Scalable and Memory-Efficient Clustering of Large-Scale Social Networks

Joyce Jiyoung Whang
Department of Computer Science

Xin Sui
Department of Computer Science

Inderjit S. Dhillon
Department of Computer Science

The University of Texas at Austin The University of Texas at Austin The University of Texas at Austin

Austin, USA
joyce@cs.utexas.edu

Abstract—Clustering of social networks is an important
task for their analysis; however, most existing algorithms do
not scale to the massive size of today’s social networks. A
popular class of graph clustering algorithms for large-scale
networks, such as PMetis, KMetis and Graclus, is based on
a multilevel framework. Generally, these multilevel algorithms
work reasonably well on networks with a few million vertices.
However, when the network size increases to the scale of 10
million vertices or greater, the performance of these algorithms
rapidly degrades. Furthermore, an inherent property of social
networks, the power law degree distribution, makes these
algorithms infeasible to apply to large-scale social networks.
In this paper, we propose a scalable and memory-efficient
clustering algorithm for large-scale social networks. We name
our algorithm GEM, by mixing two key concepts of the
algorithm, Graph Extraction and weighted kernel k-Means.
GEM efficiently extracts a good skeleton graph from the
original graph, and propagates the clustering result of the
extracted graph to the rest of the network. Experimental
results show that GEM produces clusters of quality comparable
to or better than existing state-of-the-art graph clustering
algorithms, while it is much faster and consumes much less
memory. Furthermore, the parallel implementation of GEM,
called PGEM, not only produces higher quality of clusters but
also achieves much better scalability than most current parallel
graph clustering algorithms.

Keywords-clustering; social networks; graph clustering; scal-
able computing; graph partitioning; kernel k-means;

I. INTRODUCTION

Social network analysis has received significant attention
in recent years. Social networks can be modeled as graphs
with vertices and edges where vertices indicate individual
actors, and edges indicate social relationships between the
actors. The resulting graphs are large and complex.

Graph clustering, also known as graph partitioning, is
one of the most fundamental and important techniques for
analyzing the structure of a network. Graph clustering algo-
rithms partition a graph so that closely connected vertices are
assigned to the same cluster. In the social network analysis
context, each cluster can be considered as a community in
the network.

Due to the massive size of real networks, scalability is
a critical issue. The most commonly used graph clustering
algorithms, which are known to be fast and scalable, are
based on a multilevel framework, for example, PMetis

Austin, USA
xinsui @cs.utexas.edu

Austin, USA
inderjit@cs.utexas.edu

[1], KMetis [2], and Graclus [3]. Generally, multilevel-
based algorithms work reasonably well on networks with
a few million vertices. However, when the network size
increases to the scale of 10 million vertices or greater,
the performance of multilevel-based algorithms can rapidly
degrade. Specifically, when the degree distribution of a large
network follows a power law, as is common for social
networks, the degradation is quite significant. Therefore,
existing multilevel-based graph clustering algorithms are not
a good choice for clustering large-scale social networks. In
our experiments, for example, KMetis takes about 19 hours
to cluster a Twitter graph which contains about 50 million
vertices and one billion edges, while consuming more than
180 Gigabytes memory.

In this paper, we propose a scalable and memory-efficient
clustering algorithm for large-scale social networks. We
name our algorithm GEM, by mixing two key concepts
of the algorithm, Graph Extraction and weighted kernel
k-Means. The main idea of GEM is to extract a good
skeleton of the original graph, cluster the skeleton graph
using weighted kernel k-means, and propagate the clustering
result to the original graph.

It is generally known that social networks have a hi-
erarchical structure. This structure allows us to extract a
representative graph, which can be small but captures the
overall structure of the original network well. Intuitively,
clustering the representative subgraph can be beneficial to
clustering the original graph. GEM extracts a subgraph
using high degree vertices in the network. In the social
network context, high degree vertices correspond to popular
or influential people in the network. After clustering the
representative subgraph, we propagate the clustering result
to the rest of the network.

Experimental results show that GEM produces clusters
of quality comparable to or better than existing state-of-
the-art graph clustering algorithms while it is much faster
and consumes much less memory. We also parallelize our
algorithm — our parallel implementation, called PGEM,
scales well with the number of processes. Compared to
ParMetis [4], which is a popular parallel graph clustering
library, PGEM not only produces higher quality of clusters
but also achieves much better scalability.

II. PRELIMINARIES
In this section, we formally state the graph clustering
problem, and introduce the standard weighted kernel k-
means algorithm which has been shown to be effective in
optimizing graph clustering objectives.

A. Graph Clustering

A graph G = (V,&) is defined by a set of vertices V,
and a set of edges £. Given a graph G, we can construct
the corresponding adjacency matrix A such that A;; = e;;
if there is an edge between vertex ¢ and vertex j, and O
otherwise, where ¢e;; denotes an edge weight between vertex
i and vertex j. Formally, given a graph G = (V, &), graph
clustering seeks to partition the graph into k disjoint clusters
Vi, , Vg such that V = V;U- - -UVy. Many different kinds
of graph clustering objectives have been proposed and stud-
ied. We focus on two most popular objectives: Kernighan-
Lin objective which is used in PMetis and KMetis, and the

normalized cut objective which is used in Graclus.
Let us define links(V,, V,) to be the sum of edge weights
between two vertex sets V), and V,. That is,

links(Vp,Vq) = Z Aij.
i€Vp,iE€Vy

Let us also define the degree of a cluster to be the sum of
edge weights of the vertices in the cluster, i.e., degree(V,) =
links(Vp, V).

Kernighan-Lin objective aims to partition a graph into
k equal-sized clusters while minimizing the cut between
clusters. We can represent this objective as follows:

min Links(Veo V\Vi) on hat v = 2L 1y
Vi, Vg £ Vil k
3
On the other hand, the normalized cut objective aims to
minimize the cut between clusters relative to the degree of

a cluster. This objective is represented as follows:

, lmks(Vl, V\Vi)
M 2 degreeVi) *
B. Weighted Kernel k-Means
It has been shown that a general weighted kernel k-
means objective is equivalent to a weighted graph clustering
objective [3]. This equivalence allows us to optimize a
weighted graph clustering objective by using a weighted
kernel k-means algorithm, which we now explain. Given
a set of data vectors xi,Xo, - - - , Xy, the weighted kernel k-
means algorithm aims to find %k clusters my, o, ..., 7 that
minimize the objective J which is defined as follows:
k
T=Je, where Jo = Y willg(xi) —me|[* (3)
c=1 X;ETe
where w; is a nonnegative weight, ¢ is a non-linear mapping,
and m,. is the centroid of the c-th cluster which is defined

by:
in €me wl(b(xz)

SR @)
X;Eme b

m, =

Given the kernel matrix K, where K;; = ¢(x;) - #(x;), W
can compute the squared distance between ¢(x;) and the
cluster centroid m,, denoted by ||¢(x;) — m,||*, as follows:

2) en Wiki Y cem, Wi
ZXJ'GTFC W (ZXJ‘EWC ’U]j)Q

The weighted kernel k-means algorithm computes the
closest centroid for every data point, and assigns the data
point to its closest cluster. After all the data points are con-
sidered, the centroids of clusters are updated. This procedure
is repeated until the change in the objective value becomes
sufficiently small or a maximum number of iterations is
reached.

Now, let us return to the graph clustering problem. Recall
that the normalized cut objective is defined in (2). This
objective has been shown to be equivalent to the weighted
kernel k-means objective by defining the weights and the
kernel matrix as follows: we define the weight of each data
point to be the degree of each vertex, and the kernel matrix to
be K =0D ' +D 'AD™!, where D is a degree diagonal
matrix with D;; = Z?Zl A;j, and o is a scalar that makes
the kernel positive-definite [3]. Then, we can represent (5)
using only graph-theoretic terms. That is, we can quantify
the squared distance between a vertex © and the cluster V,
as follows:

Kii — (&)

ag
a——2 — ifoeV
dist(0,Ve) ={ degreetVe) £o¢V 6)
if © e

+ degree(Ve;)
where 6 = Z — ?lmks(u, Ve)

d d-degree(V.)
where d denotes the degree of ©, and links(#,V,) denotes
the sum of edge weights between © and the vertices in V..
Using this distance metric, we can assign every vertex to its
closest cluster using the weighted kernel k-means algorithm.

links(Ve, Ve)
degree(V;)?

III. MOTIVATION

We introduce the multilevel framework for graph cluster-
ing, which has been employed for popular graph clustering
algorithms [1], [2], [3]. We analyze this framework, and state
their limitations on large-scale social networks.

A. Multilevel Framework for Graph Clustering

The multilevel framework has been known to be an
efficient way to solve large-scale graph clustering problem.
A popular class of graph clustering algorithms, such as
PMetis, KMetis, and Graclus are based on the multilevel
framework. Specifically, PMetis optimizes Kernighan-Lin
objective using multilevel recursive bisection, and KMetis
adopts a multilevel k-way refinement algorithm. Graclus op-
timizes the normalized cut objective by multilevel refinement
using the weighted kernel k-means algorithm.

The multilevel framework consists of three phases: coars-
ening phase, initial clustering phase, and refinement phase.

1) Coarsening Phase: We repeatedly transform the orig-
inal graph into smaller graphs, level by level. Starting with
the original graph Gy, we generate a series of smaller
graphs G1,Ga, -+ ,G; such that |V;| > V41| for all
i=0,---,l—1. Given G;, we construct G; 1 as follows: At
the beginning, all vertices are unmarked. We randomly visit
a vertex, and merge this vertex with one of its unmarked
neighbors. When we merge two vertices, the edge between
them is hidden, and the resulting vertex is considered as
a supernode which has all the edges the two vertices had.
When a vertex is visited or merged with another vertex, we
mark it. If a vertex has no unmarked neighbors, we just leave
it and mark it. We repeat this procedure until all vertices are
marked or no further coarsening can be performed.

2) Initial Clustering Phase: Once we get a small enough
graph by multilevel coarsening, we can directly partition the
coarsest graph. The initial clustering algorithm used at this
stage varies depending on PMetis, KMetis, and Graclus.

3) Refinement Phase: The refinement phase proceeds in
a reverse direction of the coarsening phase. Now, we are
given a clustering of GG;1, and derive a clustering of G; for
all i =[1—1,---,0. First, we project a clustering of G;41 to
G;. Then, we refine the clustering of GG; using a refinement
algorithm which also varies depending on PMetis, KMetis,
and Graclus. By repeatedly refining the clustering level by
level, we get the final clustering of the original graph.

B. Limitations of Multilevel Framework on Large-Scale So-
cial Networks

We analyze the multilevel framework, and state its limi-
tations.

1) Difficulties of Coarsening in Large Networks: In the
coarsening from G; to G;1, the graph reduction ratio can
be defined by:

Vil

Graph Reduction Ratio = .
Vit

Recall that we merge up to two vertices to form a supernode.
By definition, the graph reduction ratio cannot be smaller
than 1, and cannot be bigger than 2. Clearly, a higher reduc-
tion ratio indicates a more effective coarsening procedure.
The success of the multilevel framework algorithms is
based on the assumption that the graph reduction ratio
in the coarsening step is reasonably high at each level.
However, for real large social networks, this turns out not
to be the case. Specifically, when a network follows power
law degree distribution, the graph reduction ratio becomes
much smaller. This is because of the innate structure of the
network. When the degree distribution follows a power law,
most of the low degree vertices in the network tend to be
attached to high degree vertices. Once these high degree
vertices are all merged with some low degree vertices, the
rest of the low degree vertices have little chance to be
merged with any vertex. As a result, there remain a large
number of vertices which cannot be merged with any vertex,
at each level. We observe that the graph reduction ratio is

pretty small on real large social networks. For example,
Figure 1 (a) shows the graph reduction ratio of Metis on
our Twitter network which is presented in Section VI. We
see that the ratio is much smaller than 2 across all the levels,
which indicates that the coarsening procedure is ineffective.

Figure 1 (b) shows the number of edges of the coarsened
graph at each level. A good coarsening step should hide
a large number of edges from one level to the next level
[5], which means that the difference between the number of
edges of consecutive levels should be large. For the Twitter
network, however, the number of edges is not significantly
reduced at each level.

2) Memory Consumption: Another important issue is
memory consumption. Since the multilevel framework gen-
erates a series of graphs in the coarsening phase, it requires
quite a bit of extra memory for storing the graphs. If the size
of the original graph is very large, however, sometimes it is
infeasible to allocate such extra memory. Figure (c) shows
the cumulative memory consumption in the coarsening phase
of the Twitter network. When we store a large network,
we usually use an adjacency list data structure. In this
case, the minimum space complexity of storing a graph
is O(|V| + |€]). Since the size of the Twitter network is
not significantly reduced at each level, the total memory
consumption increases rapidly.

3) Difficulties in Parallelization: Graph clustering algo-
rithms are widely recognized to be hard for paralleliza-
tion [6]. The multilevel framework based graph clustering
algorithms have presented significant obstacles to large-
scale parallelization. First, graph coarsening is done by
edge contractions, where each vertex is only allowed to
participate in one edge contraction. To ensure this property,
a global consensus has to be reached among processes,
which requires intensive communication between processes.
In addition, the consensus may become more and more
difficult to achieve as the coarsening proceeds to deeper
levels, since coarsening tends to make graphs denser. This
further increases communication between processes.

IV. SCALABLE GRAPH CLUSTERING USING GRAPH
EXTRACTION AND KERNEL k-MEANS

We propose GEM, a scalable and memory-efficient graph
clustering algorithm for large-scale social networks. GEM
consists of three phases. First, we extract a representative
subgraph of the original graph. Then, we cluster this sub-
graph which is much smaller than the original graph. Once
we obtain clustering of this small graph, we propagate it to
the rest of the network. Finally, we refine the clustering of
the original graph.
A. Graph Extraction

In GEM, we extract a skeleton of the original graph by
choosing high degree vertices in the graph. We select ver-
tices whose degrees are higher than a certain threshold. We
can specify the degree threshold such that a desired number

Twitter 50M

Twitter 50M

Twitter 50M

1.9 1 —
18

17

>

Graph Reduction Ratio
N b s @

No. of Edges
o

0 1 2 3 4 5 6

Total Memory Consumption (GB)

(a) Graph Reduction Ratio
Figure 1.

level 0 level 1 level 2 level 3 level4 level 5 level 6 level 7

(b) No. of Edges at Each Level

level 0 level 1 level 2 level 3 level4 level 5 level 6 level 7

(c) Total Memory Consumption

Metis Coarsening Phase of Twitter 5S0M Network — existing multilevel algorithms perform poorly. (a) The graph reduction ratio from one

level to the next level is much smaller than 2, which indicates that the coarsening step is ineffective. (b) Coarsening step fails to reduce the number of
edges in the graph. (c) The total memory consumption increases rapidly during coarsening phase.

of extracted vertices is achieved. Then, we construct the
subgraph of the original graph by extracting the vertices and
edges between the selected vertices. This induced subgraph
is considered a skeleton of the original graph.

Myspace
10 T

90 ==+ Random selection

80
701
60
501
40t

30

Vertices in the Giant Component (%)

20+

10F

0 s s ‘ ‘
0 01 02 03 04 05 06 07 08 09 1
Removal Ratio
Figure 2. Vertices in the giant component of remaining vertices — high
degree vertices play a pivotal role in preserving the structure of a network.

The network collapses rapidly when high degree vertices are removed first.

Power law degree distribution of social networks indicates
that a small set of high degree vertices covers a large portion
of the edges in the network. Figure 2 shows the impor-
tance of high degree vertices in maintaining connectivity
of a network. Detailed information about the network is
presented in section VI. To see the role of high degree
vertices in preserving the structure of a network, we remove
a certain number of vertices in the network according to
their degrees. After removing the vertices, we compute the
giant connected component among the remaining vertices,
and measure how many vertices are included in the giant
connected component. If the giant component contains a
substantial portion of the remaining vertices, then it indicates
that the remaining vertices are well connected to each other.
As can be seen in Figure 2, the network collapses rapidly
when high degree vertices are removed first. Compared to
the case where we randomly remove vertices, the remaining
vertices become more disconnected to each other when
we remove high degree vertices first. It is clear that these
high degree vertices play a pivotal role in maintaining the

overall structure of the network. This property of high degree
vertices is aligned with the properties that a good skeleton
of a graph must satisfy.

It is well known that social networks exhibit a hierarchical
structure. In a social network, high degree vertices corre-
spond to popular and influential people. Intuitively, high
degree vertices have more chance to occupy higher levels
in the hierarchy. Therefore, a subgraph which consists of
high degree vertices can be considered a good skeleton of
the original graph. In this sense, clustering the subgraph can
be beneficial to clustering the original graph.

B. Clustering of Extracted Graph

Once a skeleton graph is extracted from the original
graph, the extracted graph is clustered using a weighted
kernel k-means algorithm. Specifically, GEM optimizes the
normalized cut using a weighted kernel k-means algorithm.

It is generally known that k-means algorithm has the
following weaknesses: (i) the final clustering result tends
to be significantly affected by initialization of clusters, and
(i) empty clusters can be accidentally generated. In this
subsection, we explain how we resolve these problems.

1) Finding Seeds: We refer to initial data points in
clusters as seeds. A general idea of finding good seeds is
to place seeds in a way that they are as far as possible
from each other. Note that in the weighted kernel k-means
setting, the squared distance between two data points ¢(x;)
and ¢(x;) is represented by:

lp(xi) — p(x))[1* = Kii — 2Kij + K. @)

Recall that when we optimize the normalized cut objective
using a weighted k-means algorithm, we set the kernel
matrix as K = cD™!' + D1AD~!. In this setting, we
can represent (7) using only graph-theoretic terms. The
distance between two vertices ¢(v;) and ¢(v;), denoted by
[|g(vi) — @(v;)|[?, is as follows:

g ; ,
d; did; | d; ®)

where d; denotes the degree of vertex 7, and e;; denotes an
edge weight between v; and v;. We can see that low degree
vertices are far away from each other, which indicates that
those vertices would be good candidates for seeds. However,
sorting the vertices according to their degrees can be quite
expensive in large graphs.

We develop a fast seeding strategy which is empirically
shown to be effective in clustering the extracted graph. We
call our seeding strategy Down-Path Walk Algorithm.

We refer to a path v; — v; as a down-path if d; > d;.
The concept of a down-path was first introduced in [7]
where the hierarchical topology of a network is quantified.
Integrating this concept with graph walks, we find seeds
as follows: at the starting point, all vertices are unmarked.
We randomly visit a vertex v;, and mark it. Among its
unmarked neighbors, we randomly select a vertex whose
degree is lower than v;. Let v; be the selected neighbor.
Then we mark v;. We consider v;’s unmarked neighbors,
and randomly select one neighbor whose degree is lower
than v;. In this way, we follow down-paths. After we follow
a certain number of down-paths, we generate a seed by
selecting the final vertex in the path. Then, we mark the
seed, and its neighbors. We repeat this procedure until we
get k seeds in the graph.

2) Online Weighted Kernel k-means Algorithm: 1Tt is
known that the standard batch k-means algorithm may yield
empty clusters. One way to resolve this problem is by
considering the actual objective change when moving data
points between clusters [8], [9]. Similar to this approach,
GEM computes the actual objective change in weighted
kernel k-means, and assigns a vertex to the cluster which
yields the greatest decrease in the objective. This procedure
is different from the standard batch weighted kernel k-
means, and we call this algorithm Online Weighted Kernel
k-means.

Let us consider a data point ¢(%X) which is currently in
cluster m,. Suppose that ¢(X) is tentatively moved to m,.
Then, the centroid of cluster 74, denoted by m,, changes to
m,* as follows:

m,* = m, + w‘qb(x)—wmr}q.
ineﬂq w; + W
where 1w is the weight of ¢(X).

Once ¢(X) is moved to 7y, the effective spread of cluster
4, denoted by J,, increases to Jq* as follows:

Iyt =) willé(x:) —my" || + @l[6(%) — mg[°. (10)
X;EMqg

By replacing m,* with (9), we can rewrite J,* as follows:
w Zx en W;

= lle® - mgl?an

in Emg Wi + w

Similarly, when ¢(%X) moves from 7, to m,, J, decreases

as follows: by
w ey ws R
S —lp(%) —my|f (12)

in €Emp wi —

®

Jf=Jg+

Jp" = Jp —

Finally, the movement of ¢(%) from , to 7, is advan-
tageous if the decrease of .J,, is greater than the increase of
Jy. That is,

G >

—|[¢(%) — my||* > —[|¢(%) — mgl|*.
W W

ZXiEﬂ'p ¢ x;Emq K

By considering this condition, GEM determines whether
the movement of ¢(X) from the current cluster to other clus-
ter will be beneficial or not. If the movement is determined
to be profitable, ¢(X) is transferred to the cluster for which
such a movement yields the greatest decrease of the total
objective change. Notice that the greatest decrease of the
objective is achieved when we move the vertex to the cluster

x;Emq

13)

zxema ey my|[? is minimum.
Zx,E'frq Wi tw

Similarly, when we initialize clusters after finding seeds,
we assign a vertex to the cluster for which such an as-
signment allows the least increase of the total objective.
Notice that when we assign a new vertex to a cluster, the
objective of weighted kernel k-means always increases. If
¢(X) is assigned to 7, the increase of the objective will be

as follows:
w w;
Zzwwww —mlP a4
$(%) is assigned to 4 such that AJ, < AJ; for all j # ¢
(7 = 1,..., k). Recall that we set the weight of each vertex
as the degree of the vertex. Also recall that we can compute
[lp(%) — qu2 using (6). Therefore, we can represent (13)
and (14) using only graph-theoretic terms. Putting all these
together, Figure 3 summarizes the procedure of how GEM
initializes clusters after finding seeds, and Figure 4 summa-
rizes the procedure of how GEM applies online weighted
kernel k-means algorithm to graph clustering.

for which

AJ, =

Input: V: the vertex set, s; (¢ =1, ..., k): seeds.
Output: V; (i = 1, ..., k): initial clusters.
1: for each cluster V; do

2: Vi = s;.

3: end for

4: for each vertex 0 € V do

5: for each cluster V; do

& .o 2links(9,V;) | links(Vi, V;)
ciA d-degree(V;) degree(V;)?
d - degree(V;) { . o }

7: 51‘ = = .
degree(V;) +d degree(V;)

8: end for

9: Find Vp s.t. 6p < 65 forall j (5 =1,..., k).
10: Vp = {0} UV.
11: end for

Figure 3. [Initialization of clusters

C. Propagation and Refinement

The last step of GEM is to propagate the clustering of the
extracted graph to the entire graph, and refine the clustering.
Once we get the clustering of the extracted graph, vertices
in the extracted graph are considered to be ‘“seeds” for
clustering of the entire graph. Starting from these seeds,

Input: V: the vertex set, V; (i = 1,...,k): initial clusters, Tmaz:
maximum number of iterations.
Output: V! (i = 1,...,k): final clusters.
1: Initialize 7 = 0.
2: repeat
3 for each vertex © € V do
4 Vp «— the current cluster of 0.
5 for each cluster V; do
6 P 2links(0,V;) links(Vs, V;)
d d- degree(V;) degree(V;)?
7 if V; =V, then
8 d- degree(V;) {ol o }
! degree(V;) —d degree(V;)
9 else .
10: L d-degree(V%)A{dJr o }
degree(V;) +d degree(V;)
11: end if
12: end for
13: Find Vg s.t. 0 < 9j forall j (j =1,...,k).
14: if V) # V, then
15: Vp =Vp \ {0}, Vg = Vg U {0}.
16: Update links(Vp, Vp), degree(Vp),
links(Vq, Vq), degree(Vy).
17: end if
18: end for
19: T=7+1.
20: until not converged and 7 < Trmaz
21: VE=V; (i=1,..., k).

Figure 4. Graph clustering using online weighted kernel k-means.

we visit the remaining vertices in the original graph in a
breadth-first order, and assign the vertices to clusters. In this
way, we propagate the clustering of the extracted graph to
the original graph, and arrive at the initial clustering of the
original graph.

Once all the vertices in the original graph are assigned to
some cluster, we refine the clustering of the original graph
by applying our online weighted kernel k-means algorithm.
Since we have good initial clusters which are achieved by
the propagation step, the refinement step efficiently improves
the clustering result.

V. PARALLEL ALGORITHM

An important advantage of GEM is that it is easy to
parallelize for large number of processes. We describe our
parallel algorithm of GEM, called PGEM.

The original graph is randomly distributed across different
processes such that each process owns an equal-sized subset
of vertices and their adjacency lists. We use the term local
vertices to refer to the subset of vertices each process owns.
In the extraction phase, each process scans its local vertices,
and picks up the vertices whose degrees are greater than
a specified threshold. Then, it extracts edges between the
selected vertices to form the subgraph of the original graph.
The extracted subgraph is also randomly distributed over
all the processes such that each process owns an equal
size of the vertex set. Our graph distribution strategy works
reasonably well, and we observe that the way the graph is
distributed does not lead to a bottleneck.

In the seed selection phase, seeds are generated in rounds.
In each round, a certain number of seeds will be generated.

Generating a seed corresponds to performing a down-path
walk along the graph. In each round, a leader process first
decides the number of seeds each process will generate,
which is proportional to the number of currently unmarked
vertices in that process. Each process randomly picks up
a local vertex to start a walk. To advance one step in
a walk, a process has to look at the neighbors of the
current visited vertex in the walk. Since the subgraph is
distributed across processes, the neighbor vertices might be
located in a different process. So, we use “Ghost Cells” to
access the information of such neighbor vertices: for each
remote neighbor vertex, a mirror vertex called ghost cell is
maintained. A ghost cell is used to buffer the information
of its remote counterpart. In particular, a ghost cell keeps
information about whether the vertex is marked or not.
Once the information of a vertex is modified, all of its
ghost cells will be notified to reflect the new update. In
addition, a process can change its ghost cells to modify the
corresponding remote vertices.

Each process may choose the next vertex belonging to
another process for a walk. Suppose that, during a walk,
process p; finds that the next vertex it will visit belongs
to process p2. Then process p; stops this walk and notifies
process po to continue it. When process p» receives a walk
from process pi, process po may have already marked the
next vertex in the walk. This may be because process p; did
not receive the update of the ghost cell or process po marked
the vertex after process p; chose this vertex as the next step
for this walk. If the vertex has been marked, process po
will send this walk back to the process p; to notify that it
should choose another vertex as the next step for this walk.
Otherwise, process ps continues the walk. When a walk is
finished, the last visited vertex is selected as a seed by the
process currently performing this walk. The seed and its
neighbors are marked by that process. To reduce the number
of communications between processes, the messages sent
by one process (including ghost cells synchronization) are
postponed until it finishes processing a certain number of
walks so that the messages to the same process are coalesed
into a single message.

After all the seeds are generated, each process will be
responsible for assigning its local non-seed vertices to clus-
ters. This corresponds to the initialization of clusters. The
local unassigned vertices are visited in locally breadth-first
order starting from the seeds. The assignment of a vertex
can be affected by other processes in two ways: 1) the
clusters of its neighbor vertices located remotely may be
changed simultaneously; 2) the cluster centroids may be
changed by remote processes. To deal with the two cases,
we use ghost cells for accessing cluster information of the
remote vertices which are neighbors of the local vertices for
each process; each process maintains a local copy of all the
cluster centroids. Recall that since GEM performs an online
variant of the weighted kernel k-means, if a process assigns

a vertex to a cluster, its local copy of the cluster centroid is
immediately changed. However, if a process broadcasts the
change of a cluster centroid whenever it assigns a vertex,
the overall procedure will be serialized. In order to avoid
this serialization, we relax the synchronization of the cluster
centroids. The cluster centroids are synchronized across
processes once a certain number of vertices are visited.

Note that, at the beginning, each cluster contains only one
vertex, which is the seed of that cluster. Since the number
of seeds is small compared to the number of vertices in
the subgraph, the frequency of both the cluster centroid
synchronization and the ghost cells synchronization in this
phase greatly affects the quality of clusters. We found both
need to be synchronized frequently during the assignment of
first dozens of vertices. In other words, starting from only
one vertex in each cluster, absorbing first several vertices
into each cluster is crucial, and the updates of cluster
centroids and the cluster assignment of vertices should be
shared frequently at this stage. But as the size of each cluster
increases to a reasonable size, the frequency of the two
synchronizations do not significantly affect the quality of
clusters. Therefore, we exponentially decrease the frequency
of the two synchronizations as more vertices are visited.

Clustering of the subgraph is performed in rounds. In each
round, iterations in weighted kernel k-means are performed
in parallel. The parallelization in each round is same as the
parallelization of the cluster initialization phase except: 1)
each process visits its local vertices in random order. 2) since
each cluster has enough vertices in this stage, the delay in
updating cluster centroids and ghost cells does not degrade
the quality of clusters. Therefore, we synchronize the cluster
centroids and ghost cells once a round.

The propagation phase adopts the same parallelization
strategy as the cluster initialization phase of the extracted
graph except the centroids and ghost cells are not synchro-
nized. We observe this will not affect the cluster quality.
Besides, the refinement phase of the original graph adopts
the same parallelization strategy as clustering of the sub-
graph.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of GEM and
PGEM. Our implementation of GEM and PGEM is in C++.
PGEM is implemented using MPI. We compare GEM with
PMetis, KMetis, and Graclus, and PGEM with ParMetis.
PMetis and KMetis are provided by one package, called
Metis. We use Metis 5.0.2, Graclus 1.2, and ParMetis 4.0.2.
In GEM and PGEM, we extract 10% of the original graph
in the extraction phase. For all the datasets, we partition
the graph into 100 clusters. We use five different real-world
online social networks [10], [11], [12], [13], which are
presented in Table I. All the networks are undirected graphs.
We performed the sequential experiments on a shared mem-
ory machine with AMD Opteron 2.6GHz CPU and 256GB

memory. The parallel experiments are done in a large-scale
parallel platform at the Texas Advanced Computing Center
(TACC), Ranger. Ranger has 3,936 machine nodes, and each
node is equipped with a 4x4-core AMD Opteron CPU (the
frequency for each core is 2.3GHz) and 32GB memory.

Table 1
SUMMARY OF SOCIAL NETWORKS
[Graph [[No. of vertices [No. of edges |

Flickr 1,994,422 21,445,057
LiveJournal 1,757,326 42,183,338
Myspace 2,086,141 45,459,079
Twitter (10M) 11,316,799 63,555,738

Twitter (50M) 51,161,011 1,613,892,592

A. Evaluation of GEM

We measure the quality of clusters using two different
metrics: the percentage of within-cluster edges, and nor-
malized cut which is defined by (2). Note that a higher
percentage of the within-cluster edges, and a lower nor-
malized cut value indicate better quality of clusters. Figure
5 shows the quality of clusters of each algorithm. Graclus
fails on Twitter 10M and Twitter S0M graphs. For all the
datasets, GEM outperforms PMetis and KMetis in terms of
both the within-cluster edges and the normalized cut. For
Flickr, GEM produces the best quality clusters among all
algorithms. For LiveJournal and Myspace, GEM generates
clusters of quality comparable to Graclus.

Figure 6 shows running time of each algorithm. GEM
is the fastest algorithm across all the datasets. For Flickr,
LiveJournal and Myspace datasets which contain around two
million vertices, all the programs finish within 10 minutes.
For larger datasets, however, running time significantly in-
creases. For example, KMetis takes about one and half hours
to cluster the Twitter 10M graph, and 19 hours to cluster the
Twitter S0M graph. For both of these large graphs, GEM is
much faster than the other algorithms. GEM takes only about
6 minutes to cluster Twitter 10M graph whereas PMetis takes
about 30 minutes. For Twitter SOM graph, GEM takes about
three hours whereas PMetis takes about 14 hours.

[Graclus I vetis
I Vetis — 180 [EMm
8| =2 cem]

Memory Consumption (GB)
Memory Consumption (GB)
=]

3

i NN

Flickr LiveJournal Myspace

Twitter_10M Twitter_50M

Figure 7. Memory Consumption — GEM consumes much less memory
than Graclus and Metis. Since PMetis and KMetis use the same coarsening
strategy, we just report the memory consumption for these algorithms as
Metis.

Figure 7 shows the memory consumption of each al-
gorithm, i.e., the amount of memory used to store graphs
generated during a run of the each algorithm. For multilevel

B Graclus
90 [PMetis

1 KMetis
. I GEM

70+
60+
50

a0k

Percentage of Within-cluster Edges

Flickr LiveJournal Myspace

Twitter_10M

Twitter_50M

(a) Percentage of Within-cluster Edges

Figure 5.

100

-
I Graclus
90| | [PMetis b
[ketis
80r| I GEM 1

701

60

50

Normalized Cut

40

301

20

Flickr LiveJournal

Myspace

(b) Normalized Cut

Twitter_10M Twitter_50M

Quality of clusters — GEM produces clusters of quality comparable to or better than state-of-the-art algorithms. (a) A higher percentage of

within-cluster edges indicates better quality of clusters. (b) A lower normalized cut indicates better quality of clusters.

12 16

20

[Graclus [PMetis — | I PMetis
[PMetis 14 I KMetis 18 1 KMetis
1ot C——J KMetis i T cem . [cem]
[T eem
1.2
— _ 14
g 8 ® ?
e g 0
g 2 ! g2
£ ® @
g e E 0.8 E 10
= > -
2 £ g 4
= £ 06 £
S 4 1 &
© 6
0.4
4
2 J
il | N 0 | : |
Flickr LiveJournal Myspace Twitter_10M Twitter_50M

Figure 6.

Running Time — GEM is the fastest algorithm across all the datasets. In particular, GEM takes only about 6 minutes to cluster Twitter 10M

graph whereas PMetis takes about 30 minutes. GEM takes about three hours to cluster Twitter SOM graph whereas PMetis takes about 14 hours.

algorithms (Graclus and Metis), we consider memory con-
sumption only up to coarsening phase. Since PMetis and
KMetis use the same coarsening strategy, we just report
the memory consumption for these algorithms as Metis.
Clearly, the memory consumption of GEM is much less
than all the other multilevel algorithms. This is because
GEM directly extracts a subgraph from the original graph,
whereas multilevel algorithms gradually reduce the graph
size by multilevel coarsening.

B. Evaluation of PGEM

Figure 8 and Table II show the normalized cut, running
time, and speedup of PGEM and ParMetis, according to the
number of processes. Speedup is defined as the runtime of
the program with one process divided by the runtime with
p processes. A higher speedup indicates that the algorithm
is more scalable. Due to the memory requirement of Twitter
50M, we use 8 processes as the base for computing the
speedup on this graph. PGEM performs consistently better
than ParMetis in terms of normalized cut, running time and
speedup across all the datasets. In our experiments, ParMetis
fails to cluster Twitter SOM graph because the memory is not
enough on a single machine node. On Twitter 10M graph,
PGEM achieves a speedup of 150 on 128 processes. The
super-linear speedup is due to the fact that the run with

Table II
NORMALIZED CUT (NCUT), RUNTIME (T) AND SPEEDUP ACCORDING
TO THE NUMBER OF PROCESSES (P) ON MYSPACE (MS) AND
LIVEJOURNAL (LJ)

PGEM ParMetis
P NCut T (sec.) Speedup NCut T (sec.) Speedup
MS 1 51.0 186.8 1.0 61.4 3352 1.0
2 50.0 143.2 1.3 61.6 741.5 0.5
4 50.7 102.9 1.8 62.2 591.7 0.6
8 51.3 74.5 2.5 61.7 577.8 0.6
16 50.9 53.6 35 63.1 508.2 0.7
32 51.0 38.9 4.8 63.5 459.5 0.7
64 53.4 27.5 6.8 65.0 420.5 0.8
128 51.9 18.5 10.0 63.7 371.8 0.9
L 1 39.1 163.7 1.0 43.8 185.7 1.0
2 40.0 113.2 1.4 44.7 272,0 0.7
4 415 79.8 2.0 44.7 226.1 0.8
8 38.5 49.0 33 45.0 178.4 1.0
16 37.4 29.0 5.6 449 130.8 1.4
32 39.9 16.7 9.8 442 105.9 1.8
64 39.7 8.5 19.2 43.8 76.1 2.4
128 38.8 4.6 35.6 433 61.7 3.0

128 processes converges faster, i.e., the weighted kernel k-
means converges faster. In all cases, the speedup of ParMetis
is less than 10, which indicates that the multilevel scheme
is hard to be scaled to large number of processes. On Flickr
and Myspace, the speedup of PGEM is 14 and 10 on 128
processes, respectively. The lower speedup is because these
graphs are small, which means that there is not enough work
for each process.

Flickr
160

Flickr

Flickr

ParMetis
I PGEM

80 1

90 14

120
70 b

60 1

50

Normalized cut

40 4

Running time (seconds)

30 1

20 1

8 16 32 16 32
No. of processes

(a) Flickr normalized cut

64
No. of processes

(b) Flickr running time

Twitter 10M

14
—4— PGEM —+— PGEM
=€ Parletis | | =—©— ParMetis
1 1
D 10 o
o 8f 8
S
3
2
2
a
& sl E
4 1
2r; 4
olii | i I
128 ©48 16 32 64 128

No. of processes

(c) Flickr speedup

150

PGEM
=€ ParMetis

Twitter 10M
=t PGEM
=—6— ParMetis

100

Speedup

Twitter 10M
90007

8000)

7000)

2 6000
5 §
3 o

< 4 5000
g °
3 g

E 2, 4000,
S £
= £

5 3000

2000)

1000

ol

1 2 4 8 16 32 64 128 248 16 32

No. of processes

(d) Twitter 10M normalized cut

Twitter 50M
100 T

T 2500

No. of processes

(e) Twitter 10M running time
Twitter 50M

L41248 16 32 ;3
No. of processes
(f) Twitter 10M speedup

Twitter 50M

I PGEM

90
80r 2000
70

60

@
3
=)

50

Normalized cut

401 1000

Running time (seconds)

30

201 500!

—+— PGEM

Speedup

32
No. of processes

(g) Twitter S0M normalized cut

Figure 8.
much higher speedups than ParMetis.

Table III
NORMALIZED CUT (NCUT) AND RUNTIME (IN SECONDS) OF PGEM
AND PARMETIS ON TWITTER 10M GRAPH WITH DIFFERENT NUMBER
OF CLUSTERS

Best PGEM Best ParMetis
No. of Clusters Ncut | Time (sec.) NCut | Time (sec.)
64 335 3.0 37.8 2,228.5
128 71.5 5.0 82.6 2,280.2
256 142.1 6.7 183.7 2,327.5
512 || 302.0 11.0 || 3954 2,376.4
1024 || 639.8 14.6 831.1 2,403.0

To see how the clustering results vary with the number
of clusters, we run PGEM and ParMetis with different
number of clusters on Twitter 10M graph. Table III shows
the results. For a given number of clusters, we only present
the best result of each algorithm across 1 to 128 processes.
In this experiment, PGEM performs significantly better than

64

No. of processes
(h) Twitter 50M running time
Normalized cut, running time, and speedup on Flickr, Twitter 10M, and Twitter SOM — PGEM produces higher quality clusters and achieves

i i i
128 % 64

No. of processes

(i) Twitter 50M speedup

128

ParMetis in terms of runtime and normalized cut. All the
above experimental results verify that PGEM achieves a
significant scalability while generating high quality clusters.

VII. RELATED WORK

To deal with large-scale graph clustering problems, var-
ious techniques have been proposed. Satuluri et al. [14]
proposed graph sparsification as a way to speed up the
existing clustering algorithms. By removing some edges
which are likely to be between clusters, they reduced the
number of edges in the graph while retaining the community
structure of the network. While they derive the clustering
result by only considering the sparsified graph which might
distort the structure of the original network, GEM propagates
the clustering of the representative subgraph to the entire
network, and refines the clustering of the original network.

Macropol et al. [15] introduced a technique to find the best
clusters in a large network. Instead of seeking exhaustive
clusters in a graph, they only found the subset of best clusters
to save time and memory by pruning the search space.

Abou-Rjeili et al. [5] proposed new coarsening strategies
for multilevel graph clustering framework. They presented
new coarsening schemes which allow arbitrary size sets of
vertices to be collapsed together. They tried to resolve the
graph clustering problem of power law graphs by replac-
ing the traditional coarsening scheme with new coarsening
strategies. However, their algorithm still utilizes the multi-
level framework, which requires significant time and space
complexity than GEM.

Sui et al. [16] presented the first implementation of a
clustered low-rank approximation algorithm for large social
network graphs, and its application to link prediction. As
one part of their parallel clustered low-rank approximation
algorithm, they developed a parallel clustering algorithm,
called PEK. While PEK is closely related to GEM, PEK
uses ParMetis in the initial partitioning phase. Furthermore,
PEK has a recursive partitioning phase which guarantees that
the largest cluster size is smaller than a certain threshold.

The k-means clustering algorithm has been well studied.
Indeed, many different initialization strategies have been
proposed. A popular initialization method is MaxMin pro-
cedure [17]. The main idea of this procedure is to maximize
the distances between seeds. Similar to this method, Arthur
et al. [18] proposed the k-means++ algorithm which first
randomly selects a seed, and then repeatedly selects seeds
with probability proportional to the distance to existing
seeds. While both MaxMin procedure and k-means++ re-
quire computing all the distances between existing seeds and
remaining data points, GEM efficiently finds far away seeds
by down-path walk on the graph.

VIII. CONCLUSION

In this paper, we propose a scalable and memory-efficient
graph clustering algorithm, called GEM. Motivated by the
observation that the multilevel framework has weaknesses in
dealing with large social networks, we develop GEM which
allows us to get high quality clusters while substantially
saving time and memory. Exploiting two important charac-
teristics of social networks, power law degree distribution,
and a hierarchical structure, GEM efficiently extracts a good
skeleton graph from the original graph, which is much
smaller than the original graph but captures the overall
structure of the network well. Once this skeleton graph is
clustered using weighted kernel k-means, the clustering re-
sults are propagated to the rest of the vertices in the original
graph. The main idea of GEM follows the intuition that
the clustering of a subgraph consisting of influential people
in a social network can be an efficient way to initialize
the clustering of the whole network. Experimental results
show that GEM produces clusters of quality comparable to

or better than state-of-the-art clustering algorithms while it
saves much time and memory. The performance gap between
GEM and other algorithms is remarkable especially on very
large networks with over 10 million vertices. Furthermore,
the parallel implementation of GEM, called PGEM, achieves
significant scalability while producing high quality clusters.

ACKNOWLEDGMENT
This research was supported by NSF grants CCF-1117055
and CCF-09163009.

REFERENCES

[1] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
Scientific Computing, vol. 20, pp. 359-392, 1998.

, “Multilevel k-way partitioning scheme for irregular

graphs,” Journal of Parallel and Distributed Computing,
vol. 48, pp. 96-129, 1998.

[3] L. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts
without eigenvectors: A multilevel approach,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 29, no. 11,
pp. 1944-1957, 2007.

[4] G. Karypis and V. Kumar, “A coarse-grain parallel formu-
lation of multilevel k-way graph partitioning algorithm,” in
SIAM International Conference on Parallel Processing for
Scientific Computing, 1997.

[5] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for
partitioning power-law graphs,” in /PDPS, 2006.

[6] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry,
“Challenges in parallel graph processing,” Parallel Processing
Letters, vol. 17, 2007.

[71 A. Trusina, S. Maslov, P. Minnhagen, and K. Sneppen,
“Hierarchy measures in complex networks,” Physical Review
Letters, vol. 92, 2004.

[8] L. S. Dhillon, Y. Guan, and J. Kogan, “Iterative clustering of
high dimensional text data augmented by local search,” in
ICDM, 2002.

[9] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classifica-
tion. Wiley-Interscience, 2000.

[10] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Growth of the Flickr social network,” in
The First Workshop on Online Social Networks, 2008.

[11] H. H. Song, B. Savas, T. W. Cho, V. Dave, Z. Lu, I. S. Dhillon,
Y. Zhang, and L. Qiu, “Clustered embedding of massive social
networks,” in 12th ACM SIGMETRICS, 2009, pp. 331-342.

[12] “Social Computing Data Repository,”
http://socialcomputing.asu.edu/datasets/Twitter.

[13] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi,
“Measuring user influence in twitter: The million follower
fallacy,” in ICWSM, 2010.

[14] V. Satuluri, S. Parthasarathy, and Y. Ruan, “Local graph
sparsification for scalable clustering,” in SIGMOD, 2011.

[15] K. Macropol and A. Singh, “Scalable discovery of best
clusters on large graphs,” in VLDB Endowment, 2010.

[16] X. Sui, T.-H. Lee, J. J. Whang, B. Savas, S. Jain, K. Pingali,
and I. Dhillon, “Parallel clustered low-rank approximation of
graphs and its application to link prediction,” in LCPC, 2012.

[17] B. Mirkin, Clustering for Data Mining: A Data Recovery
Approach. Chapman & Hall/CRC, 2005.

[18] D. Arthur and S. Vassilvitskii, “k-means++: The advantages
of careful seeding,” in ACM-SIAM Symposium on Discrete
Algorithms, 2007.

(2]

