllin O(n) operations using the
three-term recurrence for th@; (z)}. Note that

(by (36)). (39)

My =ry(zr) =

5 1/2
ppr=Ti—1, |nl= ((Tll— )"+ T21) ,
min [A; — 7| < [Irell < max [A; — | = |[LQLY.
1 1

A lengthy calculation shows that

roy )+ pr-1(z) =0
pk(t) - {_1’ pk(_[) — O
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See Remark 4 at the end of Section 8.

Theorem 4. Assume thap” = (po(1), ..., p,—1(7))! has no zero entries. Let;
be the eigenvalue of T closest#oThe factorizatior — r1 = LQL! exists andin
terms ofr; and p, defined above

Leg| |
Z relcondi, —7) < 1+ Z IZ€| +O(lt — &), (41)
= Mell
n n—1
> relcondi, — 1) < 1+ ILQLYY ol ™+ O( T — ). (42)
m=1 k=1

Proof. In Section 6 it was shown that, for the case- n, (LtSj)(n)z/p\.j — 7| =
1+0O(r — AjD) and(Ls,,)(n)2/|am — 7| = O(JT — Ajl). Hence,

" (Lls,,) (n)2
s B O 44 e .
[Am — T
m=1
For k < n we begin from (38). The numerator may be majorized by the Cauchy—
Schwartz inequalityy" w; |4 — )2 < 3 w; (4 — 1)2 Y w;. Use (34) and (35) to
find

Xn:( 'sm) (k) IBk (- 1+Pk)l/2 It

[Am —TI | Bk Pk—1Pk]
(PRt PE [P
=P | Pk—1Pk| 2\1/2
- B (Pf_1+ PF)
Lol
_ ”f"|'|' (by (19) and (40)). (43)
k
Recall that
L's,) (k)2
| A —
Zreconc{ T) = ,,12:1;; P

Reverse the order of summation and apply (43) to obtain (41). Instead of the Cau-
chy—Schwartz inequality we can take out of the numerator in (36) max— t| =
IT —tI| = ||LQLY| and obtain
2
i (L'sm) 02 _ |Loct] - )" _ Jrec]

X = by (39)). 44
o — 7 B pk_1px] o YED (44)

m=1
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Reverse the order of summationdn’,_; Y7 _; (L's,,)(k)%/ |4 — t| and apply (44)
to obtain (42). O

Remark 1. If |p,—1(7)| = |IP"lloo, then the denominatoig| in (41) cannot be-
come arbitrarily small. Let

=c(r.())

Then
2
o] o] ( 1)”2
COS O = = <(1-Z= ,
T e T e n
. 1
[sin O] > —.
Jn
By the fundamental gap theorem [14, Chapter 11],
L < sin 60l gare) < Il (45)

where gapr) := min;+; |t — A;|, wherex; is the eigenvalue closest to

By Theorem 1 in Section 2.2, we can choose any twisted factorization of
(T — tI), whent is an eigenvalue, without changing relcohd— 7). If a largest
entry int’s eigenvector occurs in positidg then we may analyze relcond for the
factorization with twist ak. The same lower bound (45) on the residual norms will
hold in this case too.

Neither bound in Theorem 4 can be attained. So we now derive an exact expres-
sion for )_" _; relcondx,, — t) that displays the role of element growth. Recall
(19), fork < n,

2 2 2(.2 2
ILecl2= i Piat Pr _ Bt (Pi_1 + P7)
| Pk—1Pk] | Bk Pr—1Pk|
S (i — D2(si(DK—1(h, 1))?

Y i — DD K1, )2

Next multiply numerator and denominator of (38) By? ;(A; — 7)2(s; (L) K1
(»i, 7))% and rearrange to find

i (L'sm) 0% ||ILe||?

= , 46
— =l 7k (7) (46)
where
" =t (1h = Tlsi(DPKr—1(Ai, T)?
() = i i =Tl (Ih = tlsi(D?Ke—1(hi, ©)%)

Yol hi = Tlsi(D2Ke—1(Ai, T)?
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Fork = n we have already seen that

n Ltm 2
3 Em Oy oge -,

m=1 |)\m - t|

where) ; is the eigenvalue closest to Again reversing the order of summation

! o L&
> relcondi,, —1) =) L L1407 — 2.
m=1 o @

The ratiosry (t) seem difficult to analyze but on our test bed of examplgs) >
m1(7) for 2 < k < n. We conjecture that

n

1
Z relcondi,, — 1) <
m1(T)

trace(LL") + 1+ O(|t — A;]).

m=1
Consider the case when all the(1)| are equal. Suppose that max— 7| = [A1—1|
and defing; = |A; — t|/|AM —t],i =2,...,n. Then
(L —1)2
o) = B T
Zi [Ai — 7]

2 DY 2
P NSl B
14+r+--+m

_ToM lLaL!|

n n

By Theorem 1 there is no need to consider an extreme case in Whieh. ;| <
e and|s; (1| ~ 1. We may assume that if; is the closest eigenvalue tothen
ls; (D] < 1/+/2. Finally, we conjecture that in all cases

Xn: relconda ) < trace(LLt)
N T e ]

m=1

8. Bounds for an interior cluster

In Section 1, an algorithm was described for computing orthogonal eigenvectors
of T. When a new shift is chosen and a new factorization performed the only new
eigenvectors to be computed are those with large relative gaps. In other words, eigen-
vectors for eigenvalues close to the shift. Consequently, it is desirable to have bounds
on relcondi; — 7) just for cluster of eigenvalues close tor. We now derive @)
computable bounds for such cases.

From the eigenvector equation

(T = tD)sym = LOQLS,, = s (A — 1)
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it follows that, fora,, + t,
(L) @(Llsn) < (L'sw) (02
= [0} S——

= = k
Am — T —_ Am — T
wherewy, = sign(— B pr—1px) = Sign(dy) for the pivotsdy, see (16). Consequently

fora, >t

)

T (Lt m 2
relcondnr,, — 1) := Z %

k=1
(Ltsm) (k)z (Ltsm) (k)z
- 3 Wer, o Eu)er
Wp=+1 |)\,m—f| — 1 |)\rm_f|
L'sy) (k)?
=1+2 2::, o (47)

The representation (47) lets us focus on a subset of indideom (36) in the pre-
vious section

—Bepe1pk= Y (i — D)si(DPKi104. 1)
T<A;
=Y (= M)si(D*Ki-1(hi, T)
Ai<t
=Py — Ny (asin(38))

So the cases; = —1 are characterized by > P, or 2Ny > Py + Ng; SO

n

> @ = r)si (D Ki1(hi, 1) > % D i —Tlsi(D*Ki1(hi, T2 (48)

Ai<t i=1
Now suppose thak; is the left end of a cluster of close eigenvalues so that
Aj — Aj—1 is not small. In many cases; — 1,1 is of the order of the average
gap (A, —A1)/(n — 1) but that is not necessary to the analysis that follows.
Consider the shiftr < 1; and very close, if not equal ta;.

From (48) comes a useful estimate. Define an averagesadistance from the

eigenvalues to its left,

YT = a)25i (2K -1 (i, T)2

Y H T = a)si(D2Ki—1(hi, )2
< Z?_Zl(r — 1) %51 (D)2 Ki—1(Mi, r)z‘

YN = a)si(D2Ki_1(hi, T)2
From (48) forw, = —1,

o =
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S Yial =) WP Kk, 1)
2 - Z:,ll:l 1T = A lsm (D2 Ki—1(Am, T)%
We use (49) later. Clearly7,” > 7 — ;1.

(49)

Theorem 5. Consider a clustefs of #(%) close eigenvalues in the interior of the
spectrum of T. Choose a shiftclose to but not exceeding the left endéofDefine
</, as above. If the factorizatiofi — 7/ = LQLY exists then

2
> relcondi, — 1) <H#E) +2 Y L& %

Ames =1 ° k

Proof. Invoke (47) forh,, € € to find that

Z relcondi, — 1) = #(%) + 2 Z Z

Am e m€€ Wrk=-1

Lsm (k)

Reverse the summations and invoke (47) for gagle ¢, wherer,, — t > 0,

Z relcondx,, — 1)
Am€%
o Y Am = TS (DPKi-10un, T)2

=#O+2 3, ILed S (h — 0251 (02Kk_1(0, )2

wp=—1

The numerator above comes from a subset of the terms deflirad Py < Ny
whenw; = —1. Thus,

Z relcondi,, — 7|
Ame%
n 2 2
2Zm:1 [Am — TISm (D Ki—1(Am, T)

SHO+ ) el i = 1)28i(D)?Ki—1 (A, 7)2

wr=-1

Le 2
<t +2 Y LT pyaey o
of
wp=-1 k
Corollary 2. With the hypotheses of Theorémand
gapleft:=min{r — A; : A; < 7}
then

2 t
> relcondi,, — 1) < #() + Japioh wz 1 (L'L),,
i

Am €
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Proof. .«," is a weighted average af— 1;, A; < , and so gap-lef .«7, . Now
substitute gap-left for7,” in Theorem 5. [J

At the right end of the cluster thes with w;y = +1 are used.

Corollary 3. If a shiftt’ is chosen close to but not less than the right end of a cluster
@, ifT —1'1=LQ LN and
gapright:= min{x; — ' : 4; > '},
then
2 t
relcond(r,, — ') < #(%) + —— LYL| .
Z (hn — ') < # )+gaprlght Z [( ) ]kk

Am €t W =+1

Remark 2. The bound in Theorem 5 is a sum of two expressions. The term 2
Zwkz_l ||Lek||2/{szi,j applies to allk,,, > 7, notjust those in cluster. Hence,

Leg|)?
Z relcondr,, — 1) <#Ay > 1} +2 Z | k_” . (50)
)»m>r wr=—1 &/k
Similarly,
Leg|)?
> relcondi, — ) <Hw <1} +2 ) | ’;” , (51)
)»m<r wr=+1 &/k
where

e Yonar i — DZsi(D2Kk-1(hi, )
Y i — D8 (D2K 1 (hin T)2

Example 3 exhibits a factorizatioh — 7 = LQL! with large element growth.
The relconds of the large eigenvalues are large but the relconds of the two tiny ei-
genvalues are bounded bys52and so the representation is relatively robust for the
cluster. Next we give a computable bound for the cluster nearest 0 that is independent
of element growth ir.. Recall from Section 7,

_ Bkpkpk—1
2 9
o]

which is the Rayleigh quotient c(f’ok) with respect tdI' — 1. The resultis valid for
any cluster but our interest is only in the one closest to zero.

or(T):= =1,...,n. (52)

Theorem 6. Let% = {1}, 141, ...} be a cluster of eigenvalues. Thersing(52),
ast — )"J’
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n—1

> " relcondi, — 1) < max |An — | Y |ok(0)| Tt + 1+ O(T — A;).
Ame% —
Am e k=1

Proof. From Theorem 3, fok < n,
(L'sm) ®? _ |hy — 7]

[Am — T | Bk Pk Prc—1

From (32) in Section 6, as — A,

(Ltsm) (n)Z N (sm(n))z

[Am — T sj(n)

(5m (D Kg—10um, T))2.

‘L'—)Lj

T—Am|
Using (52), fork < n,

(L'sm) 2 1w =] (DK 10m. 1)\ ?
= (53)
|Am — 7| [Pk (T)] (sl
Now sum (53) over the cluster
2
5 (Lism) ()2 y Pt (sm<1>1<k_1(xm,r>)
P |Am — 7| e | o ()] =
max [ =71 Yeq (m(DKi-1(m. 1))
[Pk (7)) P12
max; Mm - T| (54)
[ ok (7)1
since the eigenvector matr&yields
Y _ ot () 3, .
(0 =sst(') ) = 2;s,s, (D Ki—1(Ai, 7).
1=
For the last terms, as — A,
Z (Ltsm) (n)Z N Z <Sm(n)>2 T— )\j
mee |)\m - T' mee 5 (n) - )\m
1+0(r —AjD), Jje?,
{oqr “ah. . (53)

Sum (54) fork = 1, ...,n — 1 and then add (55) to obtain Theorem 6.

The bound on max |A,;, — 7| Z’,Zj |ox(7)|~1 may be accumulated in @) op-
erations wherf" — 71 is factored using the three term recurrence{fgs.
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Theorem 6 should be compared with (42), the term¢nay, — | compensates
for Z}j;} |ox|~1 which may be large when there is element growtti it

Remark 3. Suppose = A; andé ={A;, Aj+1,...,A;+¢}, thenrelconth; — 1) =
1. Suppose that

n—1
_ I -
lek(f)l 1= % (definingu),
=1 Ajt1—Aj
then
Ajve — A

+1
Aj+1 = Aj

> relcondi,, — Aj) <
A€

For a fairly uniform distribution in the clustéf this gives abound qf - ¢ + 1 and
bears out our experience that a cluster nebas approximately the same relconds
for each eigenvalue ji = O(1).

Remark 4. The algebraic functiom (t) vanishes at the zeros @f._1 and py. It
can be shown that

s [+ i prea(e) =0,
pe(T) = {—1 if pr(z) =0.

Suppose tha¥ = {1, X j11,..., A j4¢} IS a cluster of close eigenvalues Bythas
some zero entries. Thus, is not a valid shift. If, instead, we choose= A; —
2(Aj41— Aj), then we can expedpbk(t)| = O(Aj41 — 1), k=1,...,n — 1 and

the associated factorizatidh— A1 = LQL' should provide a relatively robust rep-
resentation for the smallest cluster even if some of the eigenvalues further from
have large relconds.

9. Sensitivity of eigenvectors

It turns out that the natural definition of a condition number for an eigenvector of
LQL' underinner multiplicative perturbations is a complicated combination of the
relconds of all the eigenvalues. We derive the formula for relg@néh this section.

Recall from Section 2 that inner perturbations chafge 7 = LQL' —
LDQL! with D diagonal and positive-definite. For smadilative perturbations to
L’s entries the perturbatiohR = I + A with ||A4|| < 27, the perturbation level and so
gives an additive perturbation

LQL' 4+ LAQL.
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Our 4 here is twice thed in Section 2. The change in a specific eigenvectanay be
expanded in the other eigenvectorsgg#j sin;j. Standard first order perturbation
theory [16, Chapter 2], starts from

(LQLt + LAQLt) s+ Zsinij =|s;+ Zsinij (Aj+65)
i#] i#]
and, to first order imy, yields
LAQLtSj + ZS,’()»,’ —T)nij =86 +(A; — 1) Zsinij.
i#j i#j
Premultiplication bystj gives the material presented in Section 2. Premultiplication
by s}, k # j, yields

SSLAQLYs j + i — Dy = () — D) + O(?). (56)
At this point we invoke the definition in Section 2,
IL'si|| = v/1ri — t| relconda; — 7). (57)

Since® = diag(#1), [|4Q| = ||4]] < 27, and so, to first order in

|(Ovj — M)mkj| = [si LAQL's |

<2 [|Ak —1|-|A; — | relcondx; — r)relcondr; — r)]l/2

+0(n?). (58)
We mention thatt may be chosen so that the bound in (58) is attained. In the discus-
sion of eigenvectors it is the angle; (in radians) between; ands; + >, ; sinij
that is of interest. The eigenvectorsiof2! are orthonormal and so
1/2
tany )=\ > nf
i#]
<277\/|AJ- — 7| -relcondi; — 1)

1/2
Z |A; — |- relcond); — 1)

oy +0(n?). (59)
J i

i#j

The coefficient of 2 in (59) gives the appropriate expression for rela@nyl=
relconds ; LQLY. It is a somewhat complicated function of the relconds for all
the eigenvalues as well as the (relative) separation of the eigenvalues. In order to
improve appearances we introduce a little used measure (denaig]) of relative
separation,

la — bl

Vlal|b]

relsefa, b) :=

(60)
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and observe that this function can reach By this device

relconds ;) :=,/relcondx; — 1)

Z relcondr; — 1)
relsef(x; — v, A — )

1/2
(61)

iF]j

We conclude with some implications of our definition of relcand.

Remark 5. If s; has no zero entries, thdnL! exists whenr = A; and relcond
(sj) = 0 as it should becausé's; = o in this case and s AQL's; = o however
large4 may be.

Remark 6. The unusual definition of relcortsl;) in (61) with its rang€g0, oo] aris-
es because it concerns thlesolutechange in the anglg; due torelativechanges in
L’s entries.

Remark 7. The definition (60) makes our relseps larger than traditional measures
such ag|a — b|/ max{|al, |b|}). For example, it = A, then the termi = j makes

no contributionto relcon@), k # j. Whenk = j + 1 the sensitivity of ;1 is most
influenced by the contribution of; ;> even wheni; — A ;1] < |Aj41 — A 42].

Remark 8. WhenT — 11 is definite then all relcond; — ) = 1 and

1/2
1

relsef(A; — 7, A; — 1)

relconds;) = | >

i#j

This shows thah cluster near the middle of the spectrimas eigenvectors sensitive
to small relative errors in the Cholesky factors becauge- z| and|x ;11 — 7| will

be large. This observation confirms the necessity for takiolpse to each cluster in
turn in order to compute orthogonal eigenvectors associated with those clusters.

Remark 9. Consider an interior clustéf with ¢ close to one end so that relggp—
T,A; —1)>1fork; € 4, A; ¢ 6. Then the eigenvalues outsidecontribute little
to relconds ;).

Forij €@

1/2
1

relsef(x; — T, A; — 1)
J

relcondsj) ~ | Y
Ni€%,i
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This expression is easily computed and if it is larger than desired the cluster may
be split into subclusters. For example, consider a cluster in which all eigenvalues
agree to 4 decimals but 7 at one end agree to 6 decimals and 5 at the other end also
agree to 6 decimals. It might be profitable to subdivide into a subcluster at each end.
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