
Computer Physics
Communications

ELSEVIER Computer Physics Communications 97 (1996) 1 - 15

ScaLAPACK: a portable linear algebra library for distributed
memory computers - design issues and performance

J. Choi a, j. Demmel b I. Dhillon b j. Dongarra a,c, S. Ostrouchov a A. Petitet a,c

K. Stanley h, D. Walker c, R.C. Whaley a

a Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USA
b Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA

¢ Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract

This paper outlines the content and performance of ScaLAPACK, a collection of mathematical software for linear algebra
computations on distributed memory computers. The importance of developing standards for computational and message
passing interfaces is discussed. We present the different components and building blocks of ScaLAPACK. This paper
outlines the difficulties inherent in producing correct codes for networks of heterogeneous processors. We define a
theoretical model of parallel computers dedicated to linear algebra applications: the Distributed Linear Algebra Machine
(DLAM). This model provides a convenient framework for developing parallel algorithms and investigating their scalability,
performance and programmability. Extensive performance results on various platforms are presented and analyzed with the
help of the DLAM. Finally, this paper briefly describes future directions for the ScaLAPACK library and concludes by
suggesting alternative approaches to mathematical libraries, explaining how ScaLAPACK could be integrated into efficient
and user-friendly distributed systems.

1. Overview and motivation

ScaLAPACK is a library of high performance
linear algebra routines for distributed memory MIMD
computers. It is a continuation of the LAPACK
project, which designed and produced analogous
software for workstations, vector supercomputers,
and shared memory parallel computers. Both li-
braries contain routines for solving systems of linear
equations, least squares problems, and eigenvalue
problems. The goals of both projects are efficiency
(to run as fast as possible), scalability (as the prob-
lem size and number of processors grow), reliability

(including error bounds), portability (across all im-
portant parallel machines), flexibility (so users can
construct new routines from well-designed parts),
and ease-of-use (by making LAPACK and ScaLA-
PACK look as similar as possible). Many of these
goals, particularly portability, are aided by develop-
ing and promoting standards, especially for low-level
communication and computation routines. We have
been successful in attaining these goals, limiting
most machine dependencies to two standard libraries
called the BLAS, or Basic Linear Algebra Subrou-
tines [6,7,14,16], and BLACS, or Basic Linear Alge-
bra Communication Subroutines [8,10]. LAPACK

0010-4655/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.
PII S00 10-465 5 (9 6) 0 0 0 1 7 - 3

2 J. Choi et aL/Computer Physics Communications 97 (1996) 1-15

and ScaLAPACK will run on any machine where the
BLAS and the BLACS are available.

The first part of this paper presents the design of
ScaLAPACK. After a brief discussion of the BLAS
and LAPACK, the block cyclic data layout, the
BLACS, the PBLAS (Parallel BLAS), and the algo-
rithms used are discussed. We also outline the diffi-
culties encountered in producing correct code for
networks of heterogeneous processors; difficulties
we believe are little recognized by other practition-
ers.

The second part of this paper presents a theoreti-
cal model of parallel computers dedicated to dense
linear algebra: the Distributed Linear Algebra Ma-
chine (DLAM). This ideal model provides a conve-
nient framework for developing parallel algorithms.
Moreover, it can be applied to obtain theoretical
performance bounds and to analyze the scalability
and programmability of parallel algorithms.

Finally, the paper discusses the performance of
ScaLAPACK. Extensive results on various platforms
are presented. One of our goals is to model and
predict the performance of each routine as a function
of a few problem and machine parameters. We show
how the DLAM can be used to express this function,
identify performance bottlenecks during develop-
ment, and help users to choose various implementa-
tion parameters (like the number of processors) to
optimize performance. One interesting result is that
for some algorithms, speed is not a monotonic in-
creasing function of the number of processors. In
other words, speed can be increased by letting some
processors remain idle.

2. Design of ScaLAPACK

2.1. Portability, scalability and standards

From the mathematical software developer's point
of view, portability may require significant effort.
Standards permit the effort of developing and main-
taining bodies of mathematical software to be lever-
aged over as many different computer systems as
possible. Given the diversity of parallel architectures,
portability is attainable to only a limited degree, but
machine dependences can at least be isolated.

Scalability demands that a program be reasonably
effective over a wide range of numbers of proces-
sors. The scalability of parallel algorithms over a
range of architectures and numbers of processors
requires that the granularity of computation be ad-
justable. To accomplish this, we use block algo-
rithms with adjustable block sizes. Eventually, how-
ever, polyalgorithms (where the actual algorithm is
selected at runtime depending on input data and
machine parameters) may be required.

Scalable parallel architectures of the future are
likely to use physically distributed memory. In the
longer term, progress in hardware development, op-
erating systems, languages, compilers, and commu-
nication systems may make it possible for users to
view such distributed architectures (without signifi-
cant loss of efficiency) as having a shared memory
with a global address space. For the near term,
however, the distributed nature of the underlying
hardware will continue to be visible at the program-
ming level; therefore, efficient procedures for ex-
plicit communication will continue to be necessary.
Given this fact, standards for basic message passing
(send/receive), as well as higher-level communica-
tion constructs (global summation, broadcast, etc.),
are essential to the development of portable scalable
libraries. In addition to standardizing general com-
munication primitives, it may also be advantageous
to establish standards for problem-specific constructs
in commonly occurring areas such as linear algebra.

In order to be truly portable, the building blocks
underlying parallel software libraries must be stan-
dardized. The definition of computational and mes-
sage-passing standards [12,14] provides vendors with
a clearly defined base set of routines that they can
optimize. From the user's point of view, standards
ensure portability. As new machines are developed,
they may simply be added to the network, supplying
cycles as appropriate.

2.2. ScaLAPACK software components

Fig. 1 describes the ScaLAPACK software hierar-
chy. The components below the line, labeled Local,
are called on a single processor, with arguments
stored on single processors only. The components
above the line, labeled Global, are synchronous par-
allel routines, whose arguments include matrices and
vectors distributed in a 2D block cyclic layout across

J. Choi et al./ Computer Physics Communications 97 (1996) 1-15 3

ScaLAPACK)

~ M ~ Local

essa~Primitives]
k) [. (MPI, PVM, MPL, GAM, etc.)J

Fig. 1. ScaLAPACK software hierarchy.

multiple processors. We describe each component in
turn.

2.3. Processes versus processors

In ScaLAPACK, algorithms are presented in terms
of processes, rather than physical processors. In
general there may be several processes on a proces-
sor, in which case we assume that the runtime sys-
tem handles the scheduling of processes. In the
absence of such a runtime system, ScaLAPACK
assumes one process per processor.

2.4. Local components

BLAS, with an emphasis on matrix-matrix multipli-
cation. Each routine has one or more performance

tuning parameters, such as the sizes of the blocks
operated on by the BLAS. These parameters are
machine dependent, and are obtained from a table at
run-time.

The LAPACK routines are designed for single
processors. LAPACK can also accommodate shared
memory machines, provided parallel BLAS are
available (in other words, the only parallelism is
implicit in calls to BLAS). Extensive performance
results for LAPACK can be found in the second
edition of the manual [2].

The BLACS (Basic Linear Algebra Communica-
tion Subprograms) [8,10] are a message passing li-
brary designed for linear algebra. The computational
model consists of a one or two-dimensional grid of
processes, where each process stores matrices and
vectors. The BLACS include synchronous send/re-
ceive routines to send a matrix or submatrix from
one process to another, to broadcast submatrices to
many processes, or to compute global reductions
(sums, maxima and minima). There are also routines
to set up, change, or query the process grid. Since
several ScaLAPACK algorithms require broadcasts
or reductions among different subsets of processes,
the BLACS permit a processor to be a member of
several overlapping or disjoint process grids, each
one labeled by a context. Some message passing
systems, such as MPI [12], also include this context
concept. The BLACS provide facilities for safe inter-
operation of system contexts and BLACS contexts.

The BLAS (Basic Linear Algebra Subprograms)
[6,7,16] include subroutines for common linear alge-
bra computations such as dot-products, matrix-vec-
tor multiplication, and matrix-matrix multiplication.
As is well known, using matrix-matrix multiplica-
tion tuned for a particular architecture can effectively
mask the effects of the memory hierarchy (cache
misses, TLB misses, etc.), and permit floating point
operations to be performed at the top speed of the
machine.

As mentioned before, LAPACK, or Linear Alge-
bra PACKage [1], is a collection of routines for
linear system solving, least squares, and eigenprob-
lems. High performance is attained by using algo-
rithms that do most of their work in calls to the

2.5. Block cyclic data distribution

The way in which a matrix is distributed over the
processes has a major impact on the load balance
and communication characteristics of the concurrent
algorithm, and hence largely determines its perfor-
mance and scalability. The block cyclic distribution
provides a simple, yet general-purpose way of dis-
tributing a block-partitioned matrix on distributed
memory concurrent computers. It has been incorpo-
rated in the High Performance Fortran standard [11].

The block cyclic data distribution is parameter-
ized by the four numbers Pr, Pc, r, and c, where
Pr X Pc is the process template and r X c is the
block size.

4 J. Choi et al. / Computer Physics Communications 97 (1996) 1-15

Suppose first that we have M objects, indexed by
an integer 0 < m < M, to map onto P processes,
using block size r. The mth item will be stored in
the ith location of block b on process p, where

(p , b , i >

---q--~] mod P, [- ~ l , m rood r).

In the special case where r = 2 P and P = 2 '~ are
powers of two, this mapping is really just bit extrac-
tion, with i equal to the rightmost 8 bits of m, p
equal to the next /9 bits of m, and b equal to the
remaining leftmost bits of m. The distribution of a
block-partitioned matrix can be regarded as the ten-
sor product of two such mappings: one that dis-
tributes the rows of the matrix over Pr processes,
and another that distributes the columns over Pc
processes. That is, the matrix element indexed glob-
ally by (m, n) is stored in location

<(p, q) , (b , d) , (i , j)>

((lmi t = m o d P r , C m o d Pc ,

(] [m/r] l l [,,/cJ I)
L Pr / ' Pc .IJ'

(m m o d r, n m o d c .

The nonscattered decomposition (or pure block
distribution) is just the special case r = [M/Pr l and
c = [N/Pc]. Similarly a purely scattered decomposi-
tion (or two-dimensional wrapped distribution) is the
special case r = c = 1.

2.6. PBLAS

In order to simplify the design of ScaLAPACK,
and because the BLAS have proven to be very useful
tools outside LAPACK, we chose to build a Parallel
BLAS, or PBLAS, whose interface is as similar to
the BLAS as possible. This decision has permitted
the ScaLAPACK code to be quite similar, and some-
times nearly identical, to the analogous LAPACK
code. Only one substantially new routine was added
to the PBLAS, matrix transposition, since this is a
complicated operation in a distributed memory envi-
ronment [3].

We hope that the PBLAS will provide a dis-
tributed memory standard, just as the BLAS have
provided a shared memory standard. This would
simplify and encourage the development of high
performance and portable parallel numerical soft-
ware, as well as providing manufacturers with a
small set of routines to be optimized. The acceptance
of the PBLAS requires reasonable compromises
among competing goals of functionality and simplic-
ity. These issues are discussed below.

The PBLAS operate on matrices distributed in a
2D block cyclic layout. Since such a data layout
requires many parameters to fully describe the dis-
tributed matrix, we have chosen a more object-ori-
ented approach, and encapsulated these parameters in
an integer array called an array descriptor. An array
descriptor includes

(1) the number of rows in the distributed matrix,
(2) the number of columns in the distributed ma-

trix,
(3) the row block size (r in section 2.5),
(4) the column block size (c in section 2.5),
(5) the process row over which the first row of

the matrix is distributed,
(6) the process column over which the first col-

umn of the matrix is distributed,
(7) the BLACS context, and
(8) the leading dimension of the local array stor-

ing the local blocks.
For example, here is an example of a call to the

BLAS double precision matrix multiplication routine
DGEMM, and the corresponding PBLAS routine
PDGEMM; note how similar they are:
CALL DGEMM (TRANSA, TRANSB, M, N, K,

ALPHA,

A(IA, JA), LDA,

B(IB, JB), LDB, BETA,

C(IC, JC), LDC)

CALL PDGEMM(TRANSA, TRANSB, M, N,

K, ALPHA,
A, IA, JA, DESC A,

B, IB, JB, DESC.B, BETA,

C, IC, JC, DESC.C)

DGEMM computes C=BETA*C+ALPHA*op(A)-

* o p (B) , where o p (A) is e i the r A or its transpose
depending on TRANSA pp (B) is similar, op (A) is
M- by- K and op (B) is K- by- N. PDGEMM is the

same, with the exception of the way in which subma-

J. Choiet al. / Computer Physics Communications 97 (1996) 1-15 5

trices are specified. To pass the submatrix starting at
A (I A , JA) to DGEHIvl, for example, the actual
argument corresponding to the formal argument A
would simply be A(rA, JA). PDGElvllVl on the other
hand, needs to understand the global storage scheme
of k to extract the correct submatrix, so rA and JA
must be passed in separately. DE$C_A is the array
descriptor for k. The parameters describing the ma-
trix operands B and C are analogous to those describ-
ing A. In a truly object-oriented environment matri-
ces and DESC_A would be the synonymous. How-

ever, this would require language support, and de-
tract from portability.

Our implementation of the PBLAS emphasizes
the mathematical view of a matrix over its storage.
In fact, it is even possible to reuse our interface to
implement the PBLAS for a different block data
distribution that would not fit in the block-cyclic
scheme.

The presence of a context associated with every
distributed matrix provides the ability to have sepa-
rate "universes" of message passing. The use of

S E C | U E N T I A L L U F A C T () H I Z A T I O N C () D E

O0 20 J = l . N I l (M, I) . I I
JB = N I l (N l l (B, •) - J ÷ l , I S)

• a c t o r d l a q ~ o n a l a n d s u b d i q o n a l b l o c k s mmd t e s t f o r exact
e i n p l a r i t y .

CALL DGET•2(M - J + l , JB, A(J , J) , LDA, l • l V (J) ,
I I l • O)

Adjust I] • O and ~he p i v o t i n d i c e s .

I • (IM•O. lq .O .AMD. III •O.GT.O) l | • O a IIM•O ÷ 3 - 1
D0 10 1 m J , RIM(M, J+JB- I)

I P l V (I) " J - 1 + l • l V (I)
C01TINUE

A p p l y ln tercbanses t a columns 1 : J - 1 .

C~LL DLASVP(J - l , A, LDA. J , J~JB-1 , I P I V . I)

I • (J + J B . I ~ . |) THKB

Apply l n t o r c h a m s o B t o colummo J÷JB:B.

CALL DLASW•(B - J - J B + I , AC 1, J~JB) , LDA, J , J + J B - 1 ,
I • I V . 1)

Compute b l o c k r o e o f U.

CALL DTKSN(' L e f t I , *Lover ~, J | o t r a n s p o s e ' , ' U n i t ' ,
$ JB, | - J - J B + I ° O lg , A(J , J) , LDA°

A(J , J*JB) , LDA)
I • (J+JB.LE.N) T K I |

Update t r a i l i n g s u b a ~ t r i x .

CALL DGENN(' | o t r a n s p o s e ' . I | o t r a n s p o s e I ,
N - J - J B ÷ I , I - J - J B + I , JB, -OMi,
A(J~JB. J) , LDA. A(J , J÷lB) . LDA.
DIE, A(J~JB. J÷JB) , LDA)

~ ID IP
FJD IF

20 COET1BUK

P A R A L L E L L U F A C T O R I Z A T I () N C O D E

DO 10 J u JA, J A ÷ N I B (N , |) - I , DESCA(4)
JB • BIB(N I B (H . |) - J 4 J A . DESCA(4))
I m IA ÷ J - JA

• a c t o r d i a s o n a l a m d s u b d i q o n a l b l o c k s a m d t e s t f o r e x a c t
s i n p l a r t t y .

CALL PDGk'r•2(N-J÷JA, l B , A. I , J , DKSCA. I P I V , I I B • O)

A d j u s t IEPOand t h e p i v o t i n d i c e s .

I F (I |FO.EQ.O .AID. I IBFQ.GT.O)
IMFO m I I | F O ÷ J - JA

App ly l n t e r c h a m g e s t o t o l u e n e J A : J - J A .

CALL PDLASVP('Forgax'd I , 'Rove ~ , J - J A , A, IA, 3A, OESCA,
$ I . J + J B - I , I P l V)

I F (J-JA+JB÷I.LX.M) THg]I

Apply t n t Q r c h a ~ g e e 1;o co luz tn l J + J B : J A + | - I .

CALL PDL~SWP(' P o ~ a r d J , 'Rove ~ , M-J-JB+JA0 A, IA ,
$ J~JB, DKSCA, J , J + J n - 1 , IPIV)

Compute b l o c k r o y of U.

CALL pDTRSM(' L e f t ~ , ' L o u e r ' , leo t r a m s p o e e J, ' U n i t ' ,
$ l B , | - J - J B ÷ J A . O|E, A, I , J . DKSCA. A, I ,
$ J4JS , DESCA)

I F (J-JA÷JB~I.LE.N) THEE

Update t r a i l i n K s u b q a t r i x .

CALL P ~ N N ('Be t r l m s p o e e ' , Pie t r a n s p o s e ' .
$ N-J-JB+JA, | - J - J B + J S , JB, -ONE, A,

I÷JB. J , DESCA, A, 1, J.t.JB, D ~ A .
$ OMK° A, I+JB. J÷JB, DKSCA)

K]JD IF
g |D IP

10 CO|Yl BUK

Fig. 2.Comparison of LAPACK and ScaLAPACK LU factorization.

6 J. Choi et al./Computer Physics Communications 97 (1996) 1-15

separate communication contexts by distinct libraries
(or distinct library invocations) such as the PBLAS
insulates communication internal to the library from
external communication. When more than one de-
scriptor array is present in the argument list of a
routine in the PBLAS, it is required that the individ-
ual BLACS context entries must be equal. In other
words, the PBLAS do not perform "intra-context"
operations.

We have not included specialized routines to take
advantage of packed storage schemes for symmetric,
Hermitian, or triangular matrices, nor of compact
storage schemes for banded matrices.

2.7. ScaLAPACK- LU decomposition

Given the infrastructure described above, the
ScaLAPACK version (PDGETRF) of the LU decom-
position is nearly identical to its LAPACK version
(DGETRF) (see Fig. 2).

The Cholesky decompositions (PDPOTRF and
DPOTRF) and QR decompositions (PDGEQRF and
DGEQRF) are analogous.

2.8. ScaLAPACK- symmetric eigenproblem

The solution of the symmetric eigenproblem
PDSYEVX consists of three phases: (1) reduce the
original matrix A to tridiagonal form A = QTQ x
where Q is orthogonal and T is tridiagonal, (2) find
the eigenvalues zl = diag(A t A,) and eigenvec-
tors U = [u I u~] of T so that T = UAU T, and
(3) form the eigenvector matrix V of A so A =
Q(UAUT)Q T = (QU)A(QU) T = VAV T. Phases 1
and 3 are analogous to their LAPACK counterparts,
similarly to LU. However, our current design for
phase 2 differs from the serial (or shared memory)
design. We have chosen to do bisection followed by
inverse iteration (like the LAPACK expert driver
DSYEVX), but with the reorthogonalization phase of
inverse iteration limited to the eigenvectors stored in
a single process. A straightforward parallelization of
DSYEVX would have led to a serial bottleneck and
significant slowdowns in the rare situation of matri-
ces with eigenvalues tightly clustered together. The
current design guarantees that phase (2) is inexpen-
sive compared to the other phases once problems are

reasonably large. An alternative algorithm which
completely eliminates the need for reorthogonaliza-
tion has recently been discovered by Parlett, Fer-
nando, and Dhillon [17], and we expect to use this
version of the routine in the near future. This new
routine will guarantee high accuracy and high speed
independent of the eigenvalue distribution.

2.9. Heterogeneous networks

There are special challenges associated with writ-
ing reliable numerical software on networks contain-
ing heterogeneous processors, i.e., processors which
may do floating point arithmetic differently. This
includes not just machines with completely different
floating point formats and semantics (e.g., Cray ver-
sus workstations running IEEE standard floating point
arithmetic), but even supposedly identical machines
running with different compilers or even just differ-
ent compiler options. The basic problem lies in
making data dependent branches on different pro-
cessors, which may branch differently than expected
on different processors, leading to different proces-
sors executing a completely different section of code
than the other processors expect. We give three
examples of this below.

The simplest example is an iteration where the
stopping criterion depends on the machine precision.
If the precision varies from processor to processor,
different processors will have significantly different
stopping criteria than others. In particular, the crite-
rion for the most accurate processor may never be
satisfied if it depends on data computed less accu-
rately by other processors. Many problems like this
can be eliminated by using the largest machine
epilson among all participating processes. Routine
PDLAMCH returns this largest value, replacing the
uniprocessor DLAMCH. Similarly, one would use the
smallest overflow threshold and largest underflow
threshold for other calculations. But this is not a
panacea, as subsequent examples show.

Next, consider the situation where processors
sharing a distributed vector v compute its two-norm,
and depending on that either scale v by a constant
much different from 1, or do not. This happens in the
inner loop of the QR decomposition, for example.
The two-norm is computed by the ScaLAPACK

J. Choi et aL / Computer Physics Communications 97 (1996) 1-15 7

routine PDNRM2, which computes two-norms locally
and does a reduction. If the participating processors
have different floating point formats, they may re-
ceive different values of the two-norm on return, just
because the same floating point numbers cannot be
represented on all machines. This two-norm is then
compared to a threshold, and if it exceeds the thres-
hold scaling takes place. Since the two-norm may be
different, and the threshold may be different, the
result of the comparison could differ on different
processors, so that one process would scale the
sub-vector it owns, and another would not. This
would very likely lead to erroneous results. This
could in principle be corrected by extending the
reduction operation PDNRM2 to broadcast a discrete
value (like the boolean value of a comparison); then
all participating processors would be able to agree
with the processor at the root of the reduction tree.

However, there are still harder problems. Con-
sider bisection for finding eigenvalues of symmetric
matrices. In this algorithm, the real axis is broken
into disjoint intervals to be searched by different
processors for the eigenvalues contained in each.
Disjoint intervals are searched in parallel. The algo-
rithm depends on a function, call it c o u n t (a , b),
that counts the number of eigenvalues in the half
open interval [a , b) . Using c o u n t , intervals can
be subdivided into smaller intervals containing
eigenvalues until the intervals are narrow enough to
declare the eigenvalues they contain as " found" .
One problem is that two processors with different
floating point formats cannot even agree on the
boundary between their intervals, because they can-
not store the same floating point number. This could
result in multiple copies of eigenvalues if intervals
overlap, or missing eigenvalues if there are gaps
between intervals. Furthermore, the count function
may count differently on different processors, so an
interval [a , b) may be considered to contain 1
eigenvalue by processor A, but 0 eigenvalues by
processor B, which has been given the interval by
processor A during load balancing. This can happen
even if processors A and B are identical, but if their
compilers generate slightly different code sequences
for c o u n t . We have not yet decided what to do
about all of these problems, so we currently only
guarantee correctness of PDSYEVX for networks of
processors with identical floating point formats

(slightly different floating point operations are ac-
ceptable). See [4] for details.

3. The distributed linear algebra machine (DLAM)

In this section we present a theoretical model of a
parallel computer dedicated to dense linear algebra.
This model is from an abstraction of physical mod-
els. This ideal model provides a convenient frame-
work for developing parallel algorithms without wor-
rying about the implementation details or physical
constraints. However, we defined this restricted
model such that actual code should be easily pro-
duced from it.

The model can be applied to obtain theoretical
performance bounds on parallel computers or to
estimate the execution time before or after the algo-
rithm has been implemented. The abstract model is
also useful in scalability and programmability analy-
sis.

A P-process DLAM is constructed out of P
"BLAS-processes" interconnected by a logical
"BLACS-network". This network is a Pr × Pc logi-
cal mesh such that Pr. Pc < P. Data are exchanged
between BLAS processes through the BLACS net-
work by calling BLACS primitives. The processes
can only perform BLAS and BLACS operations.

The DLAM presented here could be very easily
extended by adding a host process. This host process
could act like a server acting upon a user request,
creating the BLACS-network, distributing the data,
starting the BLAS-processes and collecting the re-
suits. This host process could also be used for fault-
tolerant applications. In this case, it would take the
appropriate course of action in the case of a BLAS-
process failure. In the following sections, however,
we describe only the hostless DLAM.

3.1. The BLAS process

As mentioned before, an efficient implementation
of the BLAS masks the effects of the processor
memory hierarchy and frees the programmer from
local tuning of this basic kernel. The performance of
the BLAS heavily depends on the number of mem-
ory references per floating point operation. This ratio
naturally sorts the BLAS in three levels, where

8 J. Choi et al. / Computer Physics Communications 97 (1996) 1-15

routines belonging to the same level usually reach
similar execution rates. Consequently, the BLAS
processes are, as far as performance analysis is
concemed, able to perform only three instructions,
corresponding to the three BLAS levels. The execu-
tion times per floating point operation of each of
these instructions are then denoted by 7i, with i =
1 ,2 ,3 .

3.2. The BLACS network

The BLAS processes communicate with each other
via calls to the BLACS. For the sake of simplicity,
we model a restricted subset of the possible BLACS
operations, namely point-to-point communication and
broadcast/combine operations along a row or col-
umn of the mesh. It is customary to model the time
for sending a message of n items between two
processes by

Ts(n, a , /3) = a + n / 3

where a denotes the latency, and /3 the inverse of
the bandwidth. The broadcast/combine operations
are more complicated since the BLACS allow the
user to specify a topology argument [8,10]. We
estimate the cost of broadcasting n items using a
split-ring topology to p - 1 processes by

Tb('S-ring, p, n, a , /3)

- -K('bcas t ' , 'S-ring', p, n) Ts(n, a, /3).

Similarly, the cost of a 1-tree combine operation of
n items involving p processes is estimated by

To('S-ring, p, n, a , /3)

= K('combine ' , 'S-ring', p, n) Ts(n, a , [3).

At this level of the model, it is not possible to
determine the values of K because no assumption
has been made so far on the physical network to
model. This justifies the introduction of these func-
tions K () .

3.3. Accuracy and refinement of the DLAM

3 instruction. We determined 73 as being the
achieved peak performance of the BLAS matrix-mul-
tiply GEMM. This approximation is incorrect for
small block sizes, in which case Level 2 operations
are performed and 72, 73 should be set respectively
to the achieved peak performance of the BLAS
matrix-vector multiply GEMV and zero. Obviously,
these coarse approximations could be refined by
computing a piece-wise linear approximation of the
yi's with respect to the problem size. This model
smoothes the influence of the physical memory hier-
archy and could be adapted to out-of-core BLAS
operations.

Modeling the performance of the DLAM network
is tightly coupled to the physical network. Experi-
mental values of ct and fl can easily be determined
for a given machine. If the logical mesh can be
embedded into the physical network and the message
collisions ignored, 2 log2(p) is a good approxima-
tion of K('combine', ' l-tree' , p, n) assuming the
result has to be left on the p processes and neglect-
ing the cost of the local computations; similarly,
K('bcast ' , ' l- tree' , p, n) --- log2(p). When the com-
munications can be pipelined, it is reasonable to
estimate K('bcast ' , 'S-ring', p, n) by 2. Because this
model ignores the probable collision of messages or
possible network contention problems, its accuracy
depends on the number of physical links. For in-
stance, when comparing the performance obtained on
an ideal DLAM with those obtained on an ethemet-
based network of workstations sharing one physical
link, it is important to use appropriate values for K.
Indeed, an upper bound for K('combine', ' l -
tree', p, n) is given by 2 (p - 1). However, for a
given value of p, it is possible to experimentally
determine constants which take into account the cost
due to network contention and message collisions.
More accurate models taking into account the colli-
sions of messages could be used, but this is beyond
the scope of this paper. Finally, the described model
could obviously be refined by computing a piece-wise
linear approximation of the time for sending a mes-
sage with respect to the message length.

When applying numerically the results obtained
by the DLAM, we choose yl = 72 = 0, assuming
that the cost of these instructions will always be
negligible compared to BLACS operations or a Level

3.4. The LU factorization on the DLAM

We present in this section the model correspond-
ing to the parallel right-looking LU factorization

J. Choi et a l . / Computer Physics Communications 97 (1996) 1-15 9

implemented in ScaLA_PACK [9]. We restrict our-
selves to the case where the matrix is distributed on
the processes using a square (r = c) block cyclic
decomposition scheme. We ignore the possible colli-
sion of messages on the network. It can be briefly
described as follows. Assume the LU factorization of
the k × r first columns has proceeded with k
{0, 1 (n - l) /r}. During the next step, the algo-
rithm factors the next panel of r columns, pivoting if
necessary. Next the pivots are applied to the remain-
der of the matrix. The lower trapezoid factor just
computed is broadcast to the other process columns
of the grid using a split-ring topology [8,10], so that
the upper trapezoid factor can be updated via a
triangular solve. This factor is then broadcast to the
other process rows using a 1-tree topology [8,10], so
that the remainder of the matrix can be updated by a
rank-r update. This process continues recursively
with the updated matrix. The total execution time
TLU(n 2, P) can be estimated by

(n - 1)T~('l-tree', Pr, 2, a , /3)
(Determine pivot row)

+ (n - 1)2T,(r, a , /3)
(Swap rows in current panel)

 n,Jr()
+]~ T b 'l-tree', Pr, n-- (k + 1)r

k=0 Pc ' a ' / 3

(Broadcast upper trapezoid factor)

(n-l)/r n - (k + l) r n - (k + l) r
+ ~ 2 rT3

k = 0 Pr Pc
(Rank-r update: BLAS 3 GEMM)

Notice that we neglected the BLAS 1 computations
performed during the factorization of the current
panel of columns, considering that the contribution
of this operations to the execution time is mostly due
to communication. In addition, when the logical
mesh can be embedded into the physical network
and the message collisions neglected, the previous
formula can be simplified to

TLu(n 2, P)

n 2
= 2n log2(Pr) ct + " ~ (2P c + Pr log2(Pr))fl

2n 3

+ 3P T3- (1)

+
n - 1

r
Tb('S-ring', Pc, r, ct, /3)

(Broadcast pivot information)

(,,--m,Jr ((, , ;)
+ k]~0= 2r T s , a , / 3

n-(k+l)r
+T~ P~

(Swap remaining rows)

+
(n - l) / r

E
k=O

'S-ring', Pc, Pr , a ,

(Broadcast lower trapezoid factor)

+ (n--l)/rz n - (k + 1)rr2y s

k= o Pc
(Triangular solve: BLAS 3 TRSM)

4. Performance

An important performance metric is parallel effi-
ciency. Parallel efficiency, E(N, P), for a problem
of size N on P processors is defined in the usual
way [13] as

1 Tseq(N)
E(N, P) = P T(N, P) ' (2)

where T(N, P) is the runtime of the parallel algo-
rithm, and Tseq(N) is the runtime of the best sequen-
tial algorithm. An implementation is said to be scal-
able if the efficiency is an increasing function of
N/P, the problem size per processor (in the case of
dense matrix computations, N = n 2, the number of
words in the input).

We will also measure the performance of our
algorithm in Megaflops/sec (or Gigaflops/sec). This
is appropriate for large dense linear algebra computa-
tions, since floating point dominates the communica-
tion. For a scalable algorithm with N / P held fixed,

1 0 J. Choi et al . / Computer Physics Communications 97 (1996) 1-15

we expect the performance to be proportional to P.
We seek to increase the performance of our algo-

rithms by reducing overhead due to load imbalance,
data movement, and algorithm restructuring. The
way the data are distributed over the memory hierar-
chy of a computer is of fundamental importance to
these factors. We present in this section extensive
performance results on various platforms for the
ScaLAPACK factorization and reductions routines.
Performance data for the symmetric eigensolver
(PDSYEVX) are presented in [5].

4.1. Choice of block size

In the factorization or reduction routines, the work
distribution becomes uneven as the computation pro-
gresses. A larger block size results in greater load
imbalance, but reduces the frequency of communica-
tion between processes. There is, therefore, a trade-
off between load imbalance and communication
startup cost, which can be controlled by varying the
block size (see Fig. 3).

Most of the computation of the ScaLAPACK
routines is performed in a blocked fashion using
Level 3 BLAS, as is done in LAPACK. The compu-
tational blocking factor is chosen to be the same as
the distribution block size. Therefore, smaller distri-
bution block sizes increase the loop and index com-

putation overhead. However, because the computa-
tion cost ultimately dominates, the influence of the
block size on the overall communication startup cost
and loop and index computation overhead decreases
very rapidly with the problem size for a given grid of
processes. Consequently, the performance of the
ScaLAPACK library is not very sensitive to the
block size, as long as the extreme cases are avoided.
A very small block size leads to BLAS 2 operations
and poorer performance (see Section 3.3). A very
large block size leads to computational imbalance.

The chosen block size impacts the amount of
workspace needed on every process. This amount of
workspace is typically large enough to contain a
block of columns or a block of rows of the matrix
operands. Therefore, the larger the block size, the
greater the necessary workspace, i.e the smaller the
largest solvable problem on a given grid of pro-
cesses. For Level 3 BLAS blocked algorithms, the
smallest possible block operands are of size r × c.
Therefore, it is good practice to choose the block
size to be the problem size for which the BLAS
matrix-multiply GEMM routine achieves 90% of its
reachable peak.

Determining optimal, or near optimal block sizes
for different environments is a difficult task because
it depends on many factors including the machine
architecture, speeds of the different BLAS levels, the

a '~ Lu FACT. PREDICTED PERFOPMANCE ON 16 (2x8) NODES 1860
/ 360

(b) Lu PREDIGTED TII~ DISTRIBUTION ON 84 (4xl 6) NODES SP'2
1 ! ! :

0.9 "~ LaWlcy (da,.,p'u~) :~ ComputaJ~: (sdid) .
. . . . ~ ! ! ~ ~ ! : :

"~ i Bandwinh (d~tod) ~ !
, . a o . 8 - , v . : ~ ! ~ ~ ! ~ ' " ! ! !

~ m o p l t ' .32

~ 0 . e c " :/'~ ! i ! "

. i ! - ~ -

I / ~ i BLOCK S l~ - 40 ::
" ~ . . ~ ! ÷ !~

. -v! -• , .• ,! ! ! ?

0.5 1 1 ,S 2 2.5 3
malrix wd~f x 10 'L

F i g . 3 . L U p r e d i c t e d p e r f o r m a n c e

J. Choi et al. / Computer Physics Communications 97 (1996) 1-15 11

latency and bandwidth of message passing, the num-
ber of process available, the dimensions of the pro-
cess grid, the dimension of the problem, and so on.
However, there is enough evidence and expertise for
automatically and accurately determining optimal, or
near optimal block sizes via an enquiry routine.
Furthermore, for small problem sizes it is also possi-
ble to determine if redistributing n 2 data items is an
acceptable cost in terms of performance as well as
memory usage. In the future, we hope to calculate
the optimal block size via an enquiry routine.

4.2. Choice of grid size

The best grid shape is determined by the algo-
rithm implemented in the library and the underlying
physical network. A one link physical network will
favor P~ = 1 or Pc = 1. This affects the scalability of
the algorithm, but reduces the overhead due to mes-
sage collisions. It is possible to predict the best grid
shape given the number of processes available. The
current algorithms for the factorization or reduction
routines can be split into two categories.

If at every step of the algorithm a block of
columns and/or rows needs to be broadcast, as in
the LU or QR factorizations, it is possible to pipeline
this communication phase and overlap it with some
computation. The direction of the pipeline deter-

mines the shape of the grid. For example, the LU,
QR and QL factorizations perform better for " f la t"
process grids (P~ < Pc)- These factorizations share a
common bottleneck of performing a reduction opera-
tion along each column (for pivoting in LU, and for
computing a norm in QR and QL). The first implica-
tion of this observation is that large latency message
passing perform better on a " f la t" grid than on a
square grid. Secondly, after this reduction has been
performed, it is important to update the next block of
columns as fast as possible. This is done by broad-
casting the current block of columns using a ring
topology, i.e., feeding the ongoing communication
pipe. Similarly, the performance of the LQ and RQ
factorizations take advantage of " ta l l" grids (Pr >
Pc) for the same reasons, but transposed.

The theoretical efficiency of the LU factorization
can be estimated by (see (1), (2))

3P log Pr ct
ELU (N, P) = 1 + n2 T3

3 /31 -I + (2ec+Pr log

For large n, the last term on the right hand side of
the equation dominates, and it is minimized by
choosing a P~ slightly smaller than Pc- Pc--2P~

36

3O

25

20

16

1C

6

Q

LU pedom~nce on ~e Intel Paragon (r.c,,20)

(a) ~

16x32

|

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Matdx Size

351

~ol

51

o~

x 104

OR performance on the Intel Paragon (r-c-6)

(b) ~,~

1~

/ ~ . _ _ _ 16x16

~ 6 X 1 6 i i i : J

' 0.5 1 1,5 2 2.5 3 3,5 4 4.5
Maldx Size

Fig. 4. LU and QR performance on the Intel Paragon.

zl0'

12 J. Choi et al. / Computer Physics Communications 97 (1996) 1-15

ILl l~'form ante on INn-node SP-2 (r.¢.40)

a) ,x,,

. 4x8

o'.~ o'., o', o~ ; ,'.2 ¢., ,i~ ,~
Mal;tx S~Z4 ' x10 '

OR l ~ f ~ m ~ m m Inl~ Pa ta~ MPsaode (I-~.16)
4.5,

,~ (b)
4x16

a~SF

3~

~.s~

fl
I

gs[

01 i i i i
0 012 0:4 0.6 0'.8 1 12. 1:4 116 1.8

Mavix Size x 10'

Fig. 5. LU and QR performance.

works well on Intel machines. For smaller n, the
middle term dominates, and it becomes more impor-
tant to choose a small Pr" Suppose that we keep the
ratio Pr/Pc constant as P increases, thus we have
Pr = uC-fi and Pc = vVtff, where u and v are con-
stant [9]. Moreover, let ignore the log2(P r) factor for
a moment. In this case, Pr/n and Pc/n are propor-
tional to ¢ f f / n and n 2 must grow with P to
maintain efficiency. For sufficient large Pr, the

log2(P r) factor cannot be ignored, and the perfor-
mance will slowly degrade with the number of pro-
cessors P. This phenomenon is observed in practice
as shown in Figs. 4 -8 showing the efficiency of the
LU factorization on the Intel Paragon.

The second group of routines physically transpose
a block of columns and/or rows at every step of the
algorithm. In these cases, it is not usually possible to
maintain a communication pipeline, and thus square

LLT pedmmu~e oa ~ SP-2 (r.c-50)

(a) ~'

~8

' i ' ' ' '. : ' i 0.2 0 4 0.6 0.8 ! 1 2 1 4 1,6 I 8
Malrlx Size x I 0 4

LIT p w l w m ~ on I~ Inl~ Paragon (t,.c-20)

(b)
~t

~ 16~

15

11 16x16

Oi i
0 O.S 1 1 .S 2 2.5 3 3.S 4 4.5

Jketx SlzO

Fig. 6. Cholesky performance on the IBM SP-2 and lntel Paragon.

X 10 4

J. Choi et a l . / Computer Physics Communications 97 (1996) 1-15

Pm'fomtance c~padwn ol vadous codes m 64 SP-2 t l~ nodes

. l.L.'r' ~11 '
(a) o ~ ' (a) ' " w,!gs

.c°-" s s I
... ,,J

....' s S
..*" ps

• 21 IA'

2"~ " " " ' ' 8RD, 6x8

0,2 0.4 0,6 0.8 1 12 1.4 1.6 I 1,6
Marx SI~,,

2
xlO'

LU Elldency m the Intd Parag~,l M P's node (r-,c-16)

0.71" (b) ~ (~ , , , ,

I

0.6t"

O.SI"

0.41'

o.aF

0 t i i t i
0 0.2 014 016 0'.8 1 12 114 1.6

Matrix Size
118

Fig. 7. Performance and efficiency.

13

x1¢

or near square grids are more optimal. This is the
case for the algorithms used for implementing the
Cholesky factorization, the matrix inversion and the
reduction to bidiagonal form (BRD), Hessenberg
form (HRD) and tridiagonal form (TRD). For exam-
ple, the update phase of the Cholesky factorization of
a lower-symmetric matrix physically transposes the
current block of columns of the lower triangular
factor.

Assume now that at most P processes are avail-
able. A natural question arising is: could we decide
what process grid Pr × Pc < P should be used? Simi-
larly, depending on P, it is not always possible to
factor P --- Pr" Pc to create the appropriate grid. For
example, if P is prime, the only possible grids are
1 × P and P × 1. If such grids are particularly bad
for performance, it may be beneficial to let some
processors remain idle, so the remainder can be

3

~S

2

__. ~.~
O

(ai
TRD performance ~ I~-node SP-2

kO. r.,c.6

. i ' i ' 0.2 0.4 0.6 GO, I 1 2 1A 1 6 1.8
Matrix Size

zsl

BRD I~ldomtance on I I ~ o d e SP-2

i

2t

sl

o.sl

o'

x lo 4

(b) t,,~..,,.,

. , :
0.2 0.4 0.13 0.8 I 12 1.4 16 18

Matrix S~ze

Fig. 8. P e r f o r m a n c e on the I B M SP-2.

2

xlO'

14 J. Choi et al. / Computer Physics Communications 97 (1996) 1-15

formed into a "squarer" grid [15]. These problems
can be analyzed by a complicated function of the
machine and problem parameters. It is possible to
develop models depending on the machine and prob-
lem parameters which accurately estimate the impact
of modifying the shape of the grid on the total
execution time, as well as predicting the necessary
amount of extra memory required for each routine.

5. Future directions

5.1. Future addition to ScaLAPACK

Basic building blocks like the BLAS, the BLACS
and the PBLAS have been made publically available.
At the time this paper was written, the current ~er-
sion of the PBLAS was being extended by removing
alignment assumptions made on the operands. More-
over, the PBLAS package is being internally restruc-
tured to facilitate its maintenance and reinforce its
robustness. Concurrently, many of the LAPACK
functions missing in ScaLAPACK are being assem-
bled and integrated. These include condition estima-
tion, iterative refinement of linear solutions and lin-
ear least square solvers. We are planning improved
versions of the symmetric eigenvalue routine. SVD
and nonsymmetric eigenvalue routines are also in
preparation. More elaborate testing and timing pro-
grams are being developed to ensure the robustness
and the efficiency of the library. Finally, banded,
general sparse, and out-of-core prototype routines are
being investigated.

5.2. Alternative approaches to libraries

Traditionally, large, general-purpose mathemati-
cal software libraries on uniprocessors and shared
memory machines have tried to hide much of the
complexity of data structures and performance issues
from the user. For example, the LAPACK project
incorporates parallelism in the Level 3 BLAS, where
it is not directly visible to the user. Unfortunately, it
is not possible to hide these details as neatly on
distributed memory machines. Currently, the data
structures and data decomposition must be specified
by the user, and it may be necessary to explicitly
transform these structures in between calls to differ-
ent library routines. These deficiencies in the con-

ventional user interface have prompted extensive
discussion of alternative approaches for scalable par-
allel software libraries of the future. Here are some
possibilities.
(1) Traditional function library (i.e., minimum pos-

sible change to the status quo in going from
serial to parallel environment). This will allow
one to protect the programming investment that
has been made. More aggressive use of perfor-
mance models may permit us to choose the best
layout and redistribute the input data structure
automatically. This is attractive for dense linear
algebra since for large problems the ~ (n 3) float-
ing point operations will dominate the ~ (n 2)
cost of redistribution.

(2) Reactive servers on the network. A user would
be able to send a computational problem to a
server that was specialized in dealing with the
problem. This fits well with the concepts of a
networked, heterogeneous computing environ-
ment with various specialized hardware re-
sources (or even the heterogeneous partitioning
of a single homogeneous parallel machine).
Again, this is attractive for dense linear algebra
since ~'(n 3) flops are performed on a data struc-
ture of size 6e(n2).

(3) Interactive environments like Matlab or Mathe-
matica, perhaps with "expert" drivers (i.e.,
knowledge-based systems) for special domains,
such as structural analysis. Such environments
have proven to be especially attractive for rapid
prototyping of new algorithms and systems that
may subsequently be implemented in a more
customized manner for higher performance. With
the growing popularity of the many integrated
packages based on this idea, this approach would
provide an interactive, graphical interface for
specifying and solving scientific problems. Both
the algorithms and data structures are hidden
from the user, because the package itself is
responsible for storing and retrieving the prob-
lem data in an efficient, distributed manner. In a
heterogeneous networked environment, such in-
terfaces could provide seamless access to com-
putational engines that would be invoked selec-
tively for different parts of the user's computa-
tion according to which machine is most appro-
priate for a particular subproblem.

J. Choiet al./ Computer Physics Communications 97 (1996) 1-15 15

(4) Reusable templates (i.e., users adapt " source
code" to their part icular applications). A tem-
plate is a descript ion of a general algori thm

rather than the executable object code or the
source code more commonly found in a conven-

tional software library. Nevertheless, although

templates use generic versions of key data struc-

tures, they offer whatever degree of customiza-
t ion the user ma y desire. W e have constructed

such a set of template for interactive l inear sys-

tem solvers, and are currently construct ing one
for e igenvalue problems.

A c k n o w l e d g e m e n t s

This work was supported in part by the National

Science Founda t ion Grant No. ASC-9005933; by the

Defense Advanced Research Projects Agency under

contract DAAL03-91-C-0047 , adminis tered by the
Army Research Office; by the Office of Scientific

Comput ing , U.S. Depar tment of Energy, under Con-
tract DE-AC05-84OR21400 ; and by the National
Science Founda t ion Science and Technology Center
Cooperat ive Agreement No. CCR-8809615.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S.
Ostrouchov and D. Sorensen, LAPACK Users' Guide (SIAM,
Philadelphia, PA, 1992).

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S.
Ostrouchov and D. Sorensen, LAPACK Users' Guide, Sec-
ond Edition, (SIAM, Philadelphia, PA, 1995).

[3] J. Choi, J. Dongarra and D. Walker, Parallel Matrix Trans-
pose Algorithms on Distributed Concurrent Computers,
Technical Report UT CS-93-215, LAPACK Working Note
#65 (University of Tennessee, 1993).

[4] J. Demmel, I. Dhillon and H. Ren, On the Correctness of

Parallel Bisection in Floating Point, Technical Report
UCB//CSD-94-805, University of California, Berkeley
Computer Science Division (1994), available via anonymous
ftp from g r - f t p , cs . b e r k e l e y , edu, in directory pub /
tech- reports/csd/csd- 94 - 805, file all. ps.

[5] J. Demmel and K. Stanley, The performance of f'mding
eigenvalues and eigenvectors of dense symmetric matrices on
distributed memory computers, in: Proc. Seventh SIAM Con-
ference on Parallel Processing for Scientific Computing
(SIAM, Philadelphia, PA, 1994).

[6] J. Dongarra, J. Du Cruz, I. Duff and S. Hammarling, A set of
Level 3 basic linear algebra subprograms, ACM Trans. Math.
Software 16 (1990) 1-17.

[7] J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson,
Algorithm 656: an extended set of basic linear algebra
subprograms: model implementation and test programs, ACM
Trans. Math. Software 14 (1988) 18-32.

[8] J. Dongarra and R. van de Geijn, Two-dimensional Basic
Linear Algebra Communication Subprograms, Technical Re-
port UT CS-91-138, LAPACK Working Note #37 (Univer-
sity of Tennessee, 1991).

[9] J. Dongarra, R. van de Geijn and D. Walker, A Look at
Scalable Dense Linear Algebra Librairies, Technical Report
UT CS-92-155, LAPACK Working Note #43 (University of
Tennessee, 1992).

[10] J. Dongarra and R.C. Whaley, A User's Guide to the BLACS
vl.0, Technical Report UT CS-95-281, LAPACK Working
Note #94 (University of Tennessee, 1995).

[11] High Performance Forum, High Performance Fortran Lan-
guage Specification, Technical Report CRPC-TR92225, Cen-
ter for Research on Parallel Computation (Rice University,
Houston, TX, 1993).

[12] Message Passing Interface Forum, MPI: A Message-Passing
Interface standard, Int. J. Supercomputer Applications 8
(1994).

[13] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D.
Walker, Solving Problems on Concurrent Processors, Vol. 1
(Prentice Hall, Englewood Cliffs, NJ, 1988).

[14] R. Hanson, F. Krogh and C. Lawson, A proposal for standard
linear algebra subprograms, ACM SIGNUM Newsl. 8 (1973).

[15] W. Hsu, G. Thanh Nguyen and X. Jiang, Going Beyond
Binary, http ://www. cs. berkeley, edu / xj iang /
cs 258/proj ect. i. html, CS 258 Class project (I 995).

[16] C. Lawson, R. Hanson, D. Kincaid and F. Krogh, Basic
linear algebra subprograms for Fortran usage. ACM Trans.
Math. Software 5 (1979) 308-323.

[17] B. Parlett, I. Dhillon and V. Fernando, private communica-
tion (1995).

