
A Spatio-Temporal Approach to Collaborative Filtering

Zhengdong Lu
Institute for Computational
Engineering & Sciences

University of Texas at Austin
luz@cs.utexas.edu

Deepak Agarwal
Yahoo! Research

Sunnyvale,CA
dagarwal@yahoo-

inc.com

Inderjit S. Dhillon
Department of Computer

Sciences
University of Texas at Austin
inderjit@cs.utexas.edu

ABSTRACT

In this paper, we propose a novel spatio-temporal model for
collaborative filtering applications. Our model is based on
low-rank matrix factorization that uses a spatio-temporal
filtering approach to estimate user and item factors. The
spatial component regularizes the factors by exploiting cor-
relation across users and/or items, modeled as a function
of some implicit feedback (e.g., who rated what) and/or
some side information (e.g., user demographics, browsing
history). In particular, we incorporate correlation in fac-
tors through a Markov random field prior in a probabilistic
framework, whereby the neighborhood weights are functions
of user and item covariates. The temporal component en-
sures that the user/item factors adapt to process changes
that occur through time and is implemented in a state space
framework with fast estimation through Kalman filtering.
Our spatio-temporal filtering (ST-KF hereafter) approach
provides a single joint model to simultaneously incorporate
both spatial and temporal structure in ratings and therefore
provides an accurate method to predict future ratings. To
ensure scalability of ST-KF, we employ a mean-field approx-
imation for inference. Incorporating user/item covariates in
estimating neighborhood weights also helps in dealing with
both cold-start and warm-start problems seamlessly in a sin-
gle unified modeling framework; covariates predict factors
for new users and items through the neighborhood. We il-
lustrate our method on simulated data, benchmark data and
data obtained from a relatively new recommender system
application arising in the context of Yahoo! Front Page.
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1. INTRODUCTION
Matrix factorization (MF) is an effective prediction tech-

nique that has been successfully applied to several collabo-
rative filtering applications [17, 13, 18, 19]. However, most
existing MF-based collaborative filtering algorithms do not
consider the following facts:

• Real-world recommender systems are often dynamic
in nature and require adaptive estimation of user and
item characteristics for accurate predictions. In fact,
for several well studied movie recommender problems,
user factors are non-stationary over time and require
an adaptive estimation procedure that emphasizes re-
cent user ratings more than his/her past behavior. In
several other applications, item characteristics, such
as the popularity of a news article, may also be dy-
namic and change rapidly in a rather short time pe-
riod. In such scenarios, “static” matrix factorization
is sub-optimal. In fact, most collaborative filtering al-
gorithms have been designed and evaluated based on
random split of training and test sets without consid-
ering the temporal structure.

• In addition to the actual ratings, we often have extra
information about users or items, such as implicit feed-
back (e.g., who rated what) and/or some side informa-
tion (e.g., user demographics, browsing history). In-
corporating side information becomes especially useful
when available ratings for users and items are scarce.

In this paper, we provide a new method to address the
above-mentioned problems through a model that simulta-
neously incorporates the spatial and temporal structure in
rating history. We show that this joint model, referred to
as spatio-temporal Kalman filtering (ST-KF), improves pre-
diction accuracy over standard matrix factorization on syn-
thetic data, Movielens data and the Yahoo! Front Page data.

1.1 Overview
Our work enhances the basic factor model for collabora-

tive filtering that models the rating of item i by user u as

r(ui) = (p(u))T q(i) + ǫ(ui), (1)

where p(u) and q(i) are k-dimensional latent user and item
factors respectively, and ǫ(ui) denotes observation error. Es-
timation of these factors is obtained through some regular-
ization on factors to prevent over-fitting; it is customary
to constrain the factors by regulating the L2 norm of fac-
tors. The main contribution of our work is to enhance the



regularization through a spatio-temporal filtering approach
to obtain better estimates of user and item factors. The
spatial component, discussed in Section 2, regularizes the
factors by exploiting correlations across users and/or items.
The temporal component, introduced in Section 3, ensures
that user/item factors adapt to process changes that occur
through time. In particular, temporal change in factors is
modeled in a state space framework with fast estimation
through Kalman filtering. Our spatio-temporal filtering ap-
proach (named ST-KF, see Sections 4-5) provides a single
joint model to simultaneously incorporate both spatial and
temporal structure in ratings using a “product of experts”
approach that results in an accurate method to predict fu-
ture ratings. Although classical Kalman filtering is a fast
estimation method for linear state-space models, simulta-
neous estimation of both spatial and temporal components
induces a model that is computationally intensive; we ensure
scalable inference for ST-KF through mean-field approxima-
tion. Our model also handles both cold-start and warm-start

problems seamlessly in a single unified modeling framework
by incorporating user/item covariates in estimating neigh-
borhood weights; covariates predict factors for new users
and new items through the neighborhood.

Notation

We use superscripts to index users, e.g., p(u), and items,
e.g., q(i), and use subscripts for types (e.g. users vs. items)
or time index in temporal modeling. We use bold upper-case
letters, e.g., R, for matrices, bold low-case letters, e.g., r,
for vectors, and italics for scalars, e.g., r, and the entries in
a matrix or vector, e.g., W (uv).

2. SPATIAL MODEL
We first consider incorporating spatial correlation across

users and/or items into the collaborative filtering model.
Here we focus on the matrix factorization (MF) model, and
express our prior belief on the user and item similarity as a
Markov random field prior for user and item factors.

2.1 MF with Graph Laplacian Prior
Consider a user-item rating matrix R ∈ R

N×M (N users
and M items) that is partially observed. Matrix factoriza-
tion models attempt to find a rank-k approximation of R of
the form

R ≈ PQT (P ∈ R
N×k, Q ∈ R

M×k),

where the rows in P are the user factors and rows in Q
the item factors. The most commonly used approach for
estimating P and Q is to minimize the cost function

‖B⊙ (R−PQT )‖2F + λ(‖P‖2F + ‖Q‖2F ), (2)

where B indicates the location of observed ratings with

Bui =

(

1 if Rui is observed,

0 if Rui is missing,

and ⊙ stands for the Hadamard product. Equation (2) can
be equivalently interpreted as finding the maximum a poste-
riori (MAP) solution of {P, Q} while assuming that both the
user and item factors are drawn from a spherical Gaussian
and R is contaminated with Gaussian noise.

Now suppose we have some additional similarity informa-
tion for users either given a priori, or extracted from side

information, which leads to a more informative prior for user
factors {p(1), · · · ,p(N)}, denoted fp(P),

fp(P) ∝
Y

u,v

e−
α
2

W
(uv)
p ‖p(u)−p(v)‖2

, (3)

where W
(uv)
p ≥ 0 represents the similarity between users u

and v, and the parameter α controls the strength of this
prior. Equation (3) defines a Gaussian Markov random field

(MRF) [12] over {p(1), · · · , p(N)}. In fact, the conditional

distribution of user factor p(u)|p(−u) (p(−u) denotes all user
factors except that of user u) only depends on the factors
in the neighborhood of u and is a k-dimensional Gaussian
given by

p(u)|p(−u) ∼ N

0

@

P

v∈U(u) W
(uv)
p p(v)

P

v∈U(u) W
(uv)
p

, (α
X

v∈U(u)

W (uv)
p )−1I

1

A , (4)

where U(u) denotes the neighbors of u and I denotes the
identity matrix. It follows from the celebrated Hammersely-
Clifford theorem that for symmetric Wp, the conditional
distribution in (4) induce a unique joint distribution that is
given by (3). Thus, we are modeling the joint distribution
of factors by modeling the precision matrix (the inverse of
covariance matrix) through similarity functions Wp instead
of modeling the covariance matrix. All existing work on
matrix factorization assumes independent priors on factors.
In contrast, we impose dependencies at the outset through a
joint distribution resulting in ellipsoidal constraints that are
functions of the covariates. A similar prior can be imposed
on item factors, for ease of exposition we assume the same
α as in (3),

fq(Q) ∝
Y

i,j

e−
α
2

W
(ij)
q ‖q(i)−q(j)‖2

. (5)

This MRF prior, after combined with the spherical Gaussian
prior in a “product of experts” fashion, gives a joint prior for
user and item factors,

pr(P,Q) ∝ e−
1
2

λ(‖P‖2
F +‖Q‖2

F )fp(P)fq(Q).

With this prior, finding the MAP estimate of P and Q
amounts to minimizing

‖B⊙ (R−PQT )‖2F + λ(‖P‖2F + ‖Q‖2F )+

α(tr(PT ∆pP) + tr(QT ∆qQ)) (6)

where tr(·) denotes the trace of a matrix, ∆p is the graph
Laplacian composed from the similarity matrix Wp (assum-

ing W
(uu)
p = 0, u = 1, 2. · · · , N),

∆p = Dp −Wp,

and Dp is the diagonal degree matrix with D
(uu)
p =

P

v W
(uv)
p .

It can be easily verified that tr(PT ∆pP) =
P

u,v W
(uv)
p ‖p(u)−

p(v)‖2 penalizes differences between similar users u and v.
The regularization for items is defined in the same way. This
spatially regularized matrix factorization scheme will be re-
ferred to as SptMF.

The graph Laplacian regularized matrix factorization model
in (6) can be used standalone as a way to incorporate side
information about users and items or as an additional com-
ponent in a more complex model. Moreover, as will be shown



in Sections 4, it can also serve as an initialization step for
modeling the temporal structure.

2.2 Estimating the Similarity Matrix
We construct the similarity matrix Wp and/or Wq by

exploiting side information and ratings history. For simplic-
ity, we will only discuss similarity construction among users,
and similar discussion holds for items. We provide a few ex-
amples below of constructing such similarity measures:
From covariates. When the covariate is categorical (e.g.,
gender, occupation, etc), we use the following measure

W (uv) = δ(x(u),x(v))

where xu indicates the category of user u. When the covari-
ate is numerical (e.g., age), we use the following Gaussian
RBF kernel

W (uv) = e−‖x(u)−x(v)‖2/σ2

From rating history. The simplest similarity measure is
the co-occurrence based on the “who-rated-what” matrix,

W (uv) = number of items rated by both u and v.

We can also combine the similarities constructed from dif-
ferent sources {W(1), · · · ,W(m)}. One way is to find a
convex combination W =

Pm
i=1 αiW(i) to maximize the

alignment between W and some target correlation, for ex-
ample, the Pearson correlation among users extracted from
observed ratings. This alignment strategy has been proven
effective for kernel learning [9] and can be readily used for
our problem. Furthermore, we make our similarity matrix
W sparse by removing weak similarities to reduce noise in
estimates of neighborhoods. Such a sparse W reduces com-
putational cost and enables a scalable procedure. Indeed, for
both alternating least squares and stochastic gradient 1 (two
commonly used methods for estimating factors with matrix
factorization), estimating the factors for a particular user u
involves calculating the average of its nearest neighbors

X

u′∈U(u)

W (uu′)p(u′)/
X

u′∈U(u)

W (uu′),

which needsO(k) time if W is a k-NN graph, butO(N) time
if W is dense. The advantage of having a sparse k-NN graph
will become more obvious for the joint spatio-temporal fil-
tering, for which we have to dynamically incorporate the
user similarity prior in filtering steps.

3. TEMPORAL MODEL
The spatial model in Section 2 exploits correlation in co-

variate space to enforce smoothness across users and/or item
factors. Another source of correlation is through time, which
is important for dynamical modeling of the user and item
factors. For simplicity, we will first assume the item char-
acteristic to be time-invariant. Later in Section 4 we will
relax this assumption and allow for on-line re-estimation of
the item factors. As mentioned before, the temporal struc-
ture can be modeled in a state space framework with fast
estimation through Kalman filtering [8].

1For example, see Simon Funk’s algorithm
http://sifter.org/ simon/journal/20061211.html

3.1 Dynamic Model
We assume the item factors are known a priori, e.g., as

item features given by other sources or pre-estimated by
some preprocessing step such as a static MF. We assume
the user factors for each user u follow a random walk driven
by Gaussian noise:

dynamics: p
(u)
t = p

(u)
t−1 + w

(u)
t , (7)

observation: r
(u)
t = H

(u)
t p

(u)
t + v

(u)
t , (8)

where r
(u)
t is the vector of ratings from user u in time in-

terval t, and H
(u)
t is the observation operator composed of

corresponding rows of Q (item factors) based on the model

given by (1); w
(u)
t and v

(u)
t are respectively the process noise

and the observation noise, both Gaussian: w
(u)
t ∼ N (0, Σp),

v
(u)
t ∼ N (0, σ2

oI), and uncorrelated across individual users.
Both variances (Σp, σo) are either known or can be esti-

mated from data. For example, we may assume that Σp =
βI and tune β through cross-validation.

3.2 Inference: Kalman Filtering
With the dynamic model described above, the user factor

can be dynamically and efficiently estimated with Kalman
filtering (KF). Basically, KF sequentially takes the ratings

{. . . , r(u)
t−2, r

(u)
t−1, r

(u)
t } as observations and returns the opti-

mal state estimate at time t, denoted by p̂
(u)

t|t , and the asso-

ciated variance, denoted by Σ
(u)
t|t . In each KF step at time t,

the estimate (p̂
(u)

t−1|t−1, Σ
(u)

t−1|t−1) from previous step is up-

dated by incorporating the new observation r
(u)
t as follows

Function: [ p̂
(u)

t|t , Σ
(u)

t|t ] = KFupdate(p
(u)

t−1|t−1, Σ
(u)

t−1|t−1, r
(u)
t )

step 1: Time Update

p̂
(u)

t|t−1 = p̂
(u)

t−1|t−1, Σ
(u)

t|t−1 = Σ
(u)

t−1|t−1 + Σp,

step 2: Measurement Update

Σ
(u)
t|t = Σ

(u)
t|t−1 −Σ

(u)
t|t−1H

T
t (HΣ

(u)
t|t−1H

T
t + σ2

oI)
−1HtΣ

(u)
t|t−1

p̂
(u)

t|t
= p̂

(u)

t|t−1
+ Σ

(u)

t|t
HT

t σ−2
o (r

(u)
t −Htp̂

(u)

t|t−1
).

Although it is conceptually appealing to have a joint filtering
model for both users and items, it renders the observation
step (Equation (8)) nonlinear since it involves the dot prod-
uct of the user factors and item factors. Nonlinear KF ex-
tensions such as Sigma-point Kalman filter [20] would have
to be employed for this purpose. In this paper, we will focus
on the linear KF, and assume the item factors are either
known, or can be (dynamically) estimated by an external
model (see however, Section 5).

4. SPATIO-TEMPORAL MODEL
In this section, we combine the modeling ideas in Sections

2 and 3 to obtain our ST-KF model that exploits both spatial
and temporal correlations in the ratings.

4.1 Probabilistic Model
We first consider the spatio-temporal prior for the user

factors pt ≡ {p
(1)
t , · · · ,p(N)

t }. Let θ = {λ, α, Σp, σo} specify
all the parameters. At each time step t, the prior for pt

comes from two independent sources:



Temporal Continuity: This is expressed through the prob-
ability p(pt|pt−1; θ), which penalizes a large deviation be-
tween pt and its prediction at t − 1. If we assume random
walk dynamics as in (7), we have

p(pt|pt−1; θ) =

N
Y

u=1

p(p
(u)
t |p

(u)
t−1; θ)

∝
N

Y

u=1

e−
1
2
(p

(u)
t −p

(u)
t−1)T Σ−1

p (p
(u)
t −p

(u)
t−1).

Spatial Similarity: This is expressed through the time-
varying Gaussian MRF prior p(pt;Wp,t, θ), where Wp,t spec-
ifies the user similarity at time t:

p(pt;Wp,t, θ) ∝ e−
1
2

α
P

u,v W
(uv)
p,t ‖p

(u)
t −p

(v)
t ‖2

,

where W
(uv)
p,t is the (u, v) entry of matrix Wp,t.

The spatio-temporal prior is then given by the product

pr(pt) ∝ p(pt|pt−1; θ)p(pt;Wp,t, θ).

This type of spatio-temporal prior has been used in filtering
tasks in other domains [15].

From the independence assumption, the likelihood of rat-
ings given the user factors is

p(rt|pt; θ) =
N

Y

u=1

p(r
(u)
t |p

(u)
t ; θ) ∝

N
Y

u=1

e
‖r

(u)
t

−H
(u)
t

p
(u)
t

‖2

2σ2
o (9)

Using rt ≡ {r
(1)
t , · · · , r(N)

t } to denote the observed rating at
time t, the complete likelihood of {pτ}

t
τ=1 and {rτ}

t
τ=1 is

given by

p({pτ}
t
τ=1, {rτ}

t
τ=1; {Wp,τ}

t
τ=1, θ) =

t
X

τ=1

p(pτ |pτ−1; θ)p(rt|pτ ; θ)p(pτ ;Wp,τ , θ) (10)

This model will be referred to as Spatio-Temporal filtering
(ST-KF) in this paper. A pictorial illustration of ST-KF is
given in Figure 1.

4.2 Inference
Due to the correlation introduced by Wp,t, the estimate

of each p
(u)
t cannot be done separately as in Section 3. The

brute force implementation of KF update requires consider-
ing a concatenated state vector

p̄t = [(p
(1)
t )T · · · (p

(N)
t )T ]T .

and the corresponding covariance matrix Σ̄t(∈ R
Nk×Nk) for

the concatenated state vector. As for regular KF, we can
estimate the probability p(p̄t|{rτ}

t
τ=1; {Wp,τ}

t
τ=1, θ) recur-

sively.

T-update: ˆ̄pt|t−1 = ˆ̄pt−1|t−1, Σ̄t|t−1 = Σ̄t−1|t−1 + Σp

M-update: p(p̄t|{rτ}
t
τ=1; {Wp,τ}

t
τ=1, θ)

∝ p(p̄t|estt−1, θ)p(p̄t;Wt, θ)p(rt|p̄t; θ)

where estt−1 = {ˆ̄pt|t−1, Σ̄t|t−1} are the predicted mean and
covariance of p̄t at time t− 1.

To avoid the computation of inverse of a huge covariance
matrix in the measurement update (see the function KFup-
date in Section 3.2), we can use mean field approximation
(MFA) [11] for inference at each time step, which turns out

Figure 1: The graphical model of ST-KF.

to be fairly cheap if Wp,t is sparse (e.g., a kNN graph). The
näıve MFA uses the following fully factorized probability qt

qt(pt) ≡
N

Y

u=1

q
(u)
t (p

(u)
t ).

to approximate p(p̄t|{rτ}
t
τ=1; {Wp,τ}

t
τ=1, θ). With this in-

dependence assumption, the posterior covariance can be re-
duced to individual ones

Σ̄t|t → {Σ
(1)

t|t
, · · · , Σ(N)

t|t
}.

We find qt(pt) with the minimum KL-divergence to the true
posterior,

q∗t (pt) = arg min
qt

DKL(qt(pt) || p(pt|{rτ}
t
1; {Wp,τ}

t
1, θ))

which can be recast as

max
qt

H(qt) + Eqt [log p(pt|{rτ}
t
1; {Wp,τ}

t
1, θ)]. (11)

where Eqt [·] stands for the expectation with respect to qt.
Generally (11) does not have a closed-form solution and is
not even a convex problem. Instead a local optimum can be
found iteratively with the following update equations: (for
u = 1, 2, · · · , N)

q
(u)
t (p

(u)
t )←

1

Ω(u)
eEqt

[log p(pt|{rτ }t
1;{Wτ}t

1,θ)|p
(u)
t ],

where Eqt [log p(pt|{rτ}
t
1; {Wτ}

t
1, θ)|p

(u)
t ] is the expectation

of log p(pt|{rτ}
t
1; {Wτ}

t
1, θ) with respect to (the current es-

timate of) qt conditioned on p
(u)
t , and

Ω(u) =

Z

p
(u)
t

eEqt
[log p(pt|{rτ}t

1;{Wτ}t
1,θ)|p

(u)
t ]dp

(u)
t

is the normalization constant for q
(u)
t . It is easy to verify that

if the true posterior p(pt|{rτ}
t
1; {Wτ}

t
1, θ) is a Gaussian, so

is qt(pt). For more details of the mean field approximation,
see the Appendix.

5. IMPLEMENTATION & ALGORITHMS
In this section we give some implementation details, and

then pseudo-code for our ST-KF approach.

Initialization

We often need to perform a static matrix factorization (e.g.,
MF or SptMF) before the filtering, in order to obtain item
factors as well as initial user factors. In practice it is often



the case that we encounter new users and new items during
the filtering process. For new users, we need to have an ini-
tial guess of user factors before seeing any ratings, and there-
fore the initial factors for new users will be obtained purely
based on the covariates. One such solution can be naturally
derived from the conditional distribution of the Markov ran-
dom field prior, or equivalently the objective function in (6).
Without loss of generality, we can assume that the N th user
is new and has no ratings. It is easy to verify that given
{p(1), · · · ,p(N−1)}, the solution of p(N) to (6) is simply a
regularized version of nearest neighbors interpolation

ep(N) =

P

u∈U(N) W
(uN)
p p(u)

P

u′∈U(N) W
(u′N)
p + λ/α

. (12)

New Items

Handling new items is more involved since we assume item
factors are known. The same difficulty arises when there are
too few ratings for an item for reliable factors fitting, or the
item factors also change with time. Here, we resort to the
following approximation. At each time step t, we update the

item factors q
(i∗)
t by finding an approximate solution to the

following optimization

q
(i)
t = arg min

q
{

t
X

τ=1

X

u∈Fτ (i∗)

||r(ui∗)
τ − (p

(u)
τ )T q||2

2σ2
o

+

t
X

τ=1

X

j∈U(i∗)

αiW
(ij)
q ||q− q

(j)
τ ||

2

2
} (13)

where the first term on the right hand side is the rating
square error, and the second term is the regularization from
the item similarity. Fτ (i) stands for the indices of users who
have rated item i at time τ , and U(i) contains the indices
of the items that are nearest neighbors of item i (according
to Wq) and also has been reliably estimated (with enough
number of ratings of it). In practice, all the reliably esti-
mated items are stored in a stack, which is also dynamically
updated. It is easy to see that when there are no ratings for

item i, the solution for q
(i)
t becomes a neighborhood inter-

pretation that has the same form as (12)

5.1 Pseudo-code for ST-KF
Algorithm 1: Spatio-Temporal Filtering (ST-KF)

Input: R0, the ratings before time 0, and the sequence of
ratings {R1, · · · ,RT } to present.

Output: User factors {p(1)
t , · · · ,p(N)

t } for t = 1, · · · , T .

step 0: Initialization.
1. Initialize user factors {p̂(1)

0|0
, · · · , p̂(N)

0|0
} and obtain

{q(1), · · · , q(M)} through a static matrix factor-
ization over R0.

2. t← 1; Set initial variances {P(u)

0|0
} for all u.

step 1: Individual Kalman filtering
(To initialize mean-field approximation.)
for i = 1 : N

[ p̂
(u)
t|t , Σ

(u)
t|t ] = KFupdate(p

(u)
t−1|t−1, Σ

(u)
t−1|t−1, r

(u)
t ).

end

step 2: Mean Field Approximation

({ p̂(u)
t }, {Σ

(u)
t|t }) = MFA({p(u)

t }, {Σ
(u)
t|t },Rt,Wp,t)

step 3: Update the item factors and stack.

step 4: t = t + 1, go to step 1.

function:[{ p̂(u)
t|t }, {Σ

(u)
t|t }] = MFA({p(u)

t|t }, {Σ
(u)
t|t },Rt,Wp,t)

step 0: Initialization.
for u = 1 : N

q(u) ← N (p̂
(u)

t|t
, Σ

(u)

t|t
)

end

step 1: q(u)(p̃
(u)
t )←

1

Ωu
eEq [log p({p̃

(u)
t }N

1 |r
(u)
t ,Wp,t)|p̃

(u)
t ],

(see Appendix for details).

step 2: If converged, then return the mean and covariance
for each q(u); otherwise go to step 1.

6. EXPERIMENTS
We tested the proposed algorithms on synthetic data, the

MovieLens data, and Yahoo! Front Page data. On synthetic
data and MovieLens, the task is to predict the missing en-
tries based on the (sparsely) observed ones. The prediction
performance is measured as the root of mean square error

on test set,

RMSE =

s

P

(u,i)∈test(r̂
(ui) − r(ui))2

|test|
,

where test stands for the set for all the entries in test set.
For Yahoo! Front Page data, the error is measured by the
more relevant ROC curve for “click-or-not” prediction.

6.1 Synthetic Data
The experiments on synthetic data are designed to show

that both spatial correlation and temporal structure individ-
ually help in finding more accurate user factors, and their
strengths can be combined by using spatio-temporal filter-
ing. For data, we generate a rank-5 100 × 50 rating matrix
R = PQT , where entries of P and Q are independently
drawn from a uniform distribution on interval [0, 1]. In the
MF model, we also set the number of factors to be 5.

Spatial Model

We considered two types of artificially generated similarities
between users (Similar for item similarity generation):

• Weak: W
(uv)
p = max(0, corr(u, v)) where corr(u, v)

is the Pearson correlation between u and v estimated
from all the ratings.

• Strong: W
(uv)
p = e

−
‖p(u)−p(v)‖2

σ2 with the true user
factors p(u) and p(v). We keep only the 5 nearest
neighbor for each node.

We randomly selected 10% of the entries in the rating matrix
for training and used the remaining entries for testing. We
follow the spatial objective function given in (6) and use
stochastic gradient for optimization. Figure 2 shows the
RMSE on test set achieved by different settings of λ and α
in training. We note that when using the weak similarity, the
best performance is achieved with a balanced λ and α, while
with strong similarity, the performance is the best when the
Laplacian regularization term dominates.
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Figure 2: The RMSE of SptMF with strong and weak
similarity and different (λ, α). The white cross in-
dicates the location of optimal (λ, α). With only
Frobenius norm regularization (α = 0), the minimum
RMSE = 1.5862.

Temporal Model

We assume that the user factors change linearly with time,

p
(u)
t = p

(u)
0 + tg(u) + ǫ

(u)
t , g(u) ∼ N (0, 0.05I), (14)

while the item factors keep unchanged. In this experiment
we generated 10% of entries with the initial user factor p0,
and then let the user factors evolve with time as in (14),
while generating 2% of entries observable at each time step.
The remaining 70% of the entries are generated with p10,
but will be held out for testing.

To get Q and initial P with the static MF (step 0 in
Algorithm 1), two strategies can be taken:

• I: use only the first 10% of the ratings. This corre-
sponds to the scenario where little is known at the
beginning and the model fitting has to be done in an
online fashion.

• II: use all the observed 30% of ratings. This corre-
sponds to the scenario where ratings over a significant
time duration are available, and we need to retrace
the change of user factors to obtain the most updated
estimate.

Strategy II , if applicable, often works better since it usu-
ally gives a more accurate fitting of the item factors. One
question associated with Strategy II, however, is “at which
time step should we start evolving user factors?”. Intuitively,
we should go back to time 0 as we do with strategy I, but
we observed that the results are often better when starting
in the middle of the training duration (e.g. step 6 in this
case). Figure 3 (left panel) compares the two initialization
strategies as well as the two choices of starting points on the
synthetic data. See Section 6.2 for similar results on Movie-
Lens data.

Spatio-Temporal Model

We take the same data from last experiment, but for each
step, we also assume there is a noisy and sparse similarity

measure for pt, generated as W
(uv)
p,t = e

−
‖p

(u)
t

−p
(v)
t

‖2

σ2 + ǫ
(uv)
t

with a proper σ, where we also assume only 50% of the sim-
ilarities (randomly chosen at each time step) are observed.
We pruned the graph to be 5-NN, which further sparsifies
the similarity Wp,t.

In Figure 3 (right panel) we compared ST-KF and KF
with two different initialization strategies. Clearly, under
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Figure 3: Kalman filtering on synthetic data. Leg-
end: (ini): initialize with the first 10% of the ratings;
(trn): initialize with all the 30% of ratings collected
in 10 time steps; (mid): initialization with all the
30% of ratings, but start filtering after step 6.

all configurations the filtering reduces the test RMSE from
initial MF. With each of the initialization strategies, ST-KF
outperforms KF by large margin.

6.2 MovieLens Data
We used the MovieLens data 2 with 6040 users, 3952

movies and around one million ratings. It is a commonly
used data set for missing entry prediction, where typically
some randomly selected entries are assumed to be observed
and the rest are for testing. We argue that a more proper
setting of the problem is to predict the ratings at time t + 1
and after based on ratings obtained until time t. For the
MovieLens data, we have ratings (from different users) for
1083 days, and we use the ratings in the first 420 days (95%
of all the ratings) for training and the ratings in the remain-
ing 663 days (5% of the ratings) for testing. This particular
split of the data makes it much harder than what we know
from [16, 1], in that (1) the user characteristic might have
drifted away from it was in training phase after up to 20
months, and (2) only 813 users have ratings in the test set,
and the particular training/testing split for those users is
around 80/20.

For MovieLens data, in addition to the ratings, we also
have the movie genres and the user demographic informa-
tion: age, gender, occupation, and geo-location. We find a
convex combination of user similarities composed from the
four sources via a similarity-target alignment, as described
in Section 2.2. We compared four different settings for this
rating prediction task: (1) standard MF (for initialization)
+ standard KF (for filtering), (2) standard MF + ST-KF,
(3) SptMF + standard KF, and finally (4) SptMF + ST-KF.
We use all the data before day 420 for training and start
the filtering at day 250 3, as suggested in Section 6.1. The
result is shown in Figure 4. We have the following three
observations

• For the initial matrix factorization model, SptMF (test
RMSE = 0.9073) outperforms standard MF (0.9163).

• Despite the limited temporal structure in the training
set (420 days only), the time-domain filtering always
reduces the test RMSE except for (MF + KF), with
which the test RMSE keeps almost unchanged.

2http://www.grouplens.org/taxonomy/term/14
3The filtering starting at day 0 returns significantly worse
result, see Figure 4 for details.
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• Spatial prior helps the temporal filtering. It is obvi-
ous since (MF+ST-KF) beats (MF+KF), and (SptMF
+ ST-KF) beats (SptMF + KF), both by large margin.

Most saliently, the most sophisticated method (SptMF +
ST-KF) reduces RMSE from the that of baseline matrix fac-
torization method by 1.4% (0.9163 → 0.9022).

6.3 Yahoo! FrontPage Application
We now describe a relatively new recommender system

application that arise in the context of Yahoo! Front Page.
This application has been studied recently (see [4, 7] for a
detailed description). The application involves recommend-
ing content items on a module (Today Module) that is pub-
lished on Yahoo! Front Page to maximize overall click-rates.
The module consists of four tabs (Featured, Entertainment,
Sports and Video), our goal is to recommend the best stories
from the available content pool to fill up the four slots on
the featured tab. The available content in this application
is programmed by human editors and typically consists of a
few items (few tens) at any given point in time. However,
the pool is dynamic and changes over time, editors push new
stories and take out old ones. Hence, each content item has
a short lifetime.

Data Characteristics

There are several characteristics that makes this application
different from movie recommender problem. First, short ar-
ticle lifetime means item factors have to be learnt online,
the items in the test period have no overlaps with those
in the training period. Second, we have rich meta-data on
users which includes age, gender, geo-location, and brows-
ing history. For items, we have content features in the form
of content categories that are assigned by editors manually.
We note that such problems are commonplace in web appli-
cations; sites like Digg, Top Picks on MSN, Yahoo! Buzz,
Yahoo! Finance, HotFeeder etc face similar content recom-
mendation problems.

We created a data set that consists of about 2M binary
ratings (click or no click) for about 30K users over a six
month period that covered about 4.3K items. Other than
age, gender and geo-location, our user features include brows-
ing behavior that are inferred based on a user’s network wide
activity (search, ad-clicks, page views, subscriptions, etc.)

on the Yahoo! portal. In fact, a user is assigned an intensity
score in a few thousand content categories based on his/her
activity pattern in the recent past; we reduced these to a
few hundred features by conducting a principal components
analysis on the training data.

Algorithm Details

For Yahoo! Front Page data, besides the user factor and
item factor, we also considered a time-varying overall bias
µ, the user bias b, and the news popularity bias c. So at
time t, the rating (click it or not) is modeled as

r
(ui)
t = µt + b

(u)
t + c

(i)
t + (p

(u)
t )T q(i) + ǫ

(ui)
t , (15)

where µt , b
(u)
t , and c

(i)
t are respectively the overall bias, the

bias of user u and the bias of item i at time t. The user bias
and the popularity bias can be expressed with same rating
model in (1 ) with the following extension. Let

p̄
(u)
t = [(p

(u)
t )T b

(u)
t 1]T , q̄

(i)
t = [(q

(i)
t )T 1 c

(i)
t ]T ,

then it is easy to see (p̄
(u)
t )T q̄(i) = b

(u)
t + c

(i)
t + (p

(u)
t )T q(i).

Results on Y! Front Page Data

To illustrate the performance of ST-KF, we compare against
three baseline models that are (a) Cov-Only: This is a linear
regression based only on user and item covariates. (b) Fact-
Only: This is the usual matrix factorization model without
any spatial or temporal smoothing. Since most of the items
in the test set are new, the item popularity and item factors
are estimated as zeros and hence this reduces to a model
that is based only on global and user popularity terms, i.e.,

µt + b
(u)
t . (c) Item-Cov: In this model, we estimate the user

and item factors on the training data using the usual matrix
factorization model. To avoid cold-start in the test data, we
further estimate a linear regression model based on user and
item covariates to estimate the respective factors obtained
from matrix factorization. On the test set, we use the regres-
sion to predict factors for new user/item. Figure 5 shows the
ROC curves comparing the methods. First, all our methods
are better than the straw man baseline that predicts a con-
stant score for all test cases, the curve for this model is given
by the 45 degree straight line. Using covariates alone does
not provide good performance, showing the need to learn
user and item specific models for this application; in fact,
the Fact-Only model is better than Cov-Only. As expected,
the Item-Cov model is better than Fact-Only; however, in-
corporating both spatial and temporal smoothing through
ST-KF provides the best performance.

7. RELATED WORK AND DISCUSSION
There has been some work on incorporating user and item

covariates or side-information into collaborative filtering. The
most well-studied direction is to use kernel-based classifica-
tion or regression models, where the covariates-based kernel
serves either as a “basic” kernel in a kernel combination [6,
1] or as an initial kernel for later kernel fitting [21]. Another
direction is to treat collaborative filtering as a parameter-
ized regression problem, where the covariates (or features
induced from other side-information) become part of the re-
gression parameters [5]. The work that most resembles our
spatial model is proposed independently in [14] for relational
data analysis, where the links between entities are treated
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Figure 5: ROC curves comparing different methods
on Y! FP data

as the auxiliary similarity used to regularize a matrix fac-
torization model.

Incorporating temporal component and covariate into rec-
ommender system problems have been studied very recently
in several papers [4, 3, 2]. Of these, [10] is most related to
our work where the authors regularize the factors through
a regression and capture temporal variation through ran-
dom walk priors on each parameter. We note that it is easy
to incorporate their model in our framework by replacing
λ(||P||2F + ||Q||2F ) in Equation 6 with λ(||P − GXp||

2
F +

||Q − FXq||
2
F ) where G and F are unknown regression co-

efficient matrices, and Xp, Xq are user and item covariate
vectors respectively. Our spatio-temporal prior provides ad-
ditional regularization by inducing dependencies in the fac-
tors a-prior through a Markov random field.

8. CONCLUSIONS
We presented an efficient spatio-temporal approach to col-

laborative filtering, and showed its efficacy on both synthetic
and real-world data sets. Our future work will focus on bet-
ter models for joint and dynamical estimation of user factors
and item factors, including bilinear filtering model based
on Sigma-point Kalman filter, and parameterized regression
models as in [10].
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APPENDIX

Mean Field Approximation

From Bayes rule we have the Markovian property

p(pt|{rn}t
1; {Wp,τ}

t
1, θ) ∝ p(pt; estt−1, θ)p(rt|pt; θ)p(pt;Wp,t, θ).

Also we assume the temporal prior factorizes,

p(pt; estt−1, θ) =
N

Y

u=1

p(p
(u)
t ; est

(u)
t−1, θ),

which is a result of the MFA at t− 1. Easy to verify

Eqt
[log p(pt|{rn}

t
1; {Wp,τ}

t
1, θ)|p

(u)
t = log p(p

(u)
t ; estt−1, θ)

+ log p(r
(u)
t |p

(u)
t ; θ) + Eqt

[log p(pt;Wp,t, θ)|p
(u)
t ] + c,

where c is a constant. Easy to see that for each u

log p(p
(u)
t ; estt−1, θ) =

c1 −
1

2
(p

(u)
t − p̂

(u)

t|t−1
)T (Σ

(u)

t−1|t−1
+ Σp)−1(p

(u)
t − p̂

(u)

t|t−1
);

log p(r
(u)
t |p

(u)
t ; θ) = c2 −

‖r
(u)
t − H

(u)
t p

(u)
t ‖2

2σ2
o

;

Eqt
[log p(pt;Wp,t, θ)|p

(u)
t ] = c3 −

α

2

X

v 6=u

W
(uv)
t (q

(u)
t − E

q
(v)
t

[p
(v)
t ]).

When Wp,t is given by a kNN graph, Eqt [log p(pt;Wp,t, θ)

|p
(u)
t ] can be evaluated efficiently as

c3 −
α

2
(

X

v∈U(u)

W
(uv)
p,t p

(u)
−

X

v∈U(u)

W
(uv)
t E

q
(v)
t

[p
(v)
t ])

where U(u) is the set of nearest neighbors of u.


