
Structured Metric Learning for High Dimensional Problems

Jason V. Davis
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712
jdavis@cs.utexas.edu

Inderjit S. Dhillon
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712
inderjit@cs.utexas.edu

ABSTRACT
The success of popular algorithms such ask-means clustering or
nearest neighbor searches depend on the assumption that the un-
derlying distance functions reflect domain-specific notions of sim-
ilarity for the problem at hand. Thedistance metric learningprob-
lem seeks to optimize a distance function subject to constraints that
arise from fully-supervised or semi-supervised information. Sev-
eral recent algorithms have been proposed to learn such distance
functions inlow dimensional settings. One major shortcoming of
these methods is their failure to scale tohigh dimensional prob-
lems that are becoming increasingly ubiquitous in modern data
mining applications. In this paper, we present metric learning algo-
rithms that scale linearly with dimensionality, permitting efficient
optimization, storage, and evaluation of the learned metric. This
is achieved through our main technical contribution which pro-
vides a framework based on the log-determinant matrix divergence
which enables efficient optimization of structured, low-parameter
Mahalanobis distances. Experimentally, we evaluate our methods
across a variety of high dimensional domains, including text, statis-
tical software analysis, and collaborative filtering, showing that our
methods scale to data sets with tens of thousands or more features.
We show that our learned metric can achieve excellent quality with
respect to various criteria. For example, in the context of metric
learning for nearest neighbor classification, we show that our meth-
ods achieve 24% higher accuracy over the baseline distance. Ad-
ditionally, our methods yield very good precision while providing
recall measures up to 20% higher than other baseline methods such
as latent semantic analysis.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

Keywords
Algorithms, Experimentation

General Terms
Distance Metric Learning, High Dimensional Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

1. INTRODUCTION
The problem of comparing examples is a fundamental issue as

popular algorithms such ask-means clustering and nearest neigh-
bor searches rely on an underlying distance funciton. While com-
mon practice has traditionally appealed to off-the-shelf distance
functions or hand-tuned metrics, the distance metric learning prob-
lem instead seeks to automatically optimize a distance function in
either semi-supervised or fully supervised settings. The goal of
metric learning is to optimize a distance function that reflects the
domain-specific notion for the problem at hand.

Metric learning algorithms typically work by optimizing a tar-
get distance under various types of constraints. In semi-supervised
clustering applications, constraints are typically either "must-link"
(two examples should be in the same cluster), or "cannot-link" (two
examples should be in different clusters). In information-retrieval
settings, constraints relating pairs of examples can be inferred from
click-streams. For example, a click on a second search result with-
out a click on the first indicates that the former result should be
closer to the search target than the latter. Finally, constraints can
be directly inferred in fully-supervised settings, where examples in
the same classes can be constrained to be similar if they share the
same class label and dissimilar otherwise.

One class of distance functions that has shown good generaliza-
tion properties is the Mahalanobis distance [3, 10, 6]. The Ma-
halanobis distance generalizes the standard squared Euclidean dis-
tance commonly used by algorithms such as thek-nearest neighbor
classifier. Intuitively, the Mahalanobis distance works by scaling
and rotating the feature space, giving certain features more weight
while also incorporating correlations between features. Mathemat-
ically, the function is defined over ad-dimensional vector space
parametrized by ad × d positive definite matrix. Recently, sev-
eral papers have proposed methods for learning Mahalanobis ma-
trices subject to a given set of constraints [3, 10, 11, 6]. Overall,
algorithms proposed in these papers have resulted in learned dis-
tance functions with excellent generalization performance forlow
dimensional problems.

However, inhigh dimensional settings, the problem of learning
and evaluating a Mahalanobis distance function with its associated
d × d matrix becomes quickly intractable due to the quadratic de-
pendency ond. This quadratic dependency affects not only the
running time for both training and testing, but also poses tremen-
dous challenges in estimating a quadratic number of parameters.
For example, a data set with 10,000 dimensions requires estimation
of a symmetric positive definite matrix with about 50 million pa-
rameters! This represents a fundamental limitation of existing ap-
proaches, as many modern data mining problems possess relatively
high dimensionality. For example, in text-analysis domains, stan-
dard bag-of-words models can reach the size of thousands or even

tens of thousands of features. Statistical software analysis applica-
tions that monitor program paths or method counts similarly have
features sets with sizes of thousands or more. Finally, in collab-
orative filtering domains, objects are typically rated by thousands
or even millions of reviewers. Methods in these domains typically
compare content (e.g. movies, songs, etc.) using a representation
in which each reviewer can be viewed as a single feature.

In this paper, we present algorithms for learning structured Ma-
halanobis distance functions that scale linearly with the dimension-
ality. Instead of searching for a fulld × d matrix with O(d2) pa-
rameters, our methods search for compressed representations that
typically haveO(d) parameters. This enables the Mahalanobis dis-
tance function to be learned, stored, and evaluated efficiently in the
context of high dimensionality.

In particular, the technical contributions of our paper are the
problem formulations and resulting algorithms that compute two
types of structured low parameter matrices: a low-rank represen-
tation, and a diagonal plus low-rank representation. The low-rank
representation, HDLR, results in a distance measure which is simi-
lar to that used by latent semantic analysis (LSA) [4]. This distance
projects data into a low dimensional factor space, and the resulting
distance between two examples is the distance between their pro-
jections. Our low-rank method can be viewed as a semi-supervised
variant of LSA, and is well suited for applications in which higher
recall is desired. The second method, HDILR , learns a diagonal
plus low-rank matrix, and is well suited for problems where both
high recall as well as high precision are important. This is achieved
by comparing examples at both the factor level in addition to a
component that compares examples at a much finer, feature-level
resolution.

Computationally, our algorithms are based on the information-
theoretic metric learning method presented in [3]. The problem is
formulated as one of learning a “maximum entropy” Mahalanobis
distance that satisfies a given set of constraints. Mathematically,
this results in a convex programming problem with a matrix-valued
objective function called the log-determinant (LogDet) divergence.
We provide two new algorithms based on the LogDet divergence
that enable learning Mahalanobis distances in high dimensions. Both
of these algorithms scale linearly with dimensionality asO(d).

Experimentally, we evaluate our methods in the context of sev-
eral modern domains, including text, statistical software analysis,
and collaborative filtering. We provide experimental evidence to
show that existing metric learning algorithms do not scale to high
dimensional data sets, while demonstrating that our methods can
easily handle data with upwards of ten thousand dimensions. We
compare our methods in the context of learning metrics for nearest
neighbor searches on the basis of several criteria, including accu-
racy, precision and recall. As baseline measures, we use the stan-
dard Euclidean distance and LSA. Additionally, we compare our
methods against a heuristic in which an existing full-rank metric
learning algorithm LMNN [10] is used to learn a low-rank distance
function. In general, we show that our low-parameter metric learn-
ing algorithms can learn high quality distance functions. For exam-
ple, classification accuracy for the Classic3 data set is improved by
24% over standard Euclidean distance measures. Additionally, our
methods achieve precision as high as all other methods while yield-
ing recall values up to 20% higher than a baseline LSA approach.

The paper is organized as follows. Section 2 introduces the prob-
lem and provides background on related low-dimensional metric
learning methods. Section 3 provides two low-parameter Maha-
lanobis distance forms for learning in high dimensions. Section 4
formalizes our problems, and we provide efficient and scalable al-
gorithms. Finally, we present experimental results in section 5.

2. BACKGROUND & RELATED WORK
One class of distance measures that has shown good generaliza-

tion potential is the Mahalanobis distance. This distance function
generalizes the standard squared Euclidean distance and is param-
eterized by a positive (semi)-definite matrixA:

dA = (x − y)T A(x − y). (2.1)

Learning such a distance function has been the focus of much re-
cent research [3, 10, 11, 6], and has proven to be quite successful
in low dimensional domains. These distance functions are typi-
cally learned given supervised or semi-supervised constraint data.
For example, the information-theoretic metric learning algorithm
presented by Davis et. al. [3] learns a distance function subject to
similarity and dissimilarity constraints. The large-margin nearest
neighbor method (LMNN) presented by Weinberger et. al. [10]
takes a related approach in comparing three examples at a time (i.e.
x is more similar toy than toz).

A common theme in existing methods is the regularization term
found in the problem objective. In Xing et. al., a method is pre-
sented in which the learned matrixA is optimized with respect to a
sum-of-squares Frobenius objective [11]. LMNN is formulated as
a semi-definite programming problem with a linear objective opti-
mizing the trace of the matrixA. The information-theoretic metric
learning (ITML) method seeks a matrix that minimizes the differ-
ential relative entropy between a baseline Gaussian parametrized
by A0 to a target Gaussian parametrized byA. Mathematically,
this entropic objective results in a convex programming problem
that minimizes thelog-determinant(LogDet) divergence with re-
spect to the baseline matrixA0.

The methods we present in this paper attempt to learn a struc-
tured positive semi-definite matrix using the LogDet problem frame-
work, and are similar to ITML, which we now describe in detail.
The problem assumes a given set of similarity constraintsS and
dissimilarity constraintsD between pairs of examples. Constraints
may be inferred from true labels (where examples in the same class
are constrained to be similar and examples from different classes
are constrained to be dissimilar), or constraints may be explicitly
provided. Other constraints that are linear in the entries ofA can
also be easily incorporated. Additionally, ITML assumes a base-
line Mahalanobis distance function parametrized by a positive def-
inite matrixA0. The formal goal is to learn a Mahalanobis distance
parametrized byA that has minimum LogDet divergence to a given
baseline matrixA0 while satisfying the given constraints:

min
A

Dℓd(A|A0)

subject to dA(xi, xj) ≤ u (i, j) ∈ S,

dA(xi, xj) ≥ ℓ (i, j) ∈ D.

(2.2)

The LogDet objective functionDℓd(A|A0) is a non-negative,
convex function that in the absence of constraints is minimized
whenA = A0. It is defined overd × d positive definite matri-
cesA andA0:

Dℓd(A|A0) = tr(AA−1
0) − log |AA−1

0 | − d,

where|X| denotes the determinant of the matrixX. In practice,
slack variables for the constraints can be incorporated into the above
formulation but are omitted for the sake of clarity.

3. STRUCTURED DISTANCE METRICS
A major shortcoming of ITML and other existing approaches

is their quadratic (or even cubic) dependency on the dimensional-
ity. Learning full-rank Mahalanobis matrices for problems where

A) Metric learning is animportant
problem in data mining.
B) High dimensional problems
arecommon in data mining.
C) Optimizing distance functions
in high dimensionsis challenging.

A B C
A 6 3 0
B 3 6 2
C 0 2 6

Word A B C
metric 1 0 0
learn 1 0 0
important 1 0 0
problem 1 1 0
data 1 1 0
mining 1 1 0
common 0 1 0
high 0 1 1
dimension 0 1 1
optimiz 0 0 1
distance 0 0 1
function 0 0 1
challeng 0 0 1

Figure 1: The upper left corner lists three sentences. The table
on the right shows word counts for each word from the sen-
tences. We can see from the inner product matrix on the lower
left that even though all three sentences are about metric learn-
ing, the distance between documents A and C is large. This
toy example illustrates that term frequency models are quite
accurate when inner products are larger, yet can be inaccurate
when inner products are small or zero.

dimensionality is large is prohibitive for several reasons. First,
optimizing via algorithms with quadratic dependencies on the di-
mensionality can be quite expensive. Second, learning a full-rank
d×d matrix can be viewed as a statistical inference procedure over
O(d2) parameters. For example, in text analysis applications, data
sets with thousands of dimensions result in full-rank Mahalanobis
matrices parametrized by millions of values. For even the most ro-
bust methods, learning under such conditions is prone to overfitting
and requires a very large amount of supervision. Finally, comput-
ing the distance between two points with respect to a Mahalanobis
distance function parametrized by a dense, full-rank matrix is an
O(d2) operation. To overcome these problems, we now present
Mahalanobis distance functions that are parametrized byO(d) val-
ues.

3.1 Low-Rank Mahalanobis Distances
Term frequency models represent text documents in terms of in-

dividual words and their respective frequencies and are standard
representations used in many text analysis applications [1]. These
models typically compute the distance between two examplesx

and y using the cosine similarity,cos(x, y) = x
T

y

‖x‖‖y‖
. Note

that whenx andy are normalized to have unitL2 norm, the co-
sine similarity is equivalent to the standard Euclidean distance:
dI(x, y) = 2 − 2 ∗ cos(x, y). In many high dimensional do-
mains, feature representations tend to be very sparse, and term
frequency models are no exception. This poses several problems
for standard Euclidean measures. In term frequency models, two
documents can have very similar contextual meaning, yet may not
necessarily share many of the same words. Hence, the inner prod-
uct between two documents can be quite small or even zero, re-
sulting in large Euclidean distances. An example of this is shown
in Figure 1, where we have three sentences about metric learning.
Sentence pairs (A,B) and (B,C) share several common words. Sen-
tences A and C, however, share no common words and the Eu-
clidean distance between them will therefore be quite large. Thus,
even though A and C are contextually similar, the model does not
reflect their similarity.

Latent factor models work by representing objects in terms of
their context or underlying topics [5]. Instead of representing an

objectx in its original high dimensional space, latent factor mod-
els provide a mappingf that transformsx into some lowerk-
dimensional space. In Figure 1, we saw that if examples A and C
are compared using the Euclidean distance via their original full-
dimension representations, the resulting distances will be large.
This is in spite of the fact that the two examples are in fact quite
similar. The goal of a latent factor model is to learn a mappingf
such thatf(A) andf(C) are close to each other.

A popular class of latent factor models such as latent seman-
tic analysis (LSA) [4] are those that are parametrized by ad × k
projection matrixR. Here, the factor model’s mapping function is
f(x) = RT

x. Consider the Euclidean distance between the latent
factors of two pointsx andy:

dI (f(x), f(y)) = dI(R
T
x, RT

y)

= (RT
x − RT

y)T (RT
x − RT

y)

= dAℓ
(x, y), (3.1)

wheredAℓ
is a low-rank Mahalanobis distance defined by the low-

rank matrixAℓ = RRT :

dAℓ
(x, y) = (x − y)T RRT (x − y). (3.2)

Whereas a full-rank Mahalanobis matrix is parametrized byO(d2)
values, this low-rank matrix is parametrized by theO(dk) parame-
ters inR.

Computationally, we can see from equation (3.1) that low-rank
Mahalanobis distances can also be computed efficiently inO(dk)
time, as the distance between twod-dimensional instancesx and
y can be computed by first mapping them to a lower dimensional
space by computingRT

x andRT
y, and then computing the stan-

dard squared Euclidean distance between the low-dimensional points.

3.2 Diagonal Plus Low-Rank Distances
In Figure 1, we saw an example of two sentences that were of

similar context but had large Euclidean distances due to zero over-
lap (i.e. zero inner product) between their respective feature sets.
Thus, it would be incorrect to conclude that in the context of term
frequency models, if two objects have zero or small inner prod-
ucts, then they are contextually different. However, the converse
of this statement is much more likely to hold true. That is, if two
documents share many commons words, then they are likely to be
contextually similar. However, in traditional low-rank models such
as LSA this overlap is largely ignored when data is mapped into a
low dimensional space.

We now examine this observation in the context of two standard
measures used in information retrieval, precision and recall:

recall =
Number of Relevant Documents Returned

Total Number of Relevant Documents
. (3.3)

Precision is measured as the number of relevant documents re-
turned, divided by the total number of documents returned:

precision =
Number of Relevant Documents Returned

Total Number of Documents Returned
. (3.4)

Term frequency models tend to result in higher precision, whereas
low-rank factor models provide better recall.

Figure 2 illustrates this behavior for the Classic3 text data set.
More details regarding this data set will be presented in Section 5.
Precision is plotted for various recall values, comparing nearest
neighbor searches using a Tf-Idf Euclidean distance model with
that of LSA. We see that for relatively low recall values (i.e. when
a relatively small number of documents is returned), the term fre-
quency model significantly outperforms a ten-dimensional LSA fac-
tor model in terms of precision. However, as recall increases, the

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Euclidean
LSA

Figure 2: Precision-recall curve for the Classic3 text data
set. term frequency models using Euclidean distance yield rel-
atively high precision, while the low-rank LSA method has
higher recall.

precision for the Euclidean distance model starts to sharply de-
crease, after which LSA eventually achieves noticeably higher pre-
cision.

In domains where both high recall and high precision are needed,
we propose a second Mahalanobis distance that incorporates ben-
efits of both the Euclidean distance as well as a low-rank compo-
nent. We propose a Mahalanobis distance parametrized by a matrix
I + Aℓ, whereAℓ is low-rank:

dI+Aℓ
(x, y) = (x − y)T (I + Aℓ)(x − y)

= (x − y)T (x − y) + (x − y)T Aℓ(x − y)

= dI(x, y) + dAℓ
(x, y). (3.5)

Since this proposed measure compares vectors in both the original
feature space as well as in a projected low-rank factor feature space,
one would expect it to achieve both high recall as well as high preci-
sion. Revisiting Figure 1, we can see that the Euclidean component
is a good predictor for two of the three distances, resulting in rela-
tively small distances when comparing (A,B) and (B,C). However,
the Euclidean distance between A and C is large, and the low-rank
component is needed here to effectively compare sentences A and
C.

So far, we have proposed and motivated two forms of low-parameter
Mahalanobis distances. In the next section, we formalize these two
problems and provide efficient algorithms to optimize them.

4. LEARNING STRUCTURED METRICS
4.1 Low-Rank Mahalanobis Distances

We now extend the full-rank ITML algorithm to learn low-rank
matrices. LetR be thed × k factor matrix for the rank-k regu-
larization matrixA0, i.e. A0 = RRT . We formulate our high
dimensional low-rank (HDLR) metric learning problem as:

min
A

Dℓd(A|RRT)

subject to dA(xi, xj) ≤ u (i, j) ∈ S,

dA(xi, xj) ≥ ℓ (i, j) ∈ D,

rank(A) ≤ k.

(4.1)

Comparing this to the full-rank ITML formulation (2.2), we see that
A0 here is low-rank, and an additional constraint has been added

enforcing the rank of the optimal Mahalanobis matrixA. Recent
work by Kulis et. al. [9] considers a related problem of learning
low-rank kernel matrices subject to linear constraints on the ma-
trix. In [9], the LogDet divergence was extended to the positive
semi-definite cone, and it was shown that two matrices have a finite
LogDet divergence if and only if they share the same range space.
The following was shown in [9]:

LEMMA 1. The objectiveDℓd(A|RRT) of problem (4.1) is fi-
nite if and only ifA is positive semi-definite with range space equal
to the range space ofR.

So, if the baseline Mahalanobis distance function is parametrized
by a rank-k matrix, the optimal solution to the HDLR metric learn-
ing problem (4.1) without the rank constraint will necessarily have
rankk (assuming that the optimization problem (4.1) is feasible).
Therefore, the rank constraintrank(A) ≤ k need not be explicitly
enforced. In section 4.5, we present methods that can be used to
choose an appropriate baseline matrix.

4.2 HDLR Algorithm
We now present Algorithm 1 that solves our HDLR formula-

tion (4.1). The algorithm optimizes a slightly modified version of
problem (4.1) that incorporates slack variables to allow constraint
violation in the case of incorrect or noisy constraints. The slack
penalty parameterγ determines the relative weighting given to the
LogDet component of the objective as opposed to the slack penalty
component of the objective. Whenγ is large, more weighting is
given to the slack terms, and the final solution will more closely
satisfy the constraints. Whenγ is small, more emphasis is given to
the LogDet objective, yielding smoother solutions which are closer
to the regularization matrixA0. In practice,γ is chosen via cross-
validation.

The algorithm uses the method of cyclic projections and works
by iteratively projecting the current solution onto a single con-
straint. Instead of directly working on thed × d matrix A, the
algorithm instead optimizes itsd × k factor matrixB. The main
loop starting in line 2 iterates over each constraint until conver-
gence. In practice, convergence can be checked by monitoring the
change in the dual variablesλ. Steps 5-10 compute the projection
parameterβ. In step 11, this parameter is then used to updateB
via a rank-one update. Each projection can be computed in closed
form and requiresO(dk) computation, wherek is the rank ofA0.
Finally, the optimal solution isA = BBT . Note that the latter
step may not be needed since as shown in (3.1), the low-rank Ma-
halanobis distance between two points can be computed inO(dk)
time without the need to explicitly computeA.

4.3 Diagonal Plus Low-Rank Distances
We now formulate the high-dimensional identity plus low-rank

(HDILR) metric learning problem. As in the formulation presented
in Section 4.1, letR be ad × k factor matrix of our data. We
will constrain the low-rank portion of the HDILR formulation to
span the columns ofR, i.e., the learned low-rank portion of our
metric resides in the same range space as the original factor ma-
trix. Whereas the HDLR method has only the low-rank term, the
HDILR method has an additional identity matrix term (correspond-
ing to the baseline squared Euclidean distance). Adding a positive
semi-definite component to this baseline measure would result in
increasing all distances, an undesirable property for enforcing sim-
ilarity constraints. To overcome this, we offset the low-rank com-
ponent by subtracting the baseline distance measure projected onto
the factor space.

Formally, letU be an orthogonal representation of the columns

Algorithm 1 High Dim. Low-Rank (HDLR) Metric Learning

Require: A0 = RRT : baseline Mahalanobis matrix,γ: slack
penalty,X = [x1, ..., xn]: set of constrained points,(S, D):
similarity / dissimilarity constraints.

1: B = R, λij = 0 ∀ i, j, bij = 0 ∀ i, j
2: while not convergeddo
3: (i, j) ← similarity or dissimilarity constraint
4: δ ← 1 if similarity constraint,−1 if dissimilarity constraint
5: d ← (xi − xj)

T BT B(xi − xj)

6: η ← min
ş

λij ,
δγ

γ+1

ş

1
d
− 1

bij

ť ť

7: α ← δη/(1 + δηd)
8: λij ← λij − η
9: bij = γbij/(γ + δηbij)

10: β =
√

1 + α − 1
11: B ← B + β(xi − xj)(xi − xj)

T B
12: end while
13: A ← BBT

of R (i.e. U = R(RT R)−
1

2 , so thatUT U = I). We construct
the low-rank componentAℓ of our identity plus low-rank matrix
A given in (3.5) as the difference of two matrices,UUT AUUT −
UUT A0UUT = UUT (A−A0)UUT . The first term is a function
of the learned matrixA, and the second term is a low-rank offset
provided by the regularization matrixA0. If A = A0, the low-rank
termAℓ will always be zero, and the distance function will reduce
to that of the standard Euclidean distance. AsA diverges fromA0,
the low-rank term starts to dominate, giving more emphasis to the
underlying factor model.

We will now present the HDILR metric learning problem that
learns a full-rank Mahalanobis matrix with the constraintA =
I + UUT (A − I)UUT . The analysis and algorithms presented
below can be generalized to arbitrary regularizersA0 (i.e. A =
I + UUT (A − A0)UUT). The HDILR problem is:

min
A

Dℓd(A|I)

subject to dA(xi, xj) ≤ u (i, j) ∈ S,

dA(xi, xj) ≥ ℓ (i, j) ∈ D,

A = I + UUT (A − I)UUT .

(4.2)

Consider the distance constraints used in this formulation:

dA(xi, xj) = dI+Aℓ
(xi, xj)

= dI(xi, xj) + dAℓ
(xi, xj)

= dI(xi, xj) − dUUT (xi, xj) + dUUT AUUT (xi, xj).

The first two terms are independent of the learned matrixA and
are therefore constants in the context of the optimization problem.
Moving these to the right hand side, we can rewrite the problem:

min
A

Dℓd(A|I) (4.3)

subject to dUUT AUUT (xi, xj) ≤ u − cij (i, j) ∈ S,

dUUT AUUT (xi, xj) ≥ ℓ − cij (i, j) ∈ D,

A = I + UUT (A − I)UUT ,

wherecij = dI(xi, xj)− dUUT (xi, xj). Note thatcij = 0 when
the training pointsxi andxj lie in the range space ofR (and hence,
U). Recall that the original problem constrains the full-rank dis-
tance between pointsxi andxj . In (4.3), a low-rank approximation
of the learned Mahalanobis distance is constrained. Recall that for
the low-rank HDLR formulation presented in the previous section,

if A0 is low-rank, then the optimal solution is also low-rank. The
next theorem characterizes the solution for problem (4.3), showing
that the optimal solution satisfiesA∗ = I + UUT (A∗ − I)UUT ,
thereby obviating the need to explicitly enforce this identity plus
low-rank constraint.

THEOREM 1. Let A∗ be the optimal solution to an instance of
the information-theoretic metric learning problem (4.3) with sim-
ilarity constraintsS, dissimilarity constraintsD, and orthogonal
projection matrixU . ThenA∗ satisfiesI + UUT (A∗ − I)UUT .

PROOF. For appropriately defined constantsc̄ij , the Lagrangian
of problem (4.3) can be written as

L(A, λ) = tr(A) − log |A|

+
X

i,j

δijλij

ş

tr(UUT AUUT (xi − xj)(xi − xj)
T) − c̄ij

ť

,

whereλij are dual variables withλij ≥ 0, δij = +1 for similarity
constraints andδij = −1 for dissimilarity constraints. Using the
fact that∇A log |A| = A−1 [2], the gradient of the Lagrangian is,

∇AL(A, λ) = I−A−1+
X

i,j

δijλijUUT (xi−xj)(xi−xj)
T UUT .

Setting the gradient to zero and solving forA−1,

(A∗)−1 = I +
X

i,j

δijλijUUT (xi − xj)(xi − xj)
T UUT

= I + UUT

Ã

X

i,j

δijλij(xi − xj)(xi − xj)
T

!

UUT

= I + UUT PUUT .

Thus, the inverse of the optimal solution has the form identity plus
low-rank. To see that the solutionA∗ also has this form, we can use
the Sherman-Morrison-Woodbury formula [7], which states that for
any invertible matrixY andd × k complex matrixZ:

(Y + ZZH)−1 = Y −1 − Y −1Z(I + ZHY −1Z)−1ZHY −1.

Note thatZ may be complex, and we denoteZH as its conjugate
transpose. Applying the above equation forY = I, and forZ =
UUT C, whereC is d × d and is defined such thatCCH = P , we
have:

A∗ = (I + UUT PUUT)−1

= I − UUT C(I + CHUUT UUT C)−1CHUUT

= I − UUT ÂUUT ,

for Â = C(I + CHUUT UUT C)−1CH . Finally, using the fact
thatUT U = Ik, we have

I + UUT (A∗ − I)UUT

= I + UUT
ş

I − UUT ÂUUT − I
ť

UUT

= I − UUT ÂUUT

= A∗.

4.4 HDILR Algorithm
The metric learning problem HDILR formulated in the previous

section learns a full-rankd× d matrix. Using algorithms presented
in [3], both running time and storage requirements for this algo-
rithm would still be quadratic in the dimensionality. In this section,

we show that by exploiting the identity plus low-rank structure of
formulation (4.3), we can transform the problem to an equivalent
problem ink dimensions. Via this transformation, the problem can
then be solved in time quadratic ink. The solution can then by
mapped back to the optimal solution of the original problem via a
simple matrix operation.

Consider the followingk-dimensional metric learning problem:

min
M

Dℓd(M |Ik)

subject to dM (UT
xi, U

T
xj) ≤ u − cij (i, j) ∈ S,

dM (UT
xi, U

T
xj) ≥ ℓ − cij (i, j) ∈ D,

(4.4)

where the superscript onIk is used to emphasize the dimensionality
of the matrix. We now show how to construct the optimal solution
to problem (4.3) given the optimal solutionM∗ to problem (4.4).

LEMMA 2. Let M∗ be an optimal solution to problem (4.4).
Then the optimal solution to problem (4.3) can be constructed as
A∗ = Id + U(M∗ − Ik)UT .

PROOF. We first show that problems (4.4) and (4.3) are equiv-
alent. Specifically, we show that for any two matricesM andA
satisfyingM = UT AU , (a) problem (4.4) is feasible if and only if
problem (4.3) is feasible, and (b) the problem objectives differ by
at most a constant. To see equivalence with respect to feasibility,

dM (UT
xi, U

T
xj) = (xi − xj)

T UMUT (xi − xj)

= (xi − xj)
T UUT AUUT (xi − xj)

= dUUT AUUT (xi, xj)

To see that the objective functions of the two problems differ by at
most a constant, we consider the trace term:

tr(A) = tr(Id + UUT (A − Id)UUT)

= tr(UT AUUT U) + tr(Id − UUT)

= tr(M) + tr(Id − UUT).

Since the matrixU is orthogonal,UT U = Ik, sotr(Id−UUT) =
d − k. Next consider the log det term. LetW be the orthogonal
complement toU , i.e. ad× (d−k) matrix such thatId −UUT =
WW T andUT W = 0.

A = Id + UUT (A − Id)UUT

= UUT AUUT + Id − UUT

= UUT AUUT + WW T

= [U W]

ů

UT AU 0
0 Id−k

ÿ ů

UT

W T

ÿ

.

The determinant of a matrix is invariant under the orthogonal simi-
larity transformation by[U W], so

log |A| = log |UT AU | + log |Id−k| = log |M |.

Finally, we have

D(A|Id) = tr(A) − log |A| − d

= tr(M) + d − k − log |M | − d

= D(M |Ik).

Algorithm 2 shows how the above lemma can be used to effi-
ciently solve the HDILR metric learning problem (4.2). Step 1

projects the originald-dimensional data onto ak-dimensional sub-
space using the low-rank basisU . Next, step 2 solves the (full-rank)
ITML problem in this much lower,k-dimensional space, returning
a k × k matrix M∗. The optimal solution can be constructed us-
ing Lemma 2 asA∗ = I + UM∗UT . Note that this matrix never
needs to be explicitly constructed, since a Mahalanobis distance
parametrized byA∗ can be expressed as the sum of two Maha-
lanobis distances as shown in equation (3.5). Finally, it is possible
that the right hand side of problem (4.3) is negative. This presents
problems for the slack variables used in Algorithm 2. However, in
practice, the goal is to learn a metric in which constraints are satis-
fiedrelatively, and this issue can be solved by adding a scalarc > 0
to the right hand side of (4.3) in order to ensure positivity.

Algorithm 2 Identity Plus Low-Rank (HDILR) Algorithm

Require: U : low-rank basis,γ: slack penalty,X = [x1, ..., xn]:
set of constrained points,(S, D): similarity / dissimilarity con-
straints.

1: Form the projected data set̂X = [UT
x1, ..., U

T
xn]

2: Compute optimal solutionM∗ to full-rank ITML prob-
lem (4.4) with constraintsD andS over the projected data set
X̂ using Algorithm 1

3: Return optimal solutionA∗ = I + UM∗UT

4.5 Choosing an Appropriate Basis
The metric learning algorithms presented in the previous section

are parametrized by a low-rank matrix. Algorithms 1 and 2 work
by optimizing with respect to a given basis. In order to maximize
the quality of the learned metric, an appropriate basis should be
chosen.

A standard basis used in unsupervised settings such as latent se-
mantic analysis is the left singular vectors of the singular value
decomposition (SVD) [7]. LSA works by taking the SVD of the
data matrix. LetX be ad × n data matrix, where each column
represents ad-dimensional instance, and let the SVD of this ma-
trix be UDV T , whereU andV are orthogonal matrices, andD
is diagonal. LetUk denote the firstk columns ofU . The ma-
trix Uk is typically referred to as the topk principal components,
and the matrixUk(Uk)T represents a projection from the original
space onto a rank-k subspace. LSA uses this projection in comput-
ing distances (or cosine similarities) between points,dL(x, y) =
DUk(Uk)T (x, y). Thus, the baseline matrix that results from this
LSA basis isA0 = UUT .

While the use of the SVD in methods such as LSA has been
shown to achieve good results in many information retrieval set-
tings, it is fundamentally an unsupervised method. When used with
our metric learning algorithms along with similarity and dissimilar-
ity constraint information, the result is a semi-supervised form of
LSA.

In cases where data is fully supervised, we propose a method
which chooses a low-rank basis according to the class labels. Whereas
LSA chooses vectors based on the SVD, the class-mean method
forms vectors directly using the class labels. Letc be the num-
ber of distinct classes and letk be the size of the desired basis. If
k = c, then each class meanri is computed to form the basis matrix
R = [r1 . . . rc]. If k < c a similar process is used but restricted to
a randomly selected subset ofk classes. Ifk > c, instances within
each class are clustered into approximatelyk

c
clusters. Each clus-

ter’s mean vector is then computed to form the low-rank matrixR.
LSA’s use of the SVD results in an orthogonal low-rank basis.

The supervised class means method presented here will not gener-
ally result in an orthogonal basis. As a final step in forming a class

means basis, we orthogonalizeR, resulting in a regularization ma-
trix A0 = R(RT R)−1RT . Orthogonalization reduces distortion
of the low-rank distance. For example, distances between class
means are preserved. Letri andrj be two class mean vectors (i.e.
columnsi andj of R). Then

dA0
(ri, rj) = (ri − rj)

T R(RT R)−1RT (ri − rj)

= (ei − ej)R
T R(RT R)−1RT R(ei − ej)

= (ei − ej)R
T R(ei − ej)

= (ri − rj)
T (ri − rj) = dI(ri, rj),

whereei is a vector of all zeros with a one in theith position.

5. EXPERIMENTAL RESULTS
We now present sample results for our methods from a variety of

high-dimensional domains: text analysis, statistical software anal-
ysis, and collaborative filtering. These datasets can all be charac-
terized by relatively high dimensionality (from 5,000 to more than
100,000 features) and represent a broad sample of modern, high
dimensional problems.

We evaluate performance of our learned distance metrics in the
context of both classification accuracy for thek-nearest neighbor
algorithm, as well as in the context of precision/recall performance
for general nearest neighbor searches. Thek-nearest neighbor clas-
sifier usesk = 10 nearest neighbors, breaking ties arbitrarily. Ac-
curacy is defined as the number of correctly classified examples
divided by the total number of classified examples. Recall and pre-
cision are computed as defined in equations (3.3) and (3.4).

Our experiments compare our two algorithms, HDLR and HDILR,
given in Algorithms 1 and 2. We also compare these algorithms to
a heuristic based on the Large-Margin Nearest Neighbor (LMNN)
metric learning algorithm. In [10], LMNN is presented as a method
for learning full-rank Mahalanobis distance matrices. Here, we use
a heuristic in which data is first projected onto some low-rank,r-
dimensional basisU . LMNN is then run over thisr-dimensional
problem, yielding a(r × r) matrixA. Finally, this matrix is trans-
formed back to the original, high-dimensional space asUAUT .
We emphasize that this procedure does not optimize a well-formed
global objective, whereas our approaches optimize a log-determinant
objective function. The LMNN implementation used is a Matlab
implementation provided by Weinberger, one of the authors of [10].

For our proposed algorithms, pairwise constraints are inferred
from true labels. For each class 100 pairs of points are randomly
chosen from within the class and are constrained to be similar, and
100 pairs of points are drawn from different classes to form dis-
similarity constraints. Givenc classes, this results in100c simi-
larity constraints, and100c dissimilarity constraints, for a total of
200c constraints. The upper and lower bounds for the similarity
and dissimilarity constraints are determined empirically as the1st

and99th percentiles of the distribution of distances computed us-
ing a baseline Mahalanobis distance parametrized byA0. Finally,
the slack penalty parameterγ used by Algorithms 1 and 2 is cross-
validated using values{.01, .1, 1, 10, 100, 1000}.

All metrics are trained using data only in the training set. Test
instances are drawn from the test set and are compared to examples
in the training set using the learned distance function. The test
and training sets are established using a standard two-fold cross
validation approach. For experiments in which a baseline distance
metric is evaluated (for example, the squared Euclidean distance),
nearest neighbor searches are again computed from test instances
to only instances in the training set.

5.1 Timing Comparison
We first compare the computational speed of our low-parameter

algorithms as compared to existing full-rank methods, LMNN and
ITML. Figure 3 shows the time taken to learn metrics of dimension-
ality 50 to 2000 over a synthetic data set with 900 instances and 3
classes. All implementations are in Matlab and are run on an Intel
Pentium processor with 4 GB of RAM. Noting that the time axis
is displayed on a log-scale, we can see that our HDLR algorithm
scales roughly linearly with dimensionality, whereas existing full-
rank methods scale quadratically as dimensionality increases. Fur-
ther, LMNN ran out of memory when learning a 3000-dimensional
metric. Running times of the HDILR method are comparable to
those shown for the low-rank HDLR algorithm in Figure 3.

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Number of Dimensions

T
im

e
in

 S
ec

on
ds

HDLR
ITML
LMNN

Figure 3: Running times of our high-dimensional algorithms
compared to existing full-rank methods. Full-rank Maha-
lanobis distance learning algorithms do not scale well to high
dimensionality, whereas our method HDLR does.

5.2 Text Analysis
Our text data sets are created by standard bag-of-words Tf-Idf

representations. Words are stemmed using a standard Porter stem-
mer and common stop words are removed. The text models are lim-
ited to the 5,000 words with the largest document frequency counts.
We provide experiments over two data sets: CMU’s 20-newsgroup
data set, and the Classic3 data set. Classic3 is a relatively small
3 class problem with 3,891 instances. The newsgroup data set is
much larger, having 20 different classes from various newsgroup
categories and 20,000 instances.

Figure 4 shows classification accuracy across various ranks for
the Classic3 dataset, along with the full newsgroup data set and
a subset of the data restricted to the three politics related classes:
talk.politics.guns, talk.politics.mideast, and talk.politics.misc. Here,
the diagonal plus low-rank method HDILR uses the class means
basis as described in section 4.5. Comparing this to the baseline
Euclidean measure, we can see that for low dimensionality, the
accuracy of the two algorithms is similar, with HDILR having a
slightly higher value. For larger ranks, the accuracy of the HDILR
method slowly increases, while the accuracy of the low-rank HDLR
class means method increases much more quickly. In fact, for the
largest 20-class Newsgroup data set (b), we can see that for larger
ranks, the HDLR method outperforms the HDILR method. Here,
the HDLR method achieves accuracy 27% higher than the baseline
Euclidean distance.

The HDILR and HDLR class means methods require full super-

2 2.5 3 3.5 4 4.5 5
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

 Rank

A
cc

ur
ac

y

HDLR Class Means
HDLR LSA
LSA

HDILR
LMNN
Euclidean

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

 Rank

A
cc

ur
ac

y

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

 Rank

A
cc

ur
ac

y

(a) Classic3 (b) 20-Newsgroups (c) Newsgroups Politics Subset

Figure 4: Classification accuracy for Mahalanobis metrics of variousranks. Overall, our methods outperform existing methods.

vision in order to form the low-rank basis. In semi-supervised set-
tings, forming this basis from the similarity and dissimilarity con-
straints used in our low-rank metric learning algorithms is not pos-
sible and a low-rank LSA basis may be used instead. Recall that
the LSA basis described in section 4.5 requires no supervision. In
Figure 4, we see that our HDLR method outperforms the baseline
unsupervised LSA method across all data sets for most dimensions.
This is compared to LMNN using the same LSA basisU , which
generally performs only comparably to LSA.

Figure 5 shows recall-precision curves for four methods: stan-
dard Euclidean distance Tf-Idf measure, LSA, and our two meth-
ods using a class means basis. The rank used for LSA and our
two methods is ten. We can see that for low recall values, both the
Euclidean distance and the HDILR method achieve significantly
higher precision values than the other two low-rank methods. As
desired recall levels increase, the precision of the Euclidean dis-
tance decreases rather quickly, while the HDILR continues to achieve
higher precision values that are comparable to or better than the
low-rank methods. For the Classic3 data set, HDILR outperforms
all other methods for all recall values, marking an improvement
over LSA of up to 20%. For the newsgroups Politics subset, the
HDILR method outperforms HDLR for low recall values, yet it
achieves slightly worse precision for higher recall values.

5.3 Software Analysis
We now present results from the Clarify system [8] which at-

tempt to improve software error messaging via nearest neighbor
software support. The basis of the Clarify system lies in the fact
that modern software design promotes modularity and abstraction.
When a program terminates abnormally, it is often unclear which
component should be responsible for providing an error report.
Clarify works by monitoring a set of predefined program features
(the data sets used here represent function counts) during program
run-time which are then analyzed in the event of abnormal program
termination. In order to troubleshoot problems, Clarify uses near-
est neighbor searches to find similar failing executions from other
users. Ideally, the neighbors returned should not only have the cor-
rect class label, but should also represent those with similar pro-
gram configurations or program inputs. The four data sets shown
here are Mpg321 (an mp3 player, 4 classes, 128 dimensions), Fox-
pro (a database manager, 4 classes, 12,670 dimensions), and two
Linux kernel applications, Iptables and Iproute (having 4-5 classes
and 50-250 dimensions). As described in [8], these data sets were
created by running each program many times with various inputs
exposing each of the error classes. Program features are collected
from each program run and each run corresponds to a single train-
ing instance.

Figure 6 provides accuracy results for ak-NN classifier used

Iptables Iproute Mpg321 Foxpro

HDILR
HDLR
Class Means
LSA
Euclidean

A
cc

ur
ac

y

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 6: Classification accuracy for four statistical soft-
ware analysis datasets across six different algorithms: HDLR,
HD2LR, a baseline class means method, latent semantic analy-
sis (LSA), and the Euclidean distance.

with our learned rank-10 distance metrics HDLR and HDILR .
We compare this against four baseline methods. The class means
method is a supervised method in which the class mean basis is
used to parametrize a low-rank Mahalanobis distance without per-
forming any additional learning. Confidence intervals intervals shown
are computed for the5th and95th percentiles. Overall, we see that
our HDLR and HDILR methods outperform the other four meth-
ods.

5.4 Collaborative Filtering
Finally, we present experiments over a set of Yahoo song re-

views. Here, 14,596 songs are reviewed by a total of 120,397 re-
viewers. Each review has a score ranging from ‘1’ (the reviewer
does not like the song) to ‘5’ (the reviewer liked the song). Further,
each song is categorized into one of five genres: Rock, R&B, Pop,
Rap, and Country.

Many of today’s recommender systems work by performing near-
est neighbor searches over such collaborative data in order to help
users find similar songs, movies, or products to the ones that he
or she already enjoys. Here, we consider the problem of learn-
ing a distance function over the Yahoo song data that respects gen-
res. Such a distance function is important as often people prefer
songs from a limited number of genres, yet genre information is
not known for all songs. In fact, the 14,596 labelled songs used in

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Euclidean
LSA
HDLR Class Means

HDILR Class Means

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

(a) Classic3 (a) Newsgroups Politics Subset

Figure 5: Precision-recall curves comparing our low-rank Mahalanobis distance functions to standard LSA and Tf-Idf measures for
the Classic3 text data set, and the politics newsgroups subset. Overall, the HDILR method achieves both high precision and high
recall that is competitive or better than Euclidean distance and LSA, respectively.

this data set represent a very small subset (< 1%) of the entire set
of all songs in the Yahoo music data set, most of which have the
genre type ‘unknown’.

Figure 7 shows classification accuracy for this data set for four
different methods across a varying number of dimensions. Here, we
see that the low-rank method HDLR (64.5% accuracy) performed
significantly better than HDILR (53.9% accuracy). This data set is
extremely sparse, with an average of 33 reviews per song (99.97%
sparse).

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 Rank

A
cc

ur
ac

y

HDLR Class Means

HDILR Class Means
Class Means
Euclidean

Figure 7: Classification accuracy for distance functions of var-
ious ranks for the Yahoo music data set. Here, the HDLR
method significantly outperforms the HDILR method. This
suggests that HDLR method may yield better results in prob-
lems that are extremely sparse.

6. CONCLUSIONS
As seen in the previous section, the quality of a nearest neighbor

search can be greatly improved by learning an appropriate distance
measure. In this paper, we have proposed formulations and algo-
rithms that are well suited for learning metrics in high dimensional
settings. Nearest neighbor searches are very simple algorithms, yet
at the same time are quite flexible as they can be used for both clas-
sification tasks as well as for standard information retrieval applica-

tions. In this paper, we presented algorithms that provide both bet-
ter classification performance in terms of accuracy, precision and
recall over existing baseline methods.

AcknowledgementsWe would like to thank Yahoo! for the use of
their collaborative filtering data set. This research was supported by
NSF grant CCF-0431257, NSF-ITR award IIS-0325116 and NSF
grant IIS-0713142.

7. REFERENCES
[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto.Modern

Information Retrieval. ACM Press / Addison-Wesley, 1999.
[2] S. Boyd and L. Vandenberghe.Convex Optimization.

Cambridge University Press, March 2004.
[3] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon.

Information-theoretic Metric Learning. InICML, June 2007.
[4] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.

Furnas, and R. A. Harshman. Indexing by latent semantic
analysis.Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[5] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern
Classification. Wiley-Interscience Publication, 2000.

[6] A. Globerson and S. Roweis. Metric Learning by Collapsing
Classes. InNIPS, 2005.

[7] G.H. Golub and C.F. Van Loan.Matrix Computations. Johns
Hopkins University Press, Baltimore, MD, second edition,
1989.

[8] J. Ha, C. Rossbach, J. Davis, I. Roy, D. Chen, H. Ramadan,
and E. Witchel. Improved Error Reporting for Software that
Uses Black Box Components. InProgramming Language
Design and Implementation (PLDI), 2007.

[9] B. Kulis, M. Sustik, and I. S. Dhillon. Learning Low-rank
Kernel Matrices. InICML, 2006.

[10] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance Metric
Learning for Large Margin Nearest Neighbor Classification.
In NIPS, 2005.

[11] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance
metric learning with application to clustering with
side-information. InNIPS, 2002.

