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Abstract 

This paper outlines the content and performance of ScaLAPACK, a collection of mathematical software for linear algebra 
computations on distributed memory computers. The importance of developing standards for computational and message 
passing interfaces is discussed. We present the different components and building blocks of ScaLAPACK. This paper 
outlines the difficulties inherent in producing correct codes for networks of heterogeneous processors. We define a 
theoretical model of parallel computers dedicated to linear algebra applications: the Distributed Linear Algebra Machine 
(DLAM). This model provides a convenient framework for developing parallel algorithms and investigating their scalability, 
performance and programmability. Extensive performance results on various platforms are presented and analyzed with the 
help of the DLAM. Finally, this paper briefly describes future directions for the ScaLAPACK library and concludes by 
suggesting alternative approaches to mathematical libraries, explaining how ScaLAPACK could be integrated into efficient 
and user-friendly distributed systems. 

1. Overview and motivation 

ScaLAPACK is a library of high performance 
linear algebra routines for distributed memory MIMD 
computers. It is a continuation of the LAPACK 
project, which designed and produced analogous 
software for workstations, vector supercomputers, 
and shared memory parallel computers. Both li- 
braries contain routines for solving systems of linear 
equations, least squares problems, and eigenvalue 
problems. The goals of both projects are efficiency 
(to run as fast as possible), scalability (as the prob- 
lem size and number of processors grow), reliability 

(including error bounds), portability (across all im- 
portant parallel machines), flexibility (so users can 
construct new routines from well-designed parts), 
and ease-of-use (by making LAPACK and ScaLA- 
PACK look as similar as possible). Many of these 
goals, particularly portability, are aided by develop- 
ing and promoting standards, especially for low-level 
communication and computation routines. We have 
been successful in attaining these goals, limiting 
most machine dependencies to two standard libraries 
called the BLAS, or Basic Linear Algebra Subrou- 
tines [6,7,14,16], and BLACS, or Basic Linear Alge- 
bra Communication Subroutines [8,10]. LAPACK 
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and ScaLAPACK will run on any machine where the 
BLAS and the BLACS are available. 

The first part of this paper presents the design of 
ScaLAPACK. After a brief discussion of the BLAS 
and LAPACK, the block cyclic data layout, the 
BLACS, the PBLAS (Parallel BLAS), and the algo- 
rithms used are discussed. We also outline the diffi- 
culties encountered in producing correct code for 
networks of heterogeneous processors; difficulties 
we believe are little recognized by other practition- 
ers. 

The second part of this paper presents a theoreti- 
cal model of parallel computers dedicated to dense 
linear algebra: the Distributed Linear Algebra Ma- 
chine (DLAM). This ideal model provides a conve- 
nient framework for developing parallel algorithms. 
Moreover, it can be applied to obtain theoretical 
performance bounds and to analyze the scalability 
and programmability of parallel algorithms. 

Finally, the paper discusses the performance of 
ScaLAPACK. Extensive results on various platforms 
are presented. One of our goals is to model and 
predict the performance of each routine as a function 
of a few problem and machine parameters. We show 
how the DLAM can be used to express this function, 
identify performance bottlenecks during develop- 
ment, and help users to choose various implementa- 
tion parameters (like the number of processors) to 
optimize performance. One interesting result is that 
for some algorithms, speed is not a monotonic in- 
creasing function of the number of processors. In 
other words, speed can be increased by letting some 
processors remain idle. 

2. Design of ScaLAPACK 

2.1. Portability, scalability and standards 

From the mathematical software developer's point 
of view, portability may require significant effort. 
Standards permit the effort of developing and main- 
taining bodies of mathematical software to be lever- 
aged over as many different computer systems as 
possible. Given the diversity of parallel architectures, 
portability is attainable to only a limited degree, but 
machine dependences can at least be isolated. 

Scalability demands that a program be reasonably 
effective over a wide range of numbers of proces- 
sors. The scalability of parallel algorithms over a 
range of architectures and numbers of processors 
requires that the granularity of computation be ad- 
justable. To accomplish this, we use block algo- 
rithms with adjustable block sizes. Eventually, how- 
ever, polyalgorithms (where the actual algorithm is 
selected at runtime depending on input data and 
machine parameters) may be required. 

Scalable parallel architectures of the future are 
likely to use physically distributed memory. In the 
longer term, progress in hardware development, op- 
erating systems, languages, compilers, and commu- 
nication systems may make it possible for users to 
view such distributed architectures (without signifi- 
cant loss of efficiency) as having a shared memory 
with a global address space. For the near term, 
however, the distributed nature of the underlying 
hardware will continue to be visible at the program- 
ming level; therefore, efficient procedures for ex- 
plicit communication will continue to be necessary. 
Given this fact, standards for basic message passing 
(send/receive), as well as higher-level communica- 
tion constructs (global summation, broadcast, etc.), 
are essential to the development of portable scalable 
libraries. In addition to standardizing general com- 
munication primitives, it may also be advantageous 
to establish standards for problem-specific constructs 
in commonly occurring areas such as linear algebra. 

In order to be truly portable, the building blocks 
underlying parallel software libraries must be stan- 
dardized. The definition of computational and mes- 
sage-passing standards [12,14] provides vendors with 
a clearly defined base set of routines that they can 
optimize. From the user's point of view, standards 
ensure portability. As new machines are developed, 
they may simply be added to the network, supplying 
cycles as appropriate. 

2.2. ScaLAPACK software components 

Fig. 1 describes the ScaLAPACK software hierar- 
chy. The components below the line, labeled Local, 
are called on a single processor, with arguments 
stored on single processors only. The components 
above the line, labeled Global, are synchronous par- 
allel routines, whose arguments include matrices and 
vectors distributed in a 2D block cyclic layout across 
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Fig. 1. ScaLAPACK software hierarchy. 

multiple processors. We describe each component in 
turn. 

2.3. Processes versus processors 

In ScaLAPACK, algorithms are presented in terms 
of processes, rather than physical processors. In 
general there may be several processes on a proces- 
sor, in which case we assume that the runtime sys- 
tem handles the scheduling of processes. In the 
absence of such a runtime system, ScaLAPACK 
assumes one process per processor. 

2.4. Local components 

BLAS, with an emphasis on matrix-matrix multipli- 
cation. Each routine has one or more performance 

tuning parameters, such as the sizes of the blocks 
operated on by the BLAS. These parameters are 
machine dependent, and are obtained from a table at 
run-time. 

The LAPACK routines are designed for single 
processors. LAPACK can also accommodate shared 
memory machines, provided parallel BLAS are 
available (in other words, the only parallelism is 
implicit in calls to BLAS). Extensive performance 
results for LAPACK can be found in the second 
edition of the manual [2]. 

The BLACS (Basic Linear Algebra Communica- 
tion Subprograms) [8,10] are a message passing li- 
brary designed for linear algebra. The computational 
model consists of a one or two-dimensional grid of 
processes, where each process stores matrices and 
vectors. The BLACS include synchronous send/re- 
ceive routines to send a matrix or submatrix from 
one process to another, to broadcast submatrices to 
many processes, or to compute global reductions 
(sums, maxima and minima). There are also routines 
to set up, change, or query the process grid. Since 
several ScaLAPACK algorithms require broadcasts 
or reductions among different subsets of processes, 
the BLACS permit a processor to be a member of 
several overlapping or disjoint process grids, each 
one labeled by a context. Some message passing 
systems, such as MPI [12], also include this context 
concept. The BLACS provide facilities for safe inter- 
operation of system contexts and BLACS contexts. 

The BLAS (Basic Linear Algebra Subprograms) 
[6,7,16] include subroutines for common linear alge- 
bra computations such as dot-products, matrix-vec- 
tor multiplication, and matrix-matrix multiplication. 
As is well known, using matrix-matrix multiplica- 
tion tuned for a particular architecture can effectively 
mask the effects of the memory hierarchy (cache 
misses, TLB misses, etc.), and permit floating point 
operations to be performed at the top speed of the 
machine. 

As mentioned before, LAPACK, or Linear Alge- 
bra PACKage [1], is a collection of routines for 
linear system solving, least squares, and eigenprob- 
lems. High performance is attained by using algo- 
rithms that do most of their work in calls to the 

2.5. Block cyclic data distribution 

The way in which a matrix is distributed over the 
processes has a major impact on the load balance 
and communication characteristics of the concurrent 
algorithm, and hence largely determines its perfor- 
mance and scalability. The block cyclic distribution 
provides a simple, yet general-purpose way of dis- 
tributing a block-partitioned matrix on distributed 
memory concurrent computers. It has been incorpo- 
rated in the High Performance Fortran standard [11]. 

The block cyclic data distribution is parameter- 
ized by the four numbers Pr, Pc, r, and c, where 
Pr X Pc is the process template and r X c is the 
block size. 
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Suppose first that we have M objects, indexed by 
an integer 0 < m < M, to map onto P processes, 
using block size r. The mth item will be stored in 
the ith location of block b on process p, where 

( p , b , i >  

---q--~] mod P,  [ - ~ l ,  m rood r). 

In the special case where r =  2 P and P =  2 '~ are 
powers of two, this mapping is really just bit extrac- 
tion, with i equal to the rightmost 8 bits of m, p 
equal to the next /9 bits of m, and b equal to the 
remaining leftmost bits of m. The distribution of a 
block-partitioned matrix can be regarded as the ten- 
sor product of two such mappings: one that dis- 
tributes the rows of the matrix over Pr processes, 
and another that distributes the columns over Pc 
processes. That is, the matrix element indexed glob- 
ally by (m, n) is stored in location 

<(p,  q) ,  (b ,  d) ,  ( i ,  j)> 

((lmi t = m o d  P r ,  C m o d  Pc , 

(] [m/r] l l [,,/cJ I) 
L Pr / ' Pc .IJ' 

( m m o d  r, n m o d c  . 

The nonscattered decomposition (or pure block 
distribution) is just the special case r = [M/Pr l  and 
c = [N/Pc]. Similarly a purely scattered decomposi- 
tion (or two-dimensional wrapped distribution) is the 
special case r = c = 1. 

2.6. PBLAS 

In order to simplify the design of ScaLAPACK, 
and because the BLAS have proven to be very useful 
tools outside LAPACK, we chose to build a Parallel 
BLAS, or PBLAS, whose interface is as similar to 
the BLAS as possible. This decision has permitted 
the ScaLAPACK code to be quite similar, and some- 
times nearly identical, to the analogous LAPACK 
code. Only one substantially new routine was added 
to the PBLAS, matrix transposition, since this is a 
complicated operation in a distributed memory envi- 
ronment [3]. 

We hope that the PBLAS will provide a dis- 
tributed memory standard, just as the BLAS have 
provided a shared memory standard. This would 
simplify and encourage the development of high 
performance and portable parallel numerical soft- 
ware, as well as providing manufacturers with a 
small set of routines to be optimized. The acceptance 
of the PBLAS requires reasonable compromises 
among competing goals of functionality and simplic- 
ity. These issues are discussed below. 

The PBLAS operate on matrices distributed in a 
2D block cyclic layout. Since such a data layout 
requires many parameters to fully describe the dis- 
tributed matrix, we have chosen a more object-ori- 
ented approach, and encapsulated these parameters in 
an integer array called an array descriptor. An array 
descriptor includes 

(1) the number of rows in the distributed matrix, 
(2) the number of columns in the distributed ma- 

trix, 
(3) the row block size ( r  in section 2.5), 
(4) the column block size (c in section 2.5), 
(5) the process row over which the first row of 

the matrix is distributed, 
(6) the process column over which the first col- 

umn of the matrix is distributed, 
(7) the BLACS context, and 
(8) the leading dimension of the local array stor- 

ing the local blocks. 
For example, here is an example of a call to the 

BLAS double precision matrix multiplication routine 
DGEMM, and the corresponding PBLAS routine 
PDGEMM; note how similar they are: 
CALL DGEMM (TRANSA, TRANSB, M, N, K, 

ALPHA, 

A(IA, JA), LDA, 

B(IB, JB), LDB, BETA, 

C(IC, JC), LDC) 

CALL PDGEMM(TRANSA, TRANSB, M, N, 

K, ALPHA, 
A, IA, JA, DESC A, 

B, IB, JB, DESC.B, BETA, 

C, IC, JC, DESC.C) 

DGEMM computes C=BETA*C+ALPHA*op(A)- 

* o p  ( B ) ,  where  o p  (A) is e i the r  A or  its transpose 
depending on TRANSA pp ( B ) is similar, op (A) is 
M- by- K and op (B) is K- by- N. PDGEMM is the 

same, with the exception of the way in which subma- 
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trices are specified. To pass the submatrix starting at 
A ( I A ,  JA) to DGEHIvl, for example, the actual 
argument corresponding to the formal argument A 
would simply be A( rA, JA).  PDGElvllVl on the other 
hand, needs to understand the global storage scheme 
of k to extract the correct submatrix, so rA and JA 
must be passed in separately. DE$C_A is the array 
descriptor for k. The parameters describing the ma- 
trix operands B and C are analogous to those describ- 
ing A. In a truly object-oriented environment matri- 
ces and DESC_A would be the synonymous. How- 

ever, this would require language support, and de- 
tract from portability. 

Our implementation of the PBLAS emphasizes 
the mathematical view of a matrix over its storage. 
In fact, it is even possible to reuse our interface to 
implement the PBLAS for a different block data 
distribution that would not fit in the block-cyclic 
scheme. 

The presence of a context associated with every 
distributed matrix provides the ability to have sepa- 
rate "universes" of message passing. The use of 

S E C | U E N T I A L  L U  F A C T ( ) H I Z A T I O N C ( ) D E  

O0 20 J = l .  N I l (  M, I ) .  I I  
JB = N I l (  N l l (  B,  • ) - J ÷ l ,  I S  ) 

• a c t o r  d l a q ~ o n a l a n d  s u b d i q o n a l  b l o c k s  mmd t e s t  f o r  exact  
e i n p l a r  i t y .  

CALL DGET•2( M - J + l ,  JB, A( J ,  J ) ,  LDA, l • l V (  J ) ,  
I I l • O  ) 

Adjust  I ] • O  and ~he  p i v o t  i n d i c e s .  

I • (  IM•O. lq .O .AMD. III •O.GT.O ) l | • O a  IIM•O ÷ 3 - 1 
D0 10 1 m J ,  RIM( M, J+JB- I  ) 

I P l V (  I ) " J - 1 + l • l V (  I ) 
C01TINUE 

A p p l y  ln tercbanses  t a  columns 1 : J - 1 .  

C~LL DLASVP( J - l ,  A, LDA. J ,  J~JB-1 ,  I P I V .  I ) 

I • (  J + J B . I ~ . |  ) THKB 

Apply l n t o r c h a m s o B  t o  colummo J÷JB:B. 

CALL DLASW•( B - J - J B + I ,  AC 1,  J~JB ) ,  LDA, J ,  J + J B - 1 ,  
I • I V .  1 ) 

Compute b l o c k  r o e  o f  U. 

CALL DTKSN( ' L e f t  I , *Lover  ~, J | o  t r a n s p o s e ' ,  ' U n i t ' ,  
$ JB, | - J - J B + I °  O lg ,  A( J ,  J ) ,  LDA° 

A( J ,  J*JB ) ,  LDA ) 
I • (  J+JB.LE.N ) T K I |  

Update t r a i l i n g  s u b a ~ t r i x .  

CALL DGENN( ' | o  t r a n s p o s e ' .  I | o  t r a n s p o s e  I ,  
N - J - J B ÷ I ,  I - J - J B + I ,  JB,  -OMi, 
A( J~JB. J ) ,  LDA. A(  J ,  J÷lB ) .  LDA. 
DIE, A( J~JB. J÷JB ) ,  LDA ) 

~ ID  IP  
FJD IF  

20 COET1BUK 

P A R A L L E L  L U  F A C T O R I Z A T I ( ) N C O D E  

DO 10 J u JA, J A ÷ N I B ( N , | ) - I ,  DESCA( 4 ) 
JB • BIB(  N I B ( H . | ) - J 4 J A .  DESCA( 4 ) ) 
I m IA ÷ J - JA 

• a c t o r  d i a s o n a l a m d  s u b d i q o n a l b l o c k s a m d  t e s t  f o r  e x a c t  
s i n p l a r t t y .  

CALL PDGk'r•2( N-J÷JA,  l B ,  A. I ,  J ,  DKSCA. I P I V ,  I I B • O  ) 

A d j u s t  IEPOand t h e  p i v o t  i n d i c e s .  

I F (  I |FO.EQ.O .AID. I IBFQ.GT.O ) 
IMFO m I I | F O  ÷ J - JA 

App ly  l n t e r c h a m g e s  t o  t o l u e n e  J A : J - J A .  

CALL PDLASVP( 'Forgax'd I , 'Rove ~ , J - J A ,  A, IA, 3A, OESCA, 
$ I .  J + J B - I ,  I P l V  ) 

I F (  J-JA+JB÷I.LX.M ) THg]I 

Apply t n t Q r c h a ~ g e e  1;o co luz tn l  J + J B : J A + | - I .  

CALL PDL~SWP( ' P o ~ a r d J  , 'Rove ~ , M-J-JB+JA0 A, IA ,  
$ J~JB,  DKSCA, J ,  J + J n - 1 ,  IPIV ) 

Compute b l o c k  r o y  of  U. 

CALL pDTRSM( ' L e f t  ~ , ' L o u e r  ' ,  leo t r a m s p o e e  J, ' U n i t ' ,  
$ l B ,  | - J - J B ÷ J A .  O|E,  A, I ,  J .  DKSCA. A, I ,  
$ J4JS ,  DESCA ) 

I F (  J-JA÷JB~I.LE.N ) THEE 

Update  t r a i l i n  K s u b q a t r i x .  

CALL P ~ N N (  'Be t r l m s p o e e  ' ,  Pie  t r a n s p o s e  ' .  
$ N-J-JB+JA, | - J - J B + J S ,  JB, -ONE, A, 

I÷JB.  J ,  DESCA, A, 1,  J.t.JB, D ~ A .  
$ OMK° A, I+JB.  J÷JB,  DKSCA ) 

K]JD IF  
g |D IP  

10 CO|Yl BUK 

Fig. 2.Comparison of LAPACK and ScaLAPACK LU factorization. 
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separate communication contexts by distinct libraries 
(or distinct library invocations) such as the PBLAS 
insulates communication internal to the library from 
external communication. When more than one de- 
scriptor array is present in the argument list of a 
routine in the PBLAS, it is required that the individ- 
ual BLACS context entries must be equal. In other 
words, the PBLAS do not perform "intra-context" 
operations. 

We have not included specialized routines to take 
advantage of packed storage schemes for symmetric, 
Hermitian, or triangular matrices, nor of compact 
storage schemes for banded matrices. 

2.7. ScaLAPACK- LU decomposition 

Given the infrastructure described above, the 
ScaLAPACK version (PDGETRF) of the LU decom- 
position is nearly identical to its LAPACK version 
(DGETRF) (see Fig. 2). 

The Cholesky decompositions (PDPOTRF and 
DPOTRF) and QR decompositions (PDGEQRF and 
DGEQRF) are analogous. 

2.8. ScaLAPACK- symmetric eigenproblem 

The solution of the symmetric eigenproblem 
PDSYEVX consists of three phases: (1) reduce the 
original matrix A to tridiagonal form A = QTQ x 
where Q is orthogonal and T is tridiagonal, (2) find 
the eigenvalues zl = diag(A t . . . . .  A,) and eigenvec- 
tors U =  [u I . . . . .  u~] of T so that T =  UAU T, and 
(3) form the eigenvector matrix V of A so A = 
Q(UAUT)Q T = (QU)A(QU) T = VAV T. Phases 1 
and 3 are analogous to their LAPACK counterparts, 
similarly to LU. However, our current design for 
phase 2 differs from the serial (or shared memory) 
design. We have chosen to do bisection followed by 
inverse iteration (like the LAPACK expert driver 
DSYEVX), but with the reorthogonalization phase of 
inverse iteration limited to the eigenvectors stored in 
a single process. A straightforward parallelization of 
DSYEVX would have led to a serial bottleneck and 
significant slowdowns in the rare situation of matri- 
ces with eigenvalues tightly clustered together. The 
current design guarantees that phase (2) is inexpen- 
sive compared to the other phases once problems are 

reasonably large. An alternative algorithm which 
completely eliminates the need for reorthogonaliza- 
tion has recently been discovered by Parlett, Fer- 
nando, and Dhillon [17], and we expect to use this 
version of the routine in the near future. This new 
routine will guarantee high accuracy and high speed 
independent of the eigenvalue distribution. 

2.9. Heterogeneous networks 

There are special challenges associated with writ- 
ing reliable numerical software on networks contain- 
ing heterogeneous processors, i.e., processors which 
may do floating point arithmetic differently. This 
includes not just machines with completely different 
floating point formats and semantics (e.g., Cray ver- 
sus workstations running IEEE standard floating point 
arithmetic), but even supposedly identical machines 
running with different compilers or even just differ- 
ent compiler options. The basic problem lies in 
making data dependent branches on different pro- 
cessors, which may branch differently than expected 
on different processors, leading to different proces- 
sors executing a completely different section of code 
than the other processors expect. We give three 
examples of this below. 

The simplest example is an iteration where the 
stopping criterion depends on the machine precision. 
If the precision varies from processor to processor, 
different processors will have significantly different 
stopping criteria than others. In particular, the crite- 
rion for the most accurate processor may never be 
satisfied if it depends on data computed less accu- 
rately by other processors. Many problems like this 
can be eliminated by using the largest machine 
epilson among all participating processes. Routine 
PDLAMCH returns this largest value, replacing the 
uniprocessor DLAMCH. Similarly, one would use the 
smallest overflow threshold and largest underflow 
threshold for other calculations. But this is not a 
panacea, as subsequent examples show. 

Next, consider the situation where processors 
sharing a distributed vector v compute its two-norm, 
and depending on that either scale v by a constant 
much different from 1, or do not. This happens in the 
inner loop of the QR decomposition, for example. 
The two-norm is computed by the ScaLAPACK 
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routine PDNRM2, which computes two-norms locally 
and does a reduction. If the participating processors 
have different floating point formats, they may re- 
ceive different values of the two-norm on return, just 
because the same floating point numbers cannot be 
represented on all machines. This two-norm is then 
compared to a threshold, and if it exceeds the thres- 
hold scaling takes place. Since the two-norm may be 
different, and the threshold may be different, the 
result of the comparison could differ on different 
processors, so that one process would scale the 
sub-vector it owns, and another would not. This 
would very likely lead to erroneous results. This 
could in principle be corrected by extending the 
reduction operation PDNRM2 to broadcast a discrete 
value (like the boolean value of a comparison); then 
all participating processors would be able to agree 
with the processor at the root of the reduction tree. 

However, there are still harder problems. Con- 
sider bisection for finding eigenvalues of symmetric 
matrices. In this algorithm, the real axis is broken 
into disjoint intervals to be searched by different 
processors for the eigenvalues contained in each. 
Disjoint intervals are searched in parallel. The algo- 
rithm depends on a function, call it c o u n t  ( a ,  b ), 
that counts the number of eigenvalues in the half 
open interval [a ,  b ) .  Using c o u n t ,  intervals can 
be subdivided into smaller intervals containing 
eigenvalues until the intervals are narrow enough to 
declare the eigenvalues they contain as " found" .  
One problem is that two processors with different 
floating point formats cannot even agree on the 
boundary between their intervals, because they can- 
not store the same floating point number. This could 
result in multiple copies of eigenvalues if intervals 
overlap, or missing eigenvalues if there are gaps 
between intervals. Furthermore, the count function 
may count differently on different processors, so an 
interval [a ,  b)  may be considered to contain 1 
eigenvalue by processor A, but 0 eigenvalues by 
processor B, which has been given the interval by 
processor A during load balancing. This can happen 
even if processors A and B are identical, but if their 
compilers generate slightly different code sequences 
for c o u n t .  We have not yet decided what to do 
about all of these problems, so we currently only 
guarantee correctness of PDSYEVX for networks of 
processors with identical floating point formats 

(slightly different floating point operations are ac- 
ceptable). See [4] for details. 

3. The distributed linear algebra machine (DLAM) 

In this section we present a theoretical model of a 
parallel computer dedicated to dense linear algebra. 
This model is from an abstraction of physical mod- 
els. This ideal model provides a convenient frame- 
work for developing parallel algorithms without wor- 
rying about the implementation details or physical 
constraints. However, we defined this restricted 
model such that actual code should be easily pro- 
duced from it. 

The model can be applied to obtain theoretical 
performance bounds on parallel computers or to 
estimate the execution time before or after the algo- 
rithm has been implemented. The abstract model is 
also useful in scalability and programmability analy- 
sis. 

A P-process DLAM is constructed out of P 
"BLAS-processes" interconnected by a logical 
"BLACS-network". This network is a Pr × Pc logi- 
cal mesh such that Pr. Pc < P. Data are exchanged 
between BLAS processes through the BLACS net- 
work by calling BLACS primitives. The processes 
can only perform BLAS and BLACS operations. 

The DLAM presented here could be very easily 
extended by adding a host process. This host process 
could act like a server acting upon a user request, 
creating the BLACS-network, distributing the data, 
starting the BLAS-processes and collecting the re- 
suits. This host process could also be used for fault- 
tolerant applications. In this case, it would take the 
appropriate course of action in the case of a BLAS- 
process failure. In the following sections, however, 
we describe only the hostless DLAM. 

3.1. The BLAS process 

As mentioned before, an efficient implementation 
of the BLAS masks the effects of the processor 
memory hierarchy and frees the programmer from 
local tuning of this basic kernel. The performance of 
the BLAS heavily depends on the number of mem- 
ory references per floating point operation. This ratio 
naturally sorts the BLAS in three levels, where 
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routines belonging to the same level usually reach 
similar execution rates. Consequently, the BLAS 
processes are, as far as performance analysis is 
concemed, able to perform only three instructions, 
corresponding to the three BLAS levels. The execu- 
tion times per floating point operation of each of 
these instructions are then denoted by 7i, with i = 
1 ,2 ,3 .  

3.2. The BLACS network 

The BLAS processes communicate with each other 
via calls to the BLACS. For the sake of simplicity, 
we model a restricted subset of the possible BLACS 
operations, namely point-to-point communication and 
broadcast/combine operations along a row or col- 
umn of the mesh. It is customary to model the time 
for sending a message of n items between two 
processes by 

Ts(n, a ,  /3) = a + n / 3  

where a denotes the latency, and /3 the inverse of 
the bandwidth. The broadcast/combine operations 
are more complicated since the BLACS allow the 
user to specify a topology argument [8,10]. We 
estimate the cost of broadcasting n items using a 
split-ring topology to p - 1 processes by 

Tb('S-ring, p, n, a ,  /3) 

- -K( 'bcas t ' ,  'S-ring', p, n) Ts(n, a,  /3). 

Similarly, the cost of a 1-tree combine operation of 
n items involving p processes is estimated by 

To( 'S-ring, p,  n, a ,  /3) 

= K( 'combine ' ,  'S-ring', p, n) Ts(n, a ,  [3). 

At this level of the model, it is not possible to 
determine the values of K because no assumption 
has been made so far on the physical network to 
model. This justifies the introduction of these func- 
tions K ( ) .  

3.3. Accuracy and refinement of the DLAM 

3 instruction. We determined 73 as being the 
achieved peak performance of the BLAS matrix-mul- 
tiply GEMM. This approximation is incorrect for 
small block sizes, in which case Level 2 operations 
are performed and 72, 73 should be set respectively 
to the achieved peak performance of the BLAS 
matrix-vector multiply GEMV and zero. Obviously, 
these coarse approximations could be refined by 
computing a piece-wise linear approximation of the 
yi's with respect to the problem size. This model 
smoothes the influence of the physical memory hier- 
archy and could be adapted to out-of-core BLAS 
operations. 

Modeling the performance of the DLAM network 
is tightly coupled to the physical network. Experi- 
mental values of ct and fl can easily be determined 
for a given machine. If the logical mesh can be 
embedded into the physical network and the message 
collisions ignored, 2 log2(p) is a good approxima- 
tion of K('combine',  ' l-tree' ,  p, n) assuming the 
result has to be left on the p processes and neglect- 
ing the cost of the local computations; similarly, 
K('bcast ' ,  ' l- tree' ,  p, n) --- log2(p). When the com- 
munications can be pipelined, it is reasonable to 
estimate K('bcast ' ,  'S-ring', p, n) by 2. Because this 
model ignores the probable collision of messages or 
possible network contention problems, its accuracy 
depends on the number of physical links. For in- 
stance, when comparing the performance obtained on 
an ideal DLAM with those obtained on an ethemet- 
based network of workstations sharing one physical 
link, it is important to use appropriate values for K. 
Indeed, an upper bound for K('combine', ' l -  
tree', p, n) is given by 2 ( p -  1). However, for a 
given value of p, it is possible to experimentally 
determine constants which take into account the cost 
due to network contention and message collisions. 
More accurate models taking into account the colli- 
sions of messages could be used, but this is beyond 
the scope of this paper. Finally, the described model 
could obviously be refined by computing a piece-wise 
linear approximation of the time for sending a mes- 
sage with respect to the message length. 

When applying numerically the results obtained 
by the DLAM, we choose yl = 72 = 0, assuming 
that the cost of these instructions will always be 
negligible compared to BLACS operations or a Level 

3.4. The LU factorization on the DLAM 

We present in this section the model correspond- 
ing to the parallel right-looking LU factorization 
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implemented in ScaLA_PACK [9]. We restrict our- 
selves to the case where the matrix is distributed on 
the processes using a square ( r =  c) block cyclic 
decomposition scheme. We ignore the possible colli- 
sion of messages on the network. It can be briefly 
described as follows. Assume the LU factorization of 
the k × r first columns has proceeded with k 
{0, 1 . . . . .  (n - l) /r}.  During the next step, the algo- 
rithm factors the next panel of r columns, pivoting if 
necessary. Next the pivots are applied to the remain- 
der of the matrix. The lower trapezoid factor just 
computed is broadcast to the other process columns 
of the grid using a split-ring topology [8,10], so that 
the upper trapezoid factor can be updated via a 
triangular solve. This factor is then broadcast to the 
other process rows using a 1-tree topology [8,10], so 
that the remainder of the matrix can be updated by a 
rank-r update. This process continues recursively 
with the updated matrix. The total execution time 
TLU(n 2, P) can be estimated by 

(n - 1)T~('l-tree', Pr, 2, a ,  /3) 
(Determine pivot row) 

+ ( n -  1)2T,(r, a ,  /3) 
(Swap rows in current panel) 

 n,Jr( ) 
+ ]~ T b 'l-tree',  Pr, n-- ( k +  1)r 

k=0 Pc ' a ' / 3  

(Broadcast upper trapezoid factor) 

(n-l)/r n - ( k + l ) r n - ( k + l ) r  
+ ~ 2 rT3 

k = 0 Pr Pc 
(Rank-r update: BLAS 3 GEMM) 

Notice that we neglected the BLAS 1 computations 
performed during the factorization of the current 
panel of columns, considering that the contribution 
of this operations to the execution time is mostly due 
to communication. In addition, when the logical 
mesh can be embedded into the physical network 
and the message collisions neglected, the previous 
formula can be simplified to 

TLu(n 2, P)  

n 2 
= 2n log2(Pr) ct + " ~  (2P c + Pr log2( Pr))fl 

2n 3 

+ 3P T3- (1) 

+ 
n - 1  

r 
Tb('S-ring', Pc, r, ct, /3) 

(Broadcast pivot information) 

(,,--m,Jr ( ( , , ; )  
+ k]~0= 2r  T s , a , / 3  

n-(k+l )r  
+T~ P~ 

(Swap remaining rows) 

+ 
( n -  l ) / r  

E 
k=O 

'S-ring', Pc, Pr , a ,  

(Broadcast lower trapezoid factor) 

+ (n--l)/rz n -  ( k + 1)rr2y s 

k= o Pc 
(Triangular solve: BLAS 3 TRSM) 

4. Performance 

An important performance metric is parallel effi- 
ciency. Parallel efficiency, E(N, P), for a problem 
of size N on P processors is defined in the usual 
way [13] as 

1 Tseq( N ) 
E(N, P ) =  P T(N,  P) ' (2) 

where T(N, P) is the runtime of the parallel algo- 
rithm, and  Tseq(N) is the runtime of the best sequen- 
tial algorithm. An implementation is said to be scal- 
able if the efficiency is an increasing function of 
N/P,  the problem size per processor (in the case of 
dense matrix computations, N = n 2, the number of 
words in the input). 

We will also measure the performance of our 
algorithm in Megaflops/sec (or Gigaflops/sec). This 
is appropriate for large dense linear algebra computa- 
tions, since floating point dominates the communica- 
tion. For a scalable algorithm with N / P  held fixed, 
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we expect the performance to be proportional to P. 
We seek to increase the performance of our algo- 

rithms by reducing overhead due to load imbalance, 
data movement, and algorithm restructuring. The 
way the data are distributed over the memory hierar- 
chy of a computer is of fundamental importance to 
these factors. We present in this section extensive 
performance results on various platforms for the 
ScaLAPACK factorization and reductions routines. 
Performance data for the symmetric eigensolver 
(PDSYEVX) are presented in [5]. 

4.1. Choice of block size 

In the factorization or reduction routines, the work 
distribution becomes uneven as the computation pro- 
gresses. A larger block size results in greater load 
imbalance, but reduces the frequency of communica- 
tion between processes. There is, therefore, a trade- 
off between load imbalance and communication 
startup cost, which can be controlled by varying the 
block size (see Fig. 3). 

Most of the computation of the ScaLAPACK 
routines is performed in a blocked fashion using 
Level 3 BLAS, as is done in LAPACK. The compu- 
tational blocking factor is chosen to be the same as 
the distribution block size. Therefore, smaller distri- 
bution block sizes increase the loop and index com- 

putation overhead. However, because the computa- 
tion cost ultimately dominates, the influence of the 
block size on the overall communication startup cost 
and loop and index computation overhead decreases 
very rapidly with the problem size for a given grid of 
processes. Consequently, the performance of the 
ScaLAPACK library is not very sensitive to the 
block size, as long as the extreme cases are avoided. 
A very small block size leads to BLAS 2 operations 
and poorer performance (see Section 3.3). A very 
large block size leads to computational imbalance. 

The chosen block size impacts the amount of 
workspace needed on every process. This amount of 
workspace is typically large enough to contain a 
block of columns or a block of rows of the matrix 
operands. Therefore, the larger the block size, the 
greater the necessary workspace, i.e the smaller the 
largest solvable problem on a given grid of pro- 
cesses. For Level 3 BLAS blocked algorithms, the 
smallest possible block operands are of size r × c. 
Therefore, it is good practice to choose the block 
size to be the problem size for which the BLAS 
matrix-multiply GEMM routine achieves 90% of its 
reachable peak. 

Determining optimal, or near optimal block sizes 
for different environments is a difficult task because 
it depends on many factors including the machine 
architecture, speeds of the different BLAS levels, the 

a '~ Lu FACT. PREDICTED PERFOPMANCE ON 16 (2x8) NODES 1860 
/ 360 
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latency and bandwidth of message passing, the num- 
ber of process available, the dimensions of the pro- 
cess grid, the dimension of the problem, and so on. 
However, there is enough evidence and expertise for 
automatically and accurately determining optimal, or 
near optimal block sizes via an enquiry routine. 
Furthermore, for small problem sizes it is also possi- 
ble to determine if redistributing n 2 data items is an 
acceptable cost in terms of performance as well as 
memory usage. In the future, we hope to calculate 
the optimal block size via an enquiry routine. 

4.2. Choice of grid size 

The best grid shape is determined by the algo- 
rithm implemented in the library and the underlying 
physical network. A one link physical network will 
favor P~ = 1 or Pc = 1. This affects the scalability of 
the algorithm, but reduces the overhead due to mes- 
sage collisions. It is possible to predict the best grid 
shape given the number of processes available. The 
current algorithms for the factorization or reduction 
routines can be split into two categories. 

If at every step of the algorithm a block of 
columns and/or  rows needs to be broadcast, as in 
the LU or QR factorizations, it is possible to pipeline 
this communication phase and overlap it with some 
computation. The direction of the pipeline deter- 

mines the shape of the grid. For example, the LU, 
QR and QL factorizations perform better for " f la t"  
process grids (P~ < Pc)- These factorizations share a 
common bottleneck of performing a reduction opera- 
tion along each column (for pivoting in LU, and for 
computing a norm in QR and QL). The first implica- 
tion of this observation is that large latency message 
passing perform better on a " f la t"  grid than on a 
square grid. Secondly, after this reduction has been 
performed, it is important to update the next block of 
columns as fast as possible. This is done by broad- 
casting the current block of columns using a ring 
topology, i.e., feeding the ongoing communication 
pipe. Similarly, the performance of the LQ and RQ 
factorizations take advantage of " ta l l"  grids (Pr > 
Pc) for the same reasons, but transposed. 

The theoretical efficiency of the LU factorization 
can be estimated by (see (1), (2)) 

3P log Pr ct 
ELU (N, P)  = 1 + n2 T3 

3 /31 -I +  (2ec+Pr log 

For large n, the last term on the right hand side of 
the equation dominates, and it is minimized by 
choosing a P~ slightly smaller than Pc- Pc--2P~ 
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works well on Intel machines. For smaller n, the 
middle term dominates, and it becomes more impor- 
tant to choose a small Pr" Suppose that we keep the 
ratio Pr/Pc constant as P increases, thus we have 
Pr = uC-fi and Pc = vVtff, where u and v are con- 
stant [9]. Moreover, let ignore the log2(P r) factor for 
a moment. In this case, Pr/n and Pc/n are propor- 
tional to ¢ f f / n  and n 2 must grow with P to 
maintain efficiency. For sufficient large Pr, the 

log2(P r) factor cannot be ignored, and the perfor- 
mance will slowly degrade with the number of pro- 
cessors P. This phenomenon is observed in practice 
as shown in Figs. 4 -8  showing the efficiency of the 
LU factorization on the Intel Paragon. 

The second group of routines physically transpose 
a block of columns and/or  rows at every step of the 
algorithm. In these cases, it is not usually possible to 
maintain a communication pipeline, and thus square 
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or near square grids are more optimal. This is the 
case for the algorithms used for implementing the 
Cholesky factorization, the matrix inversion and the 
reduction to bidiagonal form (BRD), Hessenberg 
form (HRD) and tridiagonal form (TRD). For exam- 
ple, the update phase of the Cholesky factorization of 
a lower-symmetric matrix physically transposes the 
current block of columns of the lower triangular 
factor. 

Assume now that at most P processes are avail- 
able. A natural question arising is: could we decide 
what process grid Pr × Pc < P should be used? Simi- 
larly, depending on P, it is not always possible to 
factor P --- Pr" Pc to create the appropriate grid. For 
example, if P is prime, the only possible grids are 
1 × P and P × 1. If  such grids are particularly bad 
for performance, it may be beneficial to let some 
processors remain idle, so the remainder can be 
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formed into a "squarer" grid [15]. These problems 
can be analyzed by a complicated function of the 
machine and problem parameters. It is possible to 
develop models depending on the machine and prob- 
lem parameters which accurately estimate the impact 
of modifying the shape of the grid on the total 
execution time, as well as predicting the necessary 
amount of extra memory required for each routine. 

5. Future directions 

5.1. Future addition to ScaLAPACK 

Basic building blocks like the BLAS, the BLACS 
and the PBLAS have been made publically available. 
At the time this paper was written, the current ~er- 
sion of the PBLAS was being extended by removing 
alignment assumptions made on the operands. More- 
over, the PBLAS package is being internally restruc- 
tured to facilitate its maintenance and reinforce its 
robustness. Concurrently, many of the LAPACK 
functions missing in ScaLAPACK are being assem- 
bled and integrated. These include condition estima- 
tion, iterative refinement of linear solutions and lin- 
ear least square solvers. We are planning improved 
versions of the symmetric eigenvalue routine. SVD 
and nonsymmetric eigenvalue routines are also in 
preparation. More elaborate testing and timing pro- 
grams are being developed to ensure the robustness 
and the efficiency of the library. Finally, banded, 
general sparse, and out-of-core prototype routines are 
being investigated. 

5.2. Alternative approaches to libraries 

Traditionally, large, general-purpose mathemati- 
cal software libraries on uniprocessors and shared 
memory machines have tried to hide much of the 
complexity of data structures and performance issues 
from the user. For example, the LAPACK project 
incorporates parallelism in the Level 3 BLAS, where 
it is not directly visible to the user. Unfortunately, it 
is not possible to hide these details as neatly on 
distributed memory machines. Currently, the data 
structures and data decomposition must be specified 
by the user, and it may be necessary to explicitly 
transform these structures in between calls to differ- 
ent library routines. These deficiencies in the con- 

ventional user interface have prompted extensive 
discussion of alternative approaches for scalable par- 
allel software libraries of the future. Here are some 
possibilities. 
(1) Traditional function library (i.e., minimum pos- 

sible change to the status quo in going from 
serial to parallel environment). This will allow 
one to protect the programming investment that 
has been made. More aggressive use of perfor- 
mance models may permit us to choose the best 
layout and redistribute the input data structure 
automatically. This is attractive for dense linear 
algebra since for large problems the ~ ( n  3) float- 
ing point operations will dominate the ~ (n  2) 
cost of redistribution. 

(2) Reactive servers on the network. A user would 
be able to send a computational problem to a 
server that was specialized in dealing with the 
problem. This fits well with the concepts of a 
networked, heterogeneous computing environ- 
ment with various specialized hardware re- 
sources (or even the heterogeneous partitioning 
of a single homogeneous parallel machine). 
Again, this is attractive for dense linear algebra 
since ~'(n 3) flops are performed on a data struc- 
ture of size 6e(n2). 

(3) Interactive environments like Matlab or Mathe- 
matica, perhaps with "expert"  drivers (i.e., 
knowledge-based systems) for special domains, 
such as structural analysis. Such environments 
have proven to be especially attractive for rapid 
prototyping of new algorithms and systems that 
may subsequently be implemented in a more 
customized manner for higher performance. With 
the growing popularity of the many integrated 
packages based on this idea, this approach would 
provide an interactive, graphical interface for 
specifying and solving scientific problems. Both 
the algorithms and data structures are hidden 
from the user, because the package itself is 
responsible for storing and retrieving the prob- 
lem data in an efficient, distributed manner. In a 
heterogeneous networked environment, such in- 
terfaces could provide seamless access to com- 
putational engines that would be invoked selec- 
tively for different parts of the user's computa- 
tion according to which machine is most appro- 
priate for a particular subproblem. 
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(4) Reusable  templates  (i.e., users adapt " source  
code"  to their part icular  applications).  A tem- 
plate is a descript ion of a general  algori thm 

rather than the executable  object  code or the 
source code more  commonly  found  in a conven-  

tional software library. Nevertheless,  although 

templates use generic  versions of  key data struc- 

tures, they offer whatever  degree of  customiza-  
t ion the user  ma y  desire. W e  have constructed 

such a set of  template for interactive l inear  sys- 

tem solvers, and are currently construct ing one 
for e igenvalue problems.  
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