
Stabilizing Gradients for Deep Neural Networks via Efficient SVD
Parameterization

Jiong Zhang 1 Qi Lei 1 Inderjit S. Dhillon 1 2

Abstract

Vanishing and exploding gradients are two of the
main obstacles in training deep neural networks,
especially in capturing long range dependencies
in recurrent neural networks (RNNs). In this pa-
per, we present an efficient parametrization of
the transition matrix of an RNN that allows us
to stabilize the gradients that arise in its training.
Specifically, we parameterize the transition ma-
trix by its singular value decomposition (SVD),
which allows us to explicitly track and control
its singular values. We attain efficiency by us-
ing tools that are common in numerical linear
algebra, namely Householder reflectors for repre-
senting the orthogonal matrices that arise in the
SVD. By explicitly controlling the singular val-
ues, our proposed Spectral-RNN method allows
us to provably solve the exploding gradient prob-
lem and we observe that it empirically solves the
vanishing gradient issue to a large extent. We note
that the SVD parameterization can be used for any
rectangular weight matrix, hence it can be easily
extended to any deep neural network, such as a
multi-layer perceptron. Theoretically, we demon-
strate that our parameterization does not lose any
expressive power, and show how it controls gener-
alization of RNN for the classification task. Our
extensive experimental results also demonstrate
that the proposed framework converges faster, and
has good generalization, especially in capturing
long range dependencies, as shown on the syn-
thetic addition and copy tasks, as well as on the
MNIST and Penn Tree Bank data sets.

1University of Texas at Austin 2Amazon.com. Correspondence
to: Jiong Zhang <zhangjiong724@utexas.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1. Introduction
Deep neural networks have achieved great success in vari-
ous fields, including computer vision, speech recognition,
natural language processing, etc. Despite their tremen-
dous capacity to fit complex functions, optimizing deep
neural networks remains a contemporary challenge. Two
main obstacles are vanishing and exploding gradients, that
become particularly problematic in Recurrent Neural Net-
works (RNNs) since the transition matrix is identical along
the temporal dimension, and any slight change to it is am-
plified through recurrent cells (Bengio et al., 1994).

Several methods have been proposed to solve the issue, for
example, Long Short Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) and residual networks (He et al., 2016).
Another recently proposed class of methods is designed
to enforce orthogonality of the square transition matrices,
such as unitary and orthogonal RNNs (oRNN) (Arjovsky
et al., 2016; Mhammedi et al., 2017). However, while these
methods solve the exploding gradient problem, they limit
the expressivity of the network.

In this paper, we present an efficient parametrization of
transition matrices that arise in a deep neural network, thus
allowing us to stabilize the gradients that arise in its training,
while retaining the desired expressive power of the network.
In more detail we make the following contributions:

• We propose a method to parameterize transition matri-
ces through their singular value decomposition (SVD).
Inspired by (Mhammedi et al., 2017), we attain effi-
ciency by using tools that are common in numerical
linear algebra, namely Householder reflectors for rep-
resenting the orthogonal matrices that arise in the SVD.
The SVD parametrization allows us to retain the de-
sired expressive power of the network, while enabling
us to explicitly track and control singular values.

• We apply our SVD parameterization to recurrent neu-
ral networks to exert spectral constraints on the RNN
transition matrix. Our proposed Spectral-RNN method
enjoys similar space and time complexity as the vanilla
RNN. We empirically verify the superiority of Spectral-
RNN over RNN/oRNN, in some case even LSTMs,
over an exhaustive collection of time series classifica-

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

tion tasks and the synthetic addition and copy tasks,
especially when the network depth is large.

• Theoretically, we prove that the generalization gap in
margin loss of general RNN is bounded by the t-th
power of the spectral norm of the transition matrix,
where t is the recurrent temporal dimension. There-
fore by controlling singular values we can reduce the
population risk.

• Our parameterization is general enough to eliminate
the gradient vanishing/exploding problem not only in
RNNs, but also in various deep networks. We illustrate
this by applying SVD parametrization to problems with
non-square weight matrices, specifically multi-layer
perceptrons (MLPs) and residual networks.

We now present the outline of our paper. In Section 2,
we discuss related work, while in Section 3 we introduce
our SVD parametrization and demonstrate how it spans
the whole parameter space and does not limit expressivity.
In Section 4 we propose the Spectral-RNN model that is
able to efficiently control and track the singular values of
the transition matrices, and we extend our parameterization
to non-square weight matrices and apply it to MLPs in
Section 5. Section 6 provides the theoretical analysis to
show our method ensures good generalization for RNN.
Experimental results on synthetic addition and copy tasks,
and on MNIST and Penn Tree Bank data are presented in
Section 7. Finally, we present our conclusions and future
work in Section 8.

2. Related Work
Numerous approaches have been proposed to address the
vanishing and exploding gradient problem. Long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) at-
tempts to address the vanishing gradient problem by adding
additional memory gates. Residual networks (He et al.,
2016) pass the original input directly to the next layer in ad-
dition to the original layer output. (Mikolov, 2012) performs
gradient clipping, while (Pascanu et al., 2013) apply spec-
tral regularization to the weight matrices. Other approaches
include introducing L1 or L2 penalization on successive
gradient norm pairs in back propagation (Pascanu et al.,
2013).

Recently the idea of restricting transition matrices to be
orthogonal has drawn some attention. (Kanai et al., 2017)
propose to constrain the leading singular value of the transi-
tion matrix during training of GRUs. (Le et al., 2015) pro-
pose initializing recurrent transition matrices to be identity
or orthogonal (IRNN). This strategy shows better perfor-
mance when compared to vanilla RNN and LSTM. However,
there is no guarantee that the transition matrix is close to
orthogonal after a few iterations. The unitary RNN (uRNN)

algorithm proposed in (Arjovsky et al., 2016) parameterizes
the transition matrix with reflection, diagonal and Fourier
transform matrices. By construction, uRNN ensures that
the transition matrix is unitary at all times. Although this
algorithm performs well on several small tasks, (Wisdom
et al., 2016) showed that uRNN only covers a subset of
possible unitary matrices and thus detracts from the ex-
pressive power of RNN. An improvement over uRNN, the
orthogonal RNN (oRNN), was proposed by (Mhammedi
et al., 2017). oRNN uses products of Householder reflec-
tors to represent an orthogonal transition matrix, which is
rich enough to span the entire space of orthogonal matrices.
Meanwhile, (Vorontsov et al., 2017) empirically demon-
strate that the strong constraint of orthogonality limits the
model’s expressivity, thereby hindering its performance.
Therefore, they parameterize the transition matrix by its
SVD, W = UΣV > (factorized RNN) and restrict Σ to be
in a range close to 1; however, the orthogonal matrices U
and V are updated by geodesic gradient descent using the
Cayley transform, thereby resulting in time complexity cu-
bic in the number of hidden nodes which is prohibitive for
large scale problems. Motivated by the shortcomings of the
above methods, our work in this paper attempts to answer
the following question: Is there an efficient way to solve
the gradient vanishing/exploding problem without hurting
expressive power?

Generalization is a major concern in training deep neu-
ral networks. (Neyshabur et al., 2017) and (Bartlett et al.,
2017) provide margin-based generalization bounds for feed-
forward neural networks by a spectral Lipschitz constant,
namely the product of spectral norm of each layer. We ex-
tend the analysis to recurrent neural networks and show our
scheme of restricting the spectral norm of weight matrices re-
duces generalization error in the same setting as (Neyshabur
et al., 2017). As supported by the analysis in (Cisse et al.,
2017), since our SVD parametrization allows us to develop
an efficient way to constrain the weight matrix to be a tight
frame (Tropp et al., 2005), we consequently are able to re-
duce the sensitivity of the network to adversarial examples.

3. SVD parameterization
The SVD of the transition matrix W ∈ Rn×n of an RNN is
given by W = UΣV T , where Σ is the diagonal matrix of
singular values, and U, V ∈ Rn×n are orthogonal matrices,
i.e., UTU = UUT = I and V TV = V V T = I (Trefethen
& Bau III, 1997). During the training of an RNN, our
proposal is to maintain the transition matrix in its SVD
form. However, in order to do so efficiently, we need to
maintain the orthogonal matrices U and V in compact form,
so that they can be easily updated by forward and backward
propagation. In order to do so, as in (Mhammedi et al.,
2017), we use a tool that is commonly used in numerical

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

linear algebra, namely Householder reflectors (which, for
example, are used in computing the QR decomposition of a
matrix).

Given a vector u ∈ Rk, k ≤ n, we define the n× n House-
holder reflectorHnk (u) to be:

Hnk (u) =


(
In−k

Ik−2 uu
>

‖u‖2

)
, u 6= 0

In , otherwise.
(1)

The Householder reflector is clearly a symmetric matrix, and
it can be shown that it is orthogonal, i.e., H2 = I (House-
holder, 1958). Further, when u 6= 0, it has n−1 eigenvalues
that are 1, and one eigenvalue which is −1 (hence the name
that it is a reflector) . In practice, to store a Householder
reflector, we only need to store u ∈ Rk rather than the full
matrix.

Given a series of vectors {ui}ni=k where uk ∈ Rk, we define
the map:

Mk : Rk × ...× Rn 7→ Rn×n

(uk, ..., un) 7→ Hn(un)...Hk(uk), (2)

where the right hand side is a product of Householder reflec-
tors, yielding an orthogonal matrix (to make the notation
less cumbersome, we remove the superscript fromHnk for
the rest of this section). As shown below, any orthogonal
matrix can be generated by this map.

Theorem 1. The image ofM1 is the set of all n × n or-
thogonal matrices.

The proof of Theorem 1 is an easy extension of the House-
holder QR factorization Theorem, and is presented in Ap-
pendix A. Although we cannot express all n× n matrices
with Mk, any W ∈ Rn×n can be expressed as the prod-
uct of two orthogonal matrices U, V and a diagonal matrix
Σ, i.e. by its SVD: W = UΣV >. Given σ ∈ Rn and
{ui}ni=k1 , {vi}

n
i=k2

with ui, vi ∈ Ri, we finally define our
proposed SVD parametrization:

Mk1,k2 :Rk1 × ...× Rn × Rk2 × ...× Rn × Rn 7→ Rn×n

(uk1 , ..., un, vk2 , ..., vn, σ)

7→ Hn(un)...Hk1(uk1)diag(σ)Hk2(vk2)...Hn(vn).
(3)

Theorem 2. The image of M1,1 is the set of n × n real
matrices,
i.e., Rn×n =M1,1

(
R1 × ...× Rn × R1 × ...× Rn × Rn

)
The proof of Theorem 2 is based on the singular value de-
composition and Theorem 1, and is presented in Appendix A.
The astute reader might note thatM1,1 seemingly maps an
input space of n2 + 2n dimensions to a space of n2 dimen-
sions; however, sinceHnk (uk) is invariant to the norm of uk,

the input space also has exactly n2 dimensions. Although
Theorems 1 and 2 are simple extensions of well known lin-
ear algebra results, they ensure that our parameterization has
the ability to represent any matrix and so the full expressive
power of the RNN is retained.

Theorem 3. The image ofMk1,k2 includes the set of all
orthogonal n× n matrices if k1 + k2 ≤ n+ 2.

Theorem 3 indicates that if the total number of reflectors
is greater than n: (n − k1 + 1) + (n − k2 + 1) ≥ n, then
the parameterization covers all orthogonal matrices. Note
that when fixing σ = 1,Mk1,k2({ui}ni=k1 , {vi}

n
i=k2

,1) ∈
O(n), where O(n) is the set of n × n orthogonal matri-
ces. Thus when k1 + k2 ≤ n + 2, we have O(n) =
Mk1,k2

[
Rk1 × ...× Rn × Rk2 × ...× Rn × 1

]
.

4. Spectral-RNN
In this section, we apply our SVD parameterization to RNNs
and describe the resulting Spectral-RNN algorithm in detail.
Given a hidden state vector from the previous step h(t−1) ∈
Rn and input x(t) ∈ Rni , RNN computes the next hidden
state h(t) and output vector ŷ(t) ∈ Rny as:

h(t) = φ(Wh(t−1) +Mx(t) + b), (4)

ŷ(t) = Y h(t). (5)

In Spectral-RNN we parametrize the transition matrix W ∈
Rn×n using m1 +m2 Householder reflectors as:

W =Mk1,k2(uk1 , ..., un, vk2 , ..., vn, σ)

= Hn(un)...Hk1(uk1)diag(σ)Hk2(vk2)...Hn(vn)
(6)

where k1 = n−m1 + 1, k2 = n−m2 + 1. This parame-
terization gives us several advantages over the regular RNN.
First, we can select the number of reflectors m1 and m2 to
balance expressive power versus time and space complex-
ity. By Theorem 2, the choice m1 = m2 = n gives us the
same expressive power as vanilla RNN. Notice oRNN could
be considered a special case of our parametrization, since
when we set m1 + m2 ≥ n and σ = 1, we can represent
all orthogonal matrices, as proven by Theorem 3. Most
importantly, we are able to explicitly control the singular
values of the transition matrix. In most cases, we want to
constrain the singular values to be within a small interval
near 1. The most intuitive method is to clip the singular
values that are out of range. Another approach would be
to initialize all singular values to 1, and add a penalty term
‖σ − 1‖2 to the objective function. Here, we have applied
another parameterization of σ proposed in (Vorontsov et al.,
2017):

σi = 2r(f(σ̂i)− 0.5) + σ∗, i ∈ [n] (7)

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

where f is the sigmoid function and σ̂i is updated from
ui, vi via stochastic gradient descent. The above allows us
to constrain σi to be within [σ∗ − r, σ∗ + r]. In practice, σ∗

is usually set to 1 and r � 1. Note that we are not incurring
more computation cost or memory for the parameterization.
For regular RNN, the number of parameters is (ny + ni +
n + 1)n, while for Spectral-RNN it is (ny + ni + m1 +

m2 + 2)n − m2
1+m2

2−m1−m2

2 . In the extreme case where
m1 = m2 = n, it becomes (ny + ni + n+ 3)n. Later we
will show that the computational cost of Spectral-RNN is
also of the same order as RNN.

4.1. Forward/backward propagation

In forward propagation, we need to iteratively evaluate h(t)

from t = 0 to L using (17). The only different aspect from a
regular RNN in the forward propagation is the computation
of Wh(t−1). Note that in Spectral-RNN, W is expressed as
product of m1 +m2 Householder matrices and a diagonal
matrix.Thus Wh(t−1) can be computed iteratively using
(m1 +m2) inner products and vector additions. Denoting
ûk =

(
0n−k
uk

)
, we have:

Hk(uk)h =

(
In −

2ûkû
>
k

û>k ûk

)
h = h− 2

û>k h

û>k ûk
ûk (8)

Thus, the total cost of computing Wh(t−1) is O((m1 +
m2)n) floating point operations (flops). Detailed analysis
can be found in Section 4.2. Let L({ui}, {vi}, σ,M, Y, b)
be the loss function, h̃(t) = Wh(t), Σ̂ = diag(σ̂).
Given ∂L

∂h̃(t)
, we define:

∂L

∂u
(t)
k

:=

[
∂h̃(t)

∂u
(t)
k

]>
∂L

∂h̃(t)
;
∂L

∂v
(t)
k

:=

[
∂h̃(t)

∂v
(t)
k

]>
∂L

∂h̃(t)
;

(9)

∂L

∂Σ(t)
:=

[
∂h̃(t)

∂Σ(t)

]>
∂L

∂h̃(t)
;
∂L

∂Σ̂(t)
:=

[
∂Σ(t)

∂Σ̂(t)

]>
∂L

∂Σ(t)
;

(10)

∂L

∂h(t−1)
:=

[
∂h̃(t)

∂h(t−1)

]>
∂L

∂h̃(t)
(11)

Back propagation for Spectral-RNN requires ∂h̃(t)

∂u
(t)
k

, ∂h̃
(t)

∂v
(t)
k

,

∂h̃(t)

∂Σ̂(t)
and ∂h̃(t)

∂h(t−1) . These partial gradients can also be com-
puted iteratively by computing the gradient of each House-
holder matrix at a time. We drop the superscript (t) now for
ease of exposition. Given ĥ = Hk(uk)h and g = ∂L

∂ĥ
, we

have

∂L

∂h
=

[
∂ĥ

∂h

]>
∂L

∂ĥ
=

(
In −

2ûkû
>
k

û>k ûk

)
g = g − 2

û>k g

û>k ûk
ûk,

(12)

∂L

∂ûk
=

[
∂ĥ

∂ûk

]>
∂L

∂ĥ

= −2
(
û>k h

û>k ûk
In +

1

û>k ûk
hû>k − 2

û>k h

(û>k ûk)2
ûkû

>
k

)
g

= −2 û
>
k h

û>k ûk
g − 2

û>k g

û>k ûk
h+ 4

û>k h

û>k ûk

û>k g

û>k ûk
ûk. (13)

Details of forward and backward propagation can be found
in Appendix B.

4.2. Complexity Analysis

Table 1 gives the time complexity of various algorithms.
Hprod and Hgrad are defined in Algorithm 2 and 3 (see
Appendix B). Algorithm 2 needs 6k flops, while Algo-
rithm 3 uses (3n + 10k) flops. Since ‖uk‖2 only needs
to be computed once per iteration, we can further decrease
the flops to 4k and (3n+ 8k). Also, in back propagation we
can reuse α in forward propagation to save 2k flops. The

flops
Hprod(h, uk) 4k
Hgrad(h, uk, g) 3n+ 6k
Spectral-RNN-Local FP(n,m1,m2) 4n(m1 +m2)− 2m2

1 − 2m2
2 +O(n)

Spectral-RNN-Local BP(n,m1,m2) 6n(m1 +m2)− 1.5m2
1 − 1.5m2

2 +O(n)
oRNN-Local FP(n,m) 4nm−m2 +O(n)
oRNN-Local BP(n,m) 7nm− 2m2 +O(n)

Table 1. Time complexity across algorithms

efficiency of training Spectral-RNN can be improved by
adopting the level 3 BLAS, blocked Householder QR algo-
rithm (Andrew & Dingle, 2014) to exploit GPU computing
power.

5. Extending SVD Parameterization to
General Weight Matrices

In this section, we extend the parameterization to non-square
matrices and use Multi-Layer Perceptrons(MLP) as an ex-
ample to illustrate its application to general deep networks.
For any weight matrix W ∈ Rm×n(without loss of general-
ity m ≤ n), its reduced SVD can be written as:

W = U(Σ|0)(VL|VR)> = UΣV >L , (14)

where U ∈ Rm×m, Σ ∈ diag(Rm),VL ∈ Rn×m.
There exist un, ..., uk1 and vn, ..., vk2 s.t. U =
Hmm(um)...Hmk1(uk1), V = Hnn(vn)...Hnk2(vk2), where
k1 ∈ [m], k2 ∈ [n]. Thus we can extend the SVD pa-
rameterization for any non-square matrix:

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

Mm,n
k1,k2

:Rk1 × ...× Rm × Rk2 × ...× Rn × Rmin(m,n)

7→ Rm×n

(uk1 , ..., um, vk2 , ..., vn, σ)

7→ Hmm(um) · · ·Hmk1(uk1)Σ̂Hnk2(vk2) · · ·Hnn(vn).
(15)

where Σ̂ = (diag(σ)|0) if m < n and (diag(σ)|0)> other-
wise. Next we show that we only need 2 min(m,n) reflec-
tors (rather than m+ n) to parametrize any m× n matrix.
By the definition ofHnk , we have the following lemma:

Lemma 1. Given {vi}ni=1, define V (k) =
Hnn(vn)...Hnk (vk) for k ∈ [n]. We have:

V
(k1)
∗,i = V

(k2)
∗,i , ∀k1, k2 ∈ [n], i ≤ min(n− k1, n− k2).

Here V∗,i indicates the ith column of matrix V . According
to Lemma 1, we only need at most first m Householder vec-
tors to express VL, which results in the following Theorem:

Theorem 4. If m ≤ n, the image ofMm,n
1,n−m+1 is the set

of all m× n matrices; else the image ofMm,n
n−m+1,1 is the

set of all m× n matrices.

Similarly if we constrain ui, vi to have unit length, the input
space dimensions ofMm,n

1,n−m+1 andMm,n
m−n+1,1 are both

mn, which matches the output dimension. Thus we extend
Theorem 2 to the non-square case, which enables us to
apply SVD parameterization to not only the RNN transition
matrix, but also to general weight matrices in various deep
learning models. For example, the Multilayer perceptron
(MLP) model is a class of feedforward neural network with
fully connected layers:

h(t) = f(W (t−1)h(t−1) + b(t−1)) (16)

Here h(t) ∈ Rnt , h(t−1) ∈ Rnt−1 and W (t) ∈ Rnt×nt−1 .
Applying SVD parameterization to W (t) say nt < nt−1,
we have:

W (t) =Hntnt(unt)...H
nt
1 (u1)Σ

· Hnt−1

nt−1−nt+1(vnt−1−nt+1)...Hnt−1
nt−1

(vnt−1
).

We can use the same forward/backward propagation algo-
rithm as described in Algorithm 1. Besides RNN and MLP,
our SVD parameterization also applies to more advanced
frameworks, such as Residual networks and LSTM, which
we will not describe in detail here.

6. Generalization Analysis
Since we can control and upper bound the singular values
of the transition matrix in Spectral-RNN, we can clearly
eliminate the exploding gradient problem. In this section,
we provide the first generalization analysis for RNNs for

the classification task, and prove that by upper bounding the
singular values of the transition matrix, our Spectral-RNN
approach ensures good generalization.

To study the generalization of general recurrent neural net-
work, we simplify the network by absorbing the bias term b
in M and consider:

h(t) = φ(Wh(t−1) +Mx(t)), h(0) = 0, (17)

ŷ(t) = Y h(t).

Recall from Section 4 we assume x(t) ∈ Rni , ŷ(t) ∈ Rny ,
and h(t) ∈ Rn. Therefore W ∈ Rn×n,M ∈ Rni×n, Y ∈
Rn×ny . We let h = max{ni, n, ny} and write w =
vec({W,M,Y }) for ease of notation. Throughout the pa-
per, we use ‖ · ‖ to denote l2 norm for vectors and spectral
norm for matrices unless otherwise specified. For the classi-
fication, we consider the following Margin Loss defined in
(Neyshabur et al., 2017):

Definition 1. For any distribution D and margin γ > 0, we
define the expected margin loss as follows:

Lγ(fw) = P(x,y)∼D

[
fw(x)[y] ≤ γ + max

j 6=y
fw(x)[j]

]
,

where fw(x)[y] is the probability of predicting y given
input x with weight w. For recurrent neural network,
x = [x(1), x(2), · · ·x(T)]. We use L̂γ to represent the em-
pirical margin loss.

Assumption 1. We consider the recurrent neural network
(17) with the following assumptions:

a Data is bounded: ‖x(t)‖ ≤ B, t = 0, 1, · · · , for some
constant B.

b Activation φ satisfies ‖φ(x)‖2 ≤ ‖x‖2, and ‖φ(x) −
φ(y)‖2 ≤ ‖x− y‖2,∀x ∈ Rn.

The assumptions are natural, since common data like image
pixels or embedding of words satisfy Assumption 1(a). Most
common activations like ReLU, tanh and sigmoid function
all satisfy Assumption 1(b). Under such assumptions, we
get the following generalization bound for the recurrent
neural network for classification task:

Theorem 5. For any B, T, n, ni, ny > 0, let fw :
Rni×T → Rny be a recurrent neural network with T time
steps and n hidden nodes. Suppose the network satisfies
Assumption 1 where data is bounded by B. Then for any
δ, γ > 0, with probability ≥ 1− δ over a training set of size
m, for any w, we have:

L0(fw) ≤ L̂γ(fw) +O

(√
G(w) + ln m

δ

m

)
,

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

where G(w) = B2T 4hln(h)
γ2 ·(‖W‖2F + ‖M‖2F + ‖Y ‖2F)

max{‖W‖2T−2, 1}max{‖M‖22, 1}max{‖Y ‖22, 1}, and
h = max{n, ny, ni}.

From Theorem 5, we can see that W plays a huge role since
the generalization gap grows exponentially with ‖W‖, i.e.
the largest singular value of W . It is easy to see that our pro-
posed Spectral-RNN approach, which bounds the singular
radius of W in [1− r, 1 + r], ensures good generalization:

Corollary 1. With the update rule in (7), Spectral-RNN

has generalization gap bounded by O(

√
G(w)+ln m

δ

m) with

probability ≥ 1 − δ, where G(w) = B2T 4h ln(h)
γ2 (1 +

r)2T−2 · max{‖M‖22, 1} · max{‖Y ‖22, 1}‖w‖22, h =
max{n, ny, ni}, and ‖w‖22 = ‖W‖2F + ‖M‖2F + ‖Y ‖2F .

The proof of Theorem 5 is presented in Appendix A, and
uses the PAC-Bayes (McAllester, 2003) strategy as in
(Neyshabur et al., 2017): a combination of the PAC-Bayes
margin analysis (Lemma 2) and our perturbation analysis
of the neural network in Lemma 3. (See Appendix A for
Lemmas 2 and 3.)

Theorem 5 implies that a smaller matrix norm of the parame-
ters leads to better generalization. This is easy to understand
if we take an extreme example: when the norm of the ma-
trices W,M and Y shrinks to 0 (norm), the output of the
neural network will be constant and the generalization gap
is obviously 0, but comes at the cost of expressivity of the
network. Meanwhile, when the parameters are allowed to
grow larger, the network will have higher expressivity but
poorer generalization, meaning it could overfit the training
data while not preserving the good performance on the test
data. In this sense, when we control the range of the singular
values of the matrix W , we are trying to reach a balance
between expressivity and generalization gap of the network.

7. Experimental Results
In this section, we provide empirical evidence that shows
the advantages of SVD parameterization in both RNNs
and MLPs. For RNN models, we compare our Spectral-
RNN algorithm with (vanilla) RNN, IRNN (Le et al., 2015),
oRNN (Mhammedi et al., 2017) and LSTM (Hochreiter
& Schmidhuber, 1997). The transition matrix in IRNN is
initialized to be orthogonal while other matrices are ini-
tialized by sampling from a Gaussian distribution. For
MLP models, we implemented vanilla MLP, Residual Net-
work (ResNet) (He et al., 2016) and applied SVD param-
eterization on both of them. We used a residual block of
two layers in ResNet. In most cases leaky Relu is used as
activation function except for LSTM. To train these mod-
els, we applied Adam optimizer with stochastic gradient
descent (Kingma & Ba, 2014). These models are imple-

mented with Tensorflow (Abadi et al., 2015).12 Other than
the experiments reported in this section, we provide UCR
time series classification and multi-label learning results in
Appendix C.
7.1. Addition and Copy tasks

We tested RNN models on the Addition and Copy tasks with
the same settings as (Arjovsky et al., 2016).

Addition task: The Addition task requires the network to
remember two marked numbers in a long sequence and add
them. Each input data includes two sequences: top sequence
whose values are sampled uniformly from [0, 1] and bottom
sequence which is a binary sequence with only two 1’s. The
network is asked to output the sum of the two values. From
the empirical results in Figure 1, we can see that when the
network is not deep (temporal dimension L=30 in (a)(d)),
every model outperforms the baseline of 0.167 (i.e. always
output 1 regardless of the input). Also, the gradients w.r.t.
first cell do not vanish for all models. However, on longer
sequences (L=100 in (b)(e)), IRNN fails and LSTM con-
verges much slower than Spectral-RNN and oRNN. If we
further increase the sequence length (L=300 in (c)(f)), only
Spectral-RNN and oRNN are able to beat the baseline within
a reasonable number of iterations. We can also observe that
the gradient w.r.t. first cell of oRNN/Spectral-RNN does
not vanish regardless of the depth, while IRNN/LSTM’s
gradients vanish as L becomes lager.

Copy task: Let A = {ai}9i=0 be the alphabet and the
input data sequence x ∈ AT+20 where T is the time lag.
x1:10 are sampled uniformly from {ai}7i=0 and xT+10 is set
to a9. The rest of xi are set to a8. The network is asked to
output x1:10 after seeing a9, that is, to copy x1:10 from the
beginning to the end with time lag T .

A baseline strategy is to predict a8 for T + 10 entries and
randomly sample from {ai}7i=1 for the last 10 digits. From
the empirical results in Figure 2, Spectral-RNN consistently
outperforms all other models. IRNN and LSTM models
are not able to beat the baseline when the time lag is large.
In fact, the test MSE for RNN/LSTM is very close to the
baseline (memoryless strategy) indicating that they do not
memorize any useful information throughout the larger time
lag.

7.2. pixel-MNIST and permute-MNIST

In this experiment, we compare different models on the
MNIST image dataset. The dataset was split into a training
set of 60000 instances and a test set of 10000 instances.

1we thank Mhammedi for providing their code for
oRNN (Mhammedi et al., 2017)

2The source code is available at https://github.com/
zhangjiong724/spectral-RNN

https://github.com/zhangjiong724/spectral-RNN
https://github.com/zhangjiong724/spectral-RNN

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

(a) (b) (c)

(d) (e) (f)
Figure 1. RNN models on the addition task with sequence length L and hidden dimension of nh. The top plots show the test MSE, while
the bottom plots show the magnitude of the gradient at each corresponding step.

Figure 2. RNN models on the Copy task with time lag T and hidden dimension nh.

The 28× 28 MNIST pixels are flattened into a vector and
then traversed by the RNN models. Table 2 shows test
accuracy across multiple models. Spectral-RNN reaches
the highest 97.7% accuracy on pixel-MNIST with only 128
hidden dimensions and 6k parameters.

Models Hidden dimension # parameters Test accuracy
Spectral-RNN 128(m1,m2 = 16) ≈ 6k 97.7
oRNN (Mhammedi et al., 2017) 256(m = 32) ≈ 11k 97.2
RNN (Vorontsov et al., 2017) 128 ≈ 35k 94.1
uRNN (Arjovsky et al., 2016) 512 ≈ 16k 95.1
RC uRNN (Wisdom et al., 2016) 512 ≈ 16k 97.5
FC uRNN (Wisdom et al., 2016) 116 ≈ 16k 92.8
factorized RNN (Vorontsov et al., 2017) 128 ≈ 32k 94.6
LSTM (Vorontsov et al., 2017) 128 ≈ 64k 97.3

Table 2. Results for pixel MNIST across multiple algorithms

Figure 3(a)(b) plots the test accuracy on networks with
392 and 784 temporal steps respectively. We also tested
models on the permuted-MNIST dataset, where we apply
a fixed random permutation to the pixels before training.
We performed a grid search over several learning rates ρ =
{0.1, 0.01, 0.001, 0.0001}, decay rate α = {0.9, 0.8, 0.5}
and batch size B = {64, 128, 256, 512}. The reported re-
sults are the best one among them. Figure 3(c) shows the test
accuracy on permuted MNIST dataset. Also we explored the

effect of different spectral constraints and explicitly tracked
the spectral margin (maxi |σi−1|) of the transition matrix.

Figure 4. σ deviation and gradient magnitude

Figure 4 shows the spectral margin of different RNN models.
Although IRNN has small spectral margin at first few itera-
tions, it quickly deviates from being orthogonal. Figure 4
shows the magnitude of the gradient w.r.t. first cell ‖ ∂L

∂h(0) ‖2

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

(a) (b) (c)
Figure 3. RNN models on pixel-MNIST and permute-MNIST. Spectral-RNN constantly yields the highest test accuracy.

during training. RNN suffers from vanishing gradient at
first several epochs, LSTM’s gradient explode after several
epochs while oRNN and Spectral-RNN have much more
stable gradients. For the MLP models, each instance is flat-
tened to a vector of length 784 and fed to the input layer.
After the input layer there are 30-100 layers with hidden
dimension 128 (Figure 5). On a shallow network, Spectral-
MLP and Spectral-ResNet achieve similar performance as
ResNet while MLP’s convergence is slower. However, when
the network is deeper, both MLP and ResNet start to fail.
MLP is not able to function around L ∼ 35 and ResNet
with L ∼ 70. On the other hand, the SVD based methods
are resilient to increasing depth and thus achieve higher
precision.

Figure 5. MLP models on MNIST with L layers and nh hidden
dimension. Spectral-based methods are resilient to increasing
depth.

7.3. Penn Tree Bank dataset

We tested different models on Penn Tree Bank (PTB) (Mar-
cus et al., 1993) dataset for word-level prediction tasks. The
dataset contains 929k training words, 73k validation words,
and 82k test words with 10k vocabulary. We trained 1- and
2-layered RNN models on word sequences of length 300.

We adopted the successive mini-batches method (Zaremba
et al., 2014), that use the final hidden state of the previous
mini-batch as the initial state of the next one. We use initial
learning rate of 0.1 and decay by factor of 0.8 at each epoch,
and 80% dropout is applied on 2-layered models.

Models(nl,nh) # parameters Train perplexity Test perplexity
RNN(1,128) ≈ 16k 68.1 144.7
LSTM(1,128) ≈ 64k 69.1 130.7
Spectral-RNN(1,512) ≈ 31k 65.4 130.2
RNN(2,128) ≈ 32k 62.6 142.5
LSTM(2,128) ≈ 128k 26.1 122.7
Spectral-RNN(2,512) ≈ 63k 36.0 121.3

Table 3. Penn Tree Bank word level prediction

As seen in Table 3, Spectral-RNN achieves better perfor-
mance than LSTM with about half the number of parame-
ters. Note that 2-layered Spectral-RNN achieves lower test
perplexity with higher training perplexity, which shows its
generalization ability.

8. Conclusions
In this paper, we have proposed an efficient SVD
parametrization of weight matrices in deep neural networks,
which allows us to explicitly track and control their singular
values. This parameterization does not restrict the network’s
expressive power, while simultaneously allowing fast for-
ward as well as backward propagation. The method is easy
to implement and has the same time and space complexity as
compared to original methods like RNN and MLP. The abil-
ity to control singular values helps in avoiding the gradient
vanishing and exploding problems, and as we have empir-
ically shown, gives good performance. However, further
experimentation is required to fully understand the influence
of using different number of reflectors in our SVD parame-
terization. Also, the underlying structures of the image of
Mk1,k2 when k1, k2 6= 1 is a subject worth investigating.

Acknowledgement This research was supported by NSF
grants CCF1320746, IIS-1546452 and CCF-1564000.

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

References
Abadi, Martin et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from
tensorflow.org.

Andrew, Robert and Dingle, Nicholas. Implementing QR
factorization updating algorithms on GPUs. Parallel Com-
puting, 40(7):161–172, 2014.

Arjovsky, Martin, Shah, Amar, and Bengio, Yoshua. Unitary
evolution recurrent neural networks. In International
Conference on Machine Learning, pp. 1120–1128, 2016.

Bartlett, Peter, Foster, Dylan J, and Telgarsky, Matus.
Spectrally-normalized margin bounds for neural net-
works. arXiv preprint arXiv:1706.08498, 2017.

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo.
Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):
157–166, 1994.

Chen, Yanping, Keogh, Eamonn, Hu, Bing, Begum, Nur-
jahan, Bagnall, Anthony, Mueen, Abdullah, and Batista,
Gustavo. The UCR time series classification archive,
July 2015. www.cs.ucr.edu/˜eamonn/time_
series_data/.

Cisse, Moustapha, Bojanowski, Piotr, Grave, Edouard,
Dauphin, Yann, and Usunier, Nicolas. Parseval networks:
Improving robustness to adversarial examples. In Inter-
national Conference on Machine Learning, pp. 854–863,
2017.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Householder, Alston S. Unitary triangularization of a non-
symmetric matrix. Journal of the ACM (JACM), 5(4):
339–342, 1958.

Hüsken, Michael and Stagge, Peter. Recurrent neural net-
works for time series classification. Neurocomputing, 50:
223–235, 2003.

Kanai, Sekitoshi, Fujiwara, Yasuhiro, and Iwamura, Sotetsu.
Preventing gradient explosions in gated recurrent units.
In Advances in Neural Information Processing Systems,
pp. 435–444, 2017.

Kingma, Diederik and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Le, Quoc V, Jaitly, Navdeep, and Hinton, Geoffrey E. A
simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941, 2015.

Marcus, Mitchell P, Marcinkiewicz, Mary Ann, and San-
torini, Beatrice. Building a large annotated corpus of
english: The Penn Treebank. Computational linguistics,
19(2):313–330, 1993.

McAllester, David. Simplified PAC-Bayesian margin
bounds. In Learning theory and Kernel machines, pp.
203–215. Springer, 2003.

Mhammedi, Zakaria, Hellicar, Andrew, Rahman, Ashfaqur,
and Bailey, James. Efficient orthogonal parametrisation of
recurrent neural networks using Householder reflections.
In International Conference on Machine Learning, pp.
2401–2409, 2017.

Mikolov, Tomáš. Statistical language models based on
neural networks. Presentation at Google, Mountain View,
2nd April, 2012.

Neyshabur, Behnam, Bhojanapalli, Srinadh, McAllester,
David, and Srebro, Nathan. A PAC-Bayesian approach to
spectrally-normalized margin bounds for neural networks.
arXiv preprint arXiv:1707.09564, 2017.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua.
On the difficulty of training recurrent neural networks.
In International Conference on Machine Learning, pp.
1310–1318, 2013.

Trefethen, Lloyd N and Bau III, David. Numerical linear
algebra, volume 50. SIAM, 1997.

Tropp, Joel A, Dhillon, Inderjit S, Heath, Robert W, and
Strohmer, Thomas. Designing structured tight frames via
an alternating projection method. IEEE Transactions on
information theory, 51(1):188–209, 2005.

Vorontsov, Eugene, Trabelsi, Chiheb, Kadoury, Samuel,
and Pal, Chris. On orthogonality and learning recurrent
networks with long term dependencies. In International
Conference on Machine Learning, pp. 3570–3578, 2017.

Wisdom, Scott, Powers, Thomas, Hershey, John, Le Roux,
Jonathan, and Atlas, Les. Full-capacity unitary recurrent
neural networks. In Advances in Neural Information
Processing Systems, pp. 4880–4888, 2016.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol.
Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

https://www.tensorflow.org/
https://www.tensorflow.org/
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

A. Proofs
A.1. Proof of Proposition 1

Proposition 1. (Householder QR factorization) Let B ∈ Rn×n. There exists an upper triangular matrix R with positive
diagonal elements, and vectors {ui}ni=1 with ui ∈ Ri, such that B = Hnn(un)...Hn1 (u1)R. (Note that we allow ui = 0, in
which case, Hn

i (ui) = In as in (1))

Proof of Proposition 1. For n = 1, note thatH1
1(u1) = ±1. By setting u1 = 0 if B1,1 > 0 and u1 6= 0 otherwise, we have

the factorization desired.

Assume that the result holds for n = k, then for n = k + 1 set uk+1 = B1 − ‖B1‖e1. Here B1 is the first column of B and
e1 = (1, 0, ..., 0)>. Thus we have

Hk+1
k+1(uk+1)B =

(
‖B1‖ B̂1,2:k+1

0 B̂

)
,

where B̂ ∈ Rk×k. Note that Hk+1
k+1(uk+1) = Ik+1 when uk+1 = 0 and the above still holds. By assumption we have

B̂ = Hkk(uk)...Hk1(u1)R̂. Notice thatHk+1
i (ui) =

(
1
Hki (ui)

)
, so we have that

Hk+1
1 (u1)...Hk+1

k (uk)Hk+1
k+1(uk+1)B =

(
‖B1‖ B̃1,2:k+1

0 R̂

)
= R

is an upper triangular matrix with positive diagonal elements. Thus the result holds for any n by the theory of mathematical
induction.

A.2. Proof of Theorem 1

Proof. Observe that the image ofM1 is a subset of O(n), and we now show that the converse is also true. Given A ∈ O(n),
by Proposition 1, there exists an upper triangular matrix R with positive diagonal elements, and an orthogonal matrix
Q expressed as Q = Hnn(un)...Hn1 (u1) for some set of Householder vectors {ui}ni=1, such that A = QR. Since A is
orthogonal, we have A>A = AA> = In, thus:

A>A = R>Q>QR = R>R = In; Q>AA>Q = Q>QRR>Q>Q = RR> = In

Thus R is orthogonal and upper triangular matrix with positive diagonal elements. So R = In and A = Q =
Hnn(un)...Hn1 (u1).

A.3. Proof of Theorem 2

Proof. It is easy to see that the image ofM1,1 is a subset of Rn×n. For any W ∈ Rn×n, we have its SVD, W = UΣV >,
where Σ = diag(σ). By Theorem 1, for any orthogonal matrix U, V ∈ Rn×n, there exists {ui}ni=1{vi}ni=1 such that
U =M1(u1, ..., un) and V =M1(v1, ..., vn), then we have:

W = Hnn(un)...Hn1 (u1)ΣHn1 (v1)...Hnn(vn)

=M1,1(u1, ..., un, v1, ..., vn, σ)

A.4. Proof of Theorem 3

Proof. Let A ∈ Rn×n be an orthogonal matrix. By Theorem 1, there exist {ai}ni=1, such that A =M1(a1, ..., an). Since
A> is also orthogonal, for the same reason, there exist {bi}ni=1, such that A> =M1(b1, ..., bn). Thus we have:

A = Hn(an)...H1(a1) = H1(b1)...Hn(bn)

Observe that one of k2 ≥ k1 − 1 and k1 ≥ k2 − 1 must be true. If k2 ≥ k1 − 1, set

uk = ak, k = n, n− 1, ..., k1,

vk2+k1−k−1 = ak, k = k1 − 1, ..., 1, (18)
vt = 0, t = k2 + k1 − 2, ..., n,

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

and then we have:

Mk1,k2(uk1 , ..., un, vk2 , ..., vn,1) = Hn(un)...Hk1(uk1)InHk2(vk2)...Hn(vn)

= Hn(an)...Hk1(ak1)InHk1−1(ak1−1)...H1(a1)

= A (19)

Else, assign:

vk = bk, k = n, n− 1, ..., k2,

uk2+k1−k−1 = bk, k = k2 − 1, ..., 1, (20)
ut = 0, t = k2 + k1 − 2, ..., n,

and then we have:

Mk1,k2(uk1 , ..., un, vk2 , ..., vn,1) = H1(b1)...Hk2−1(bk2−1)InHk2(bk2)...Hn(bn)

= A (21)

A.5. Proof of Theorem 4

Proof. It is easy to see that the image ofMm,n
∗,∗ is a subset of Rm×n. For any W ∈ Rm×n, we have its SVD, W = UΣV >,

where Σ is an m× n diagonal matrix. By Theorem 1, for any orthogonal matrix U ∈ Rm×m, V ∈ Rn×n, there exists
{ui}mi=1{vi}ni=1 such that U = Hmm(um)...Hm1 (u1) and V = Hnn(vn)...Hn1 (v1). By Lemma 1, if m < n we have:

W = Hmn (un)...Hm1 (u1)ΣHn1 (v1)...Hnn(vn)

= Hmn (un)...Hm1 (u1)ΣHnn−m+1(vn−m+1)...Hnn(vn).

Similarly, for n < m, we have:

W = Hmn (un)...Hm1 (u1)ΣHn1 (v1)...Hnn(vn)

= Hmn (un)...Hmm−n+1(um−n+1)ΣHn1 (v1)...Hnn(vn).

A.6. Proof of Theorem 5

Notations: Recall from Definition 1 that L0 is the expected error with margin γ = 0, and we write L̂γ as the empirical
error when margin equals γ with m samples, i.e.,

L̂γ(fw) =
1

m

m∑
i=1

[
fw(xi)[yi] ≤ γ + max

j 6=yi
fw(xi)[j]

]
.

We are looking at a recurrent neural network with T time steps:

h(t) = φ(Wh(t−1) +Mx(t)), h(0) = 0, t = 1, 2, · · ·T
ŷ(t) = Y h(t),

where φ is the activation function. The dimensions are as follows: x(t) ∈ Rni , ŷ(t) ∈ Rny , and h(t) ∈ Rn. Therefore
W ∈ Rn×n,M ∈ Rni×n, Y ∈ Rn×ny . To incorporate the different parameters W,M,Y into the neural network, we
write w = vec({W,Y,M}) and use subscript w to denote dependence on the parameter w. For instance, h(t)

w denotes the
activation that takes w = vec({W,Y,M}) as parameters, and similar notation also holds for the output ŷ(t)

w . We use ‖ · ‖ to
denote l2 norm for vectors and spectral norm for matrices when there is no ambiguity.

To get a generalization bound for RNN, we need to use the following lemma from (Neyshabur et al., 2017).

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

Lemma 2. (Neyshabur et al., 2017) Let fw(x) : X → Rk be any predictor (not necessarily a neural network) with
parameters w, and P be any distribution on the parameters that is independent of the training data. Then, for any
γ, δ > 0, with probability ≥ 1 − δ over the training set of size m, for any w, and any random perturbation u s.t.
Pu[maxx∈X ‖fw+u(x)− fw(x)‖∞ < γ

4] ≥ 1
2 , we have:

L0(fw) ≤ L̂γ(fw) + 4

√
KL(w + u||P) + ln 6m

δ

m− 1

Here KL(P ||Q) is the Kullback-Leibler divergence of two continuous random variables P and Q:

KL(P ||Q) :=

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx,

where p and q denote the density of P and Q. In order for the random variable u to satisfy the probability property in
Lemma 2, we study the change in output with respect to perturbation u.

Lemma 3. Write w = vec({W,Y,M}), and perturbation u = vec({δW, δY, δM}) such that ‖δW‖ ≤ 1
T ‖W‖, ‖δY ‖ ≤

1
T ‖Y ‖, ‖δM‖ ≤

1
T ‖M‖. For a recurrent neural network (17) with T time steps that satisfies Assumption 1, the perturbation

in the activation is bounded by

‖h(T)
w+u − h(T)

w ‖ ≤ BTe(T‖M‖‖δW‖+ ‖δM‖) max{‖W‖T−1, 1}, (22)

while the perturbation in the output satisfies:

‖ŷ(T)
w+u − ŷ(T)

w ‖ ≤ TBmax{‖W‖T−1, 1} · (‖Y ‖‖δW‖‖M‖Te+ ‖Y ‖‖δM‖e+ ‖δY ‖‖M‖).

Here e is the natural logarithm base.

Proof of Lemma 3. First we bound the norm of h(t)
w ,

‖h(t)
w ‖ = ‖φ(Wh(t−1)

w +Mx(t))‖
≤ ‖Wh(t−1)

w +Mx(t)‖ (by Assumption 1.2)

≤ ‖W‖‖h(t−1)
w ‖+ ‖M‖‖x(t)‖ (by triangle inequality) (23)

≤ ‖W‖
(
‖W‖‖h(t−2)

w ‖+ ‖M‖‖x(t−1)‖
)

+ ‖M‖‖x(t)‖

(applying (23) to ‖h(t−1)
w ‖)

≤ · · ·

≤ ‖W‖t‖h(0)
w ‖+ ‖M‖

t−1∑
j=0

‖W‖t−1−j‖x(j+1)‖

= ‖M‖
t−1∑
j=0

‖W‖t−1−j‖x(j+1)‖ (since h(0)
w = 0)

≤ B‖M‖
t−1∑
j=0

‖W‖t−1−j (by Assumption 1.1)

=⇒ ‖h(t)
w ‖ ≤ B‖M‖tmax{‖W‖t−1, 1} (24)

(since
t−1∑
i=0

‖W‖i ≤ tmax{‖W‖t−1−i, 1})

Denoting ∆t = ‖h(t)
w+u − h

(t)
w ‖ for short, in order to prove (22), we now prove the following tighter result by induction,

∆t ≤ Bt(1 +
1

T
)t−1(‖δW‖‖M‖T + ‖δM‖) max{‖W‖t−1, 1},∀t ≤ T (25)

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

Clearly ∆0 = 0 satisfies the inequality. Suppose ∆t−1 satisfies the assumption, then,

∆t = ‖φ
(

(W + δW)h
(t−1)
w+u + (M + δM)x(t)

)
− φ

(
Wh(t−1)

w +Mx(t)
)
‖

≤ ‖
(

(W + δW)h
(t−1)
w+u + (M + δM)x(t)

)
−
(
Wh(t−1)

w +Mx(t)
)
‖

(by Assumption 1.2)

= ‖(W + δW)(h
(t−1)
w+u − h(t−1)

w) + δWh(t−1)
w + δMx(t)‖

≤ (‖W‖+ ‖δW‖∆t−1 + ‖δW‖‖h(t−1)
w ‖+ ‖δM‖‖x(t)‖ (by triangle inequality)

≤ (1 +
1

T
)‖W‖∆t−1 + ‖δW‖‖h(t−1)

w ‖+ ‖δM‖B

(by Assumption 1.1 and requirement of ‖δW‖)

Then by induction and the bound of the activations, we have:

∆t ≤(1 +
1

T
)‖W‖

(
B(t− 1)(1 +

1

T
)t−2(‖δW‖‖M‖T + ‖δM‖) max{‖W‖t−2, 1}

)
(by induction)

+ ‖δW‖
(
B(t− 1)‖M‖max{‖W‖t−2, 1}

)
+B‖δM‖ (by activation bound (24))

=B(t− 1)T (1 +
1

T
)t−1‖δW‖‖M‖‖W‖max{‖W‖t−2, 1}+B(t− 1)‖δW‖‖M‖max{‖W‖t−2, 1}

+ (1 +
1

T
)t−1‖W‖B(t− 1) max{‖W‖t−2, 1}‖δM‖+B‖δM‖

=B(t− 1)‖δW‖‖M‖max{‖W‖t−2, 1}
(

(1 +
1

T
)t−1T‖W‖+ 1

)
+B‖δM‖

(
(1 +

1

T
)t−1‖W‖(t− 1) max{‖W‖t−2, 1}+ 1

)
≤B(t− 1)‖δW‖‖M‖max{‖W‖t−2, 1}

(
(1 +

1

T
)t−1T + 1

)
max{‖W‖, 1}

+B‖δM‖
(

(1 +
1

T
)t−1(t− 1) max{‖W‖t−2, 1}+ 1

)
max{‖W‖, 1} (both 1, ‖W‖ ≤ max{‖W‖, 1})

≤B‖δW‖‖M‖tT (1 +
1

T
)t−1 max{‖W‖t−1, 1}

+B‖δM‖t(1 +
1

T
)t−1 max{‖W‖t−1, 1} (since (t− 1)a+ 1 ≤ ta for a ≥ 1)

=Bt(1 +
1

T
)t−1(T‖δW‖‖M‖+ ‖δM‖) max{‖W‖t−1, 1}

Since (1 + 1
T)T−1 ≤ e, therefore ∆T ≤ BTe(T‖M‖‖δW‖+ ‖δM‖) max{‖W‖T−1, 1}. Meanwhile for the perturbation

of output ŷ,

‖ŷ(T)
w+u − ŷ(T)

w ‖

=‖(Y + δY)h
(T)
w+u − Y h(T)

w ‖

=‖(Y + δY)(h
(T)
w+u − h(T)

w) + (Y + δY)h(T)
w − Y h(T)

w ‖
≤‖(Y + δY)‖∆T + ‖δY h(T)

w ‖ (by triangle inequality)

≤‖Y ‖(1 +
1

T
)BT (1 +

1

T
)T−1(T‖δW‖‖M‖+ ‖δM‖) max{‖W‖T−1, 1}

(by perturbation bound (25))

+ ‖δY ‖TB‖M‖max{‖W‖T−1, 1} (by activation bound (24))

≤TBmax{‖W‖T−1, 1}(‖Y ‖‖δW‖‖M‖Te+ ‖Y ‖‖δM‖e+ ‖δY ‖‖M‖)

(since (1 +
1

T
)T ≤ e)

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

Finally we are able to prove Theorem 5:

Proof of Theorem 5. In order to finish the proof, we first calculate the maximum allowed perturbation u that satisfies the
requirement in Lemma 2, and we define the prior P and calculate the KL divergence of P and w + u.

Let β = max{‖W‖T−1
2 , 1}max{‖Y ‖2, 1}max{‖M‖2, 1}. We choose the distribution of the prior P = N (0, σ2I) and

consider the random perturbation u = vec({δW, δY, δM}) with the same zero mean Gaussian distribution, where σ will be
assigned later according to β. More precisely, since the prior cannot depend on the β which is associated with the learned
parameters W,M and Y , we will set σ based on some discrete choices of β̃ that approximates β. For each value of β̃ of our
choice, we will compute the PAC-Bayes bound, establishing the generalization guarantee for all w for which 1

eβ ≤ β̃ ≤ eβ,
and ensuring that each relevant value of β is covered by some β̃ on the grid. We will then take a union bound over all β̃ of
our choice.

For a random matrix X ∈ Rn1×n2 with individual entries following normal distribution, (Tropp et al., 2005) provides the
following bound of its spectral norm:

PX∼N (0,σ2I)[‖X‖2 > t] ≤ 2ne−t
2/2nσ2

,∀n ≥ n1, n2 (26)

Therefore for δW, δM, δY , the probability of their spectral norm being greater than t is bounded by 2he−t
2/2hσ2

, where
h = max{n, ni, ny}. Therefore with probability ≥ 1

2 , ‖δW‖2, ‖δY ‖2, ‖δM‖2 ≤ σ
√

2h ln(12h).

Plugging into Lemma 3 we have with probability at least 1
2 ,

max
‖x(t)‖≤B,∀t≤T

‖ŷw+u − ŷw‖

≤ TBmax{‖W‖T−1, 1}(‖Y ‖‖δW‖‖M‖Te+ ‖Y ‖‖δM‖e+ ‖δY ‖‖M‖)
≤ TBmax{‖W‖T−1, 1}max{‖Y ‖, 1}max{‖M‖, 1}(‖δW‖Te+ ‖δM‖e+ ‖δY ‖)
≤ TB

√
2h ln(12h)β̃φ(Te+ e+ 1)

≤ γ

4
,

where we choose σ = γ

12
√

2h ln(12h)TB(Te+e+1)β̃
. Therefore now the perturbation u satisfies assumptions in Lemma 2.

We next compute the KL-divergence of distributions for P and u for the sake of Lemma 2.

KL(w + u ‖ P) ≤ ‖w‖
2

2σ2

≤ O
(
B2T 4h ln(h) max{‖W‖2T−2, 1}max{‖M‖22, 1}max{‖Y ‖22, 1}

γ2
(‖W‖2F + ‖M‖2F + ‖Y ‖2F)

)

Hence, with probability ≥ 1− δ and for all w such that, 1
eβ ≤ β̃ ≤ eβ, we have:

L0(ŷw) ≤ L̂γ(ŷw) +O(

√
B(w) + ln m

δ

m
), (27)

where B(w) =
B2T 4h ln(h) max{‖W‖2T−2,1}max{‖M‖22,1}max{‖Y ‖22,1}

γ2 (‖W‖2F + ‖M‖2F + ‖Y ‖2F).

Since β̃ should be independent of the learned models. We finally take a union bound over different choices of the parameter.
We will choose discrete set of β̃ such that they cover the real W,M,Y that satisfies 1

eβ ≤ β̃ ≤ eβ. Firstly we notice for
some range of β inequality (27) holds trivially, when either term of its RHS is greater or equal to 1, since the expected
margin loss is less or equal to 1.

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

ŷ(T) = Y h
(T)
w , therefore if β ≤ γ

2BT ,

‖ŷ‖∞ ≤ ‖ŷ‖2 (by definition of `∞ norm and `2 norm)

≤ ‖Y ‖‖h(T)
w ‖ (by definition of spectral norm)

≤ ‖Y ‖B‖M‖T max{‖W‖t−1, 1}
(by activation bound (24))

≤ BTβ < γ

2

Therefore L̂γ = 1 from definition of margin loss and the bound is satisfied trivially. Meanwhile, when β ≥ γ
√
m

2BT , then
the second term of (27) ≥ 1 and it also holds trivially. Therefore, we only need to consider β̃ such that β̃ ∈ [γ

2BT ,
γ
√
m

2BT].
Therefore we could respectively set β̃ to be γ

2BT + se γ
2BT , s = 0, 1, 2, · · · , and the size of the cover we need to consider is

only
√
m
e . Therefore we replace δ by e δ√

m
in (27) and take a union bound over all the β̃ on the grid to complete the proof.

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

B. Details of Forward and Backward Propagation Algorithms

Algorithm 1 Local forward/backward propagation

Input: h(t−1), ∂L
∂h̃(t)

, U = (un|...|un−m1+1),

Σ, V = (vn|...|vn−m2+1)
Output: h̃(t) = Wh(t−1), ∂L∂U ,

∂L
∂V ,

∂L
∂σ̂ ,

∂L
∂h(t−1)

// Begin forward propagation
h

(v)
n+1 ← h(t−1)

for k = n, n− 1, ..., n−m2 + 1 do
h

(v)
k ← Hprod(h

(v)
k+1, vk) // Compute V̂ >h

end for
h

(u)
k1−1 ← Σh

(v)
k2

// Compute ΣV̂ >h
for k = n−m1 + 1, ..., n do
h

(u)
k ← Hprod(h

(u)
k−1, uk) // Compute ÛΣV̂ >h

end for
h̃(t) ← h

(u)
n

//Begin backward propagation
g ← ∂L

∂h̃(t)

for k = n, n− 1, ..., n−m1 + 1 do
g,G

(u)
∗,n−k+1 ← Hgrad(h

(u)
k , uk, g) // Compute ∂L

∂uk
end for
Σ̄← diag(g ◦ h(v)

k2
), g ← Σg // Compute ∂L

∂Σ

g(σ̂) ← ∂diag(Σ)
∂σ̂ ◦ diag(Σ̄) // Compute ∂L

∂σ̂
for k = n−m2 + 1, ..., n do
g,G

(v)
∗,n−k+1 ← Hgrad(h

(u)
k+1, vk, g) // Compute ∂L

∂vk
end for
∂L
∂U ← G(u), ∂L∂V ← G(v), ∂L∂σ̂ ← g(σ̂), ∂L

∂h(t−1) ← g

Algorithm 2
ĥ = Hprod(h, uk)

Input: h, uk
Output: ĥ = Hk(uk)h

// Compute ĥ = (I − 2uku
>
k

u>k uk
)h

α← 2
‖uk‖2u

>
k h

ĥ← h− αuk

Algorithm 3
h̄, ūk = Hgrad(h, uk, g)

Input: h, uk, g = ∂L
∂h̃

where h̃ =

Hk(uk)h
Output: h̄ = ∂L

∂h , ūk = ∂L
∂uk

α = 2
‖uk‖2u

>
k h

β = 2
‖uk‖2u

>
k g

h̄← g − βuk
ūk ← −αg − βh+ αβuk

C. More Experimental Details
C.1. Time Series Classification

In this experiment, we focus on the time series classification problem, where time series are fed into RNN sequentially,
which then tries to predict the right class upon receiving the sequence end (Hüsken & Stagge, 2003). The dataset we
choose is the largest public collection of class-labeled time-series with widely varying length, namely, the UCR time-
series collection from (Chen et al., 2015). We use the training and testing sets directly from the UCR time series archive
http://www.cs.ucr.edu/˜eamonn/time_series_data/, and randomly choose 20% of the training set as
validation data. We provide the statistical descriptions of the datasets and experimental results in Table 4.

In all experiments, we used hidden dimension nh = 32, and chose total number of reflectors for oRNN and Spectral-RNN
to be m = 16 (for Spectral-RNN m1 = m2 = 8). We choose proper depth t as well as input size ni. Given sequence length
L, since tni = L, we choose ni to be the maximum divisor of L that satisfies depth ≤

√
L. To have a fair comparison

of how the proposed principle itself influences the training procedure, we did not use dropout in any of these models. As
illustrated in the optimization process in Figure 6, this resulted in some overfitting (see (a) CBF), but on the other hand it
shows that Spectral-RNN is able to prevent overfitting. This supports our claim that since generalization is bounded by the
spectral norm of the weights (Bartlett et al., 2017), Spectral-RNN will potentially generalize better than other schemes. This
phenomenon is more drastic when the depth is large (e.g. ArrowHead(251 length) and FaceAll(131 length)), since regular
RNN, and even LSTM, have no control over the spectral norms. Also note that there are substantially fewer parameters in
oRNN and Spectral-RNN as compared to LSTM.

http://www.cs.ucr.edu/~eamonn/time_series_data/

Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization

(a) (b) (c)
Figure 6. Performance comparisons of the RNN based models on three UCR datasets.

Datasets Data Descriptions Depth RNN LSTM oRNN Spectral-RNN
training/testing size length #class acc (nparam) acc (nparam) acc (nparam) acc (nparam)

50words 450 455 270 50 27 0.492 (3058) 0.598 (7218) 0.642 (2426) 0.651 (2850)
Adiac 390 391 176 37 16 0.552 (2694) 0.706 (6950) 0.668 (2062) 0.726 (2486)

ArrowHead 36 175 251 3 251 0.509 (1219) 0.537 (4515) 0.669 (587) 0.800 (1011)
Beef 30 30 470 5 47 0.600 (1606) 0.700 (5766) 0.733 (974) 0.733 (1398)

BeetleFly 20 20 512 2 32 0.950 (1699) 0.850 (6435) 0.900 (1067) 0.950 (1491)
CBF 30 900 128 3 16 0.702 (1476) 0.967 (5444) 0.881 (844) 0.948 (1268)

Coffee 28 28 286 2 22 1.000 (1570) 1.000 (6018) 1.000 (938) 1.000 (1362)
Cricket X 390 390 300 12 20 0.310 (1997) 0.456 (6637) 0.495 (1365) 0.500 (1789)

DistalPhalanxOutlineCorrect 276 600 80 2 10 0.790 (1410) 0.798 (5378) 0.830 (778) 0.840 (1202)
DistalPhalanxTW 154 399 80 6 10 0.815 (1641) 0.795 (5609) 0.807 (1009) 0.815 (1433)

ECG200 100 100 96 2 12 0.640 (1410) 0.640 (5378) 0.640 (778) 0.640 (1202)
ECG5000 500 4500 140 5 14 0.941 (1606) 0.936 (5766) 0.940 (974) 0.945 (1398)

ECGFiveDays 23 861 136 2 17 0.947 (1443) 0.790 (5411) 0.976 (811) 0.948 (1235)
FaceAll 560 1690 131 14 131 0.549 (1615) 0.455 (4911) 0.714 (983) 0.714 (1407)

FaceFour 24 88 350 4 25 0.625 (1701) 0.477 (6245) 0.511 (1069) 0.716 (1493)
FacesUCR 200 2050 131 14 131 0.449 (1615) 0.629 (4911) 0.710 (983) 0.727 (1407)
Gun Point 50 150 150 2 15 0.947 (1507) 0.920 (5667) 0.953 (875) 0.960 (1299)

InsectWingbeatSound 220 1980 256 11 16 0.534 (1996) 0.515 (6732) 0.598 (1364) 0.586 (1788)
ItalyPowerDemand 67 1029 24 2 6 0.970 (1315) 0.969 (4899) 0.972 (683) 0.973 (1107)

Lighting2 60 61 637 2 49 0.541 (1570) 0.541 (6018) 0.541 (938) 0.541 (1362)
MiddlePhalanxOutlineCorrect 291 600 80 2 10 0.793 (1410) 0.783 (5378) 0.712 (778) 0.820 (1202)

Table 4. Test accuracy (number of parameters) on UCR datasets. For each dataset, we present the testing accuracy when reaching the
smallest validation error. The highest precision is in bold, and lowest two are colored gray.

