Guaranteed Rank Minimization via Singular Value
Projection

Anonymous Author(s)
Affiliation
Address
email

Abstract

Minimizing the rank of a matrix subject to affine constraildsa fundamental
problem with many important applications in machine leagnand statistics. In
this paper we propose a simple and fast algoriw® (Singular Value Projec-
tion) for rank minimization under affine constrainSRMP) and show that SVP
recovers the minimum rank solution for affine constraintg satisfy arestricted
isometry propertyRIP). Our method guarantees geometric convergence rate even
in the presence of noise and requires strictly weaker asomspon theRIP con-
stants than the existing methods. We also introduce a Nestegmfor our SVP
framework to speed-up the convergence with substantiaireralpgains. Next,
we address a practically important applicationA&tMP - the problem of low-
rank matrix completion, for which the defining affine consttedo not directly
obey RIP, hence the guarantees of SVP do not hold. Howeveasrowide partial
progress towards a proof of exact recovery for our algoribdynshowing a more
restricted isometry property and observe empirically thatalgorithm recovers
low-rank incoherenmatrices from an almost optimal number of uniformly sam-
pled entries. We also demonstrate empirically that ourrétlyos outperform ex-
isting methods, such as those of [5, 18, 14],A&MP and the matrix completion
problem by an order of magnitude and are also more robusti$e maoad sampling
schemes. In particular, results show that our SVP-Newtathoakis significantly
robust to noise and performs impressively on a more reafistiver-law sampling
scheme for the matrix completion problem.

1 Introduction

In this paper we study the general affine rank minimizatiabfm (ARMP),
min rank(X) st A(X)=0b X €R™" phecR? (ARMP)
whereA is an affine transformation fro™*" to R¢.

The affine rank minimization problem above is of considezgdvhactical interest and many important
machine learning problems such as matrix completion, lomedsional metric embedding, low-
rank kernel learning can be viewed as instances of the abml@egm. UnfortunatelyARMP is
NP-hard in general and is also NP-hard to approximate ([22])

Until recently, most known methods f&\(RMP were heuristic in nature with few known rigorous
guarantees. In a recent breakthrough, Recht et al. [24] thevdirst nontrivial results for the
problem obtaining guaranteed rank minimization for affia@s$formationsA that satisfy aestricted
isometry propert{RIP). Define the isometry constant gf, J;, to be the smallest number such that
for all X € R™*™ of rank at most,

(1= ) XIE < AXIE < (1 + ) [1X - 1)



The aboveRIP condition is a direct generalization of tfdP condition used in the compressive
sensing context. MoreoveRIP holds for many important practical applications ARMP such
as image compression, linear time-invariant systems. fiticoéar, Recht et al. show that for most
natural families of random measuremefRK; is satisfied even for onl® (nk log n) measurements.
Also, Recht et al. show that fokRMP with isometry constands, < 1/10, the minimum rank
solution can be recovered by the minimum trace-norm salutio

In this paper we propose a simple and efficient algoriBvk (Singular Value Projection) based
on the projected gradient algorithm. We present a simpléysisasshowing thabVP recovers the
minimum rank solution for noisy affine constraints that &fgtRIP and prove the following guar-
antees. (Independent of our work, Goldfarb and Ma [12] psedoan algorithm similar t8VP.
However, their analysis and formulation is different froor&@ They also require stronger isometry

assumptionsys, < 1/+/30, than our analysis.)

Theorem 1.1 Suppose the isometry constant4fsatisfiesds, < 1/3 and letb = A(X™*) for a
rank- matrix X*. Then,SVP (Algorithm 1) with step-size; = 1/(1 + d2;) converges taX ™.
Furthermore,SVP outputs a matrixX of rank at most: such that|| A(X) — b||3 < e and || X —
X*[|2 < €/(1 — o) inat most{m log %-‘ iterations.

Theorem 1.2 (Main) Suppose the isometry constantbsatisfiesio, < 1/3and letb = A(X*)+e
for a rank k& matrix X* and an error vectore € R?. Then,SVP with step-sizey; = 1/(1 + o)
outputs a matrixX of rank at most: such that|| A(X) — b||2 < C|le||> + eand | X — X*||2 <

Cﬁfi(‘;:e, e >0,in at most{log(}/m log Q(CH?I“;E)W iterations for universal constants, D.

As our SVP algorithm is based on projected gradient descent, it beshase first order methods
and may require a relatively large number of iterations toi@® high accuracy, even after iden-
tifying the correct row and column subspaces. To this endjntreduce a Newton-type step in
our framework §VP-Newton) rather than using a simple gradient-descent step. Gusaisim-
ilar to Theorems 1.1, 1.2 follow easily f&VP-Newton using the proofs foSVP. In practice,
SVP-Newton performs better thaBVP in terms of accuracy and number of iterations.

We next consider an important application SRMP: the low-rank matrix completion problem
(MCP)— given a small number of entries from an unknown low-ranltrirgthe task is to complete
the missing entries. Note th&IP does not hold directly for this problem. Recently, Candeas an
Recht [6], Candes and Tao [7] and Keshavan et al. [14] gavér#igheoretical guarantees for the
problem obtaining exact recovery from an almost optimal benof uniformly sampled entries.

While RIP does not hold for MCP, we show that a similar property holdsifieoherenimatrices
[6]. Given our refineRIP and a hypothesis bounding the incoherence of the iterags@in SVP,
an analysis similar to that of Theorem 1.1 immediately ieplihatSVP optimally solves MCP.
We provide strong empirical evidence for our hypothesis simalv that that both of our algorithms
recover a low-rank matrix from an almost optimal number dfarmly sampled entries.

In summary, our main contributions are:

e Motivated by [11], we propose a projected gradient basearihgn, SVP, for ARMP and show
that our method recovers the optimal rank solution whenffireeaconstraints satisfiRIP. To the
best of our knowledge, our isometry constant requiremenetseast stringent: we only require
dar < 1/3 as opposed 655, < 1/10 by Recht et al.gs;, < 1/4\/§ by Lee and Bresler [18] and
041, < 0.04 by Lee and Bresler [17].

e We introduce a Newton-type step in tB¥P method which is useful if high precision is criti-
cally. SVP-Newton has similar guarantees to that®fP, is more stable and has better empirical
performance in terms of accuracy. For instance, on the Mievie dataset [1] and rank= 3,
SVP-Newton achieves an RMSE @f.89, while SVT method [5] achieves an RMSE @f8.

e Asobserved in [23], most trace-norm based methods perfooriyfor matrix completion when
entries are sampled from more realistic power-law distidns. Our methodVP-Newton is
relatively robust to sampling techniques and performsisaamtly better than the methods of
[5, 14, 23] even for power-law distributed samples.

e We show that the affine constraints in the low-rank matrix ptation problem satisfy a weaker
restricted isometry property and as supported by empigealence, conjecture th&VP (as
well asSVP-Newton) recovers the underlying matrix from an almost optimal nemaf uni-
formly random samples.



e We evaluate our method on a variety of synthetic and realdndatasets and show that our
methods consistently outperform, both in accuracy and,timeous existing methods [5, 14].

2 Method

In this section, we first introduce our Singular Value Progt (SVP) algorithm for ARMP and
present a proof of its optimality for affine constraints sfgihg RIP (1). We then specialize our
algorithm for the problem of matrix completion and prove aretestricted isometry propertfor
the same. Finally, we introduce a Newton-type step in our 8\gBrithm and prove its convergence.

2.1 Singular Value Decomposition (SVP)
Consider the following more robust formulation SRMP (RARMP),
1
min (X) = 2 [l AX) — b3 st X eC(k)={X:rank(X) <k} (RARMP)

The hardness of the above problem mainly comes from the oowvegity of the set of low-rank
matricesC(k). However, the Euclidean projection onfgk) can be computed efficiently using
singular value decomposition (SVD). Our algorithm uses tiiservation along with the projected
gradient method for efficiently minimizing the objectivenfttion specified in (RARMP).

Let P, : R™*™ — R™*™ denote the orthogonal projection on to the 8gt). That is, P, (X) =
argminy {||Y — X||r : Y € C(k)}. Itis well known thatP,(X) can be computed efficiently by
computing the tog singular values and vectors &f.

In SVP, a candidate solution tARMP is computed iteratively by starting from the all-zero ma-
trix and adapting the classical projected gradient desgpdéate as follows (note th&fy(X) =
AT(A(X) = b)):

X P (X =0 V(X)) =Py (X' = neAT(AXT) =) @)
Figure 1 presentSVP in more detail. Note that the iteraté&’ are always low-rank, facilitating
faster computation of the SVD. See Section 3 for a more detdilscussion of computational issues.

Algorithm 1 Singular Value ProjectiorS{/P) Algorithm
Require: A, b,tolerances, n, fort =0,1,2, ...

1: Initialize: X° =0andt =0

2: repeat

3 Y X AT (A(XT) —b)

4:  Compute topk singular vectors o *+1: Uy, ¥y, Vi
5. X U VT
6
7

Do te—t+1
cuntil JA(XTH) — b3 <e

Analysis for Constraints SatisfyingRIP

Theorem 1.1 shows th&VP converges to am- approxmate solution of RARMP i (log ™= L )
steps. Theorem 1.2 shows a similar result for the noisy Gdsetheorems follow from the followmg
lemma that bounds the objective function after each itenati

Lemma 2.1 Let X* be an optimal solution ofRARMP) and letX ¢ be the iterate obtained by SVP
at t-th iteration. Theng)(X!1) < ¥ (X*) + (152(;2” A(X* — X1)||3, wheredyy, is the rank2k
isometry constant ofl.

The lemma follows from elementary linear algebra, optityalf SVD (Eckart-Young theorem) and
two simple applications dRIP. We refer to the supplementary material (Appendix A) for taded
proof. We now prove Theorem 1.1. Theorem 1.2 can also be greweilarly; see supplementary
material (Appendix A) for a detailed proof.

Proof of Theorem 1.1 Using Lemma 2.1 and the fact thatX*) = 0, it follows that
2001,

0
xttl <i¢4 X2 = 202k oxty
P £ SIS = XDl = 55w
Also, note that forde, < 1/3, (12753;2) < 1. Hence, (X") < e wherer =

1 Y(x° i N YT *
’710g((1—52k)/252k) log (e )W. Further, usingRIP for the rank at mos2k matrix X™ — X* we
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get: | X7 — X*| < z/;(XT)2/(1 — o1) < ¢/(1 = dax). Now, the S:/P algorithm is initialized using
X0 =0,ie,(X°) = 4 Hences = [m log 121 W

2 2e

2.2 Matrix Completion

We first describe the low-rank matrix completion problenmiaily. ForQ C [m] x [n], let Pg :
R™*™ — R™>" denote the projection onto the index SetThat is,(Pq(X)):; = X;; for (4,5) €
Q and(Pq(X));; = 0 otherwise. Then, the low-rank matrix completion probldviCP) can be
formulated as follows,

H}}n rank( X) st Po(X)=Pq(X"), X € R™*". (MCP)

Observe thaMCP is a special case &ARMP, so we can applgVP for matrix completion. We
use step-size; = 1/(1 + J)p, wherep is the density of sampled entries ahis a parameter which
we will explain later in this section. Using the given steépesand update (1), we get the following

update for matrix-completion:
Xt Xt (Po(X") — Po(X* ) 2
Pu (X'~ 57, (PalX) = Palx") @

Although matrix completion is a special caseA@MP, the affine constraints that defibkCP, P,
do not satisfyRIP in general. Thus Theorems 1.1, 1.2 above and the resultsabftReal. [24] do
not directly apply taViCP. However, we show that the matrix completion affine constsasatisfy
RIP for low-rankincoherentmatrices.

Definition 2.1 (Incoherence) A matrix X € R™*™ with singular value decompositioX =
UEVT is u'inCOherent ifmaxi_,j ‘UZ]| < L::N max; ; ‘V;]‘ < %

The above notion of incoherence is similar to that introdiizg Candes and Recht [6] and also used
by [7, 14]. Intuitively, high incoherence (i.ey is small) implies that the non-zero entries &f
are not concentrated in a small number of entries. Hencejdom sampling of the matrix should
provide enough global information to satigiyP.

Using the above definition, we prove the following refinednieted isometry property.

Theorem 2.2 There exists a constadt > 0 such that the following holds for all < § < 1,
w>1,n>m >3 For Q C [m] x [n] chosen according to the Bernoulli model with density
p > Cp2k?logn/6%m, with probability at leastl —exp(—n log n), the following restricted isometry
property holds for allz-incoherent matricex( of rank at mosk:

AL =aplX[E < 1PeOE < (L +8)p X% @)

Roughly, our proof combines a Chernoff bound estimate||fés (X )||% with a union bound over
low-rank incoherent matrices. A proof sketch is presemte8dction 2.2.1.

Given the above refineRIP, if the iterates arising i8VP are shown to be incoherent, the arguments
of Theorem 1.1 can be used to show tBatP achieves exact recovery for low-rank incoherent
matrices from uniformly sampled entries. As supported bpieical evidence, we hypothesize that
the iteratesX! arising inSVP remain incoherent when the underlying matiix is incoherent.

Figure 1 (d) plots the maximum incohereneex; (X*) = \/n max, ; ; |U};|, whereU" are the
left singular vectors of the intermediate iterat€$ computed bySVP. The figure clearly shows
that the incoherencg(X*) of the iterates is bounded by a constant independent of thexmsize

n and density throughout the execution &VP. Figure 2 (c) plots the threshold sampling density
p beyond which matrix completion for randomly generated foag is solved exactly bgVP for
fixed k£ and varying matrix sizes. Note that the density threshold matches the optimal inédion-
theoretic bound [14] 0O (k logn/n).

Motivated by Theorem 2.2 and supported by empirical eviddrigures 2 (c), (d)) we hypothesize
thatSVP achieves exact recovery from an almost optimal number opesiior incoherent matrices.

Conjecture 2.3 Fix u,k and § < 1/3. Then, there exists a consta6t such that for au-
incoherent matrixX™* of rank at mostt and 2 sampled from the Bernoulli model with density
p = Q. 1((logn)/m), SVP with step-sizey, = 1/(1 + §)p converges taX* with high probability.
Moreover,SVP outputs a matrixX of rank at most such that|Pq(X) — Pa(X*)||% < e after
Oui ([log (1)]) iterations.



2.2.1 RIP for Matrix Completion on Incoherent Matrices

We now prove the restricted isometry property of Theoremf@.2he affine constraints that result
from the projection operatdP,. To prove Theorem 2.2 we first show the theorem fatiscrete
collection of matrices using Chernoff type large-deviatlsounds and use standard quantization
arguments to generalize to the continuous case. We firstinte some notation and provide useful
lemmas for our main proéf First, we introduce the notion of-regularity.

Definition 2.2 A matrix X € R™*" is a-regular if max; ; | X;;| < J% X -

Lemma 2.4 below relates the notion of regularity to incoheeesand Lemma 2.5 proves (3) for a
fixedregular matrix when the sampl€sare selected independently.

Lemma 2.4 Let X € R™*" be au-incoherent matrix of rank at most ThenX is u\/k-regular.

Lemma 2.5 Fix aa-regular X € R™*™ and0 < ¢ < 1. Then, for2 C [m] x [n] chosen according
to the Bernoulli model, with each pa(t, j) € €2 chosen independently with probabiljty

pmn
3a2 )’

Pr [P — pIX 13| = 6plX[13] < 2exp (—

While the above lemma shows Equation (3) for a fixed rajk-incoherentX (i.e., (uv/k)-regular

X using Lemma 2.4), we need to show Equation (3)dlrsuch rankk incoherent matrices. To
handle this problem, we discretize the space of low-rankhecent matrices so as to be able to
use the above lemma and a union bound. We now show the exdstéracsmall set of matrices
S(p, ) € R™*™ such that every low-rank-incoherent matrix is close to an appropriately regular
matrix from the sefS(u, €).

LemmaZ26Forall0 <e<1/2,u>1,m,n > 3andk > 1, there exists a sef(u,e) C R™*™
with |S (i, €)| < (mnk/e)? (m+™k such that the following holds. For amyincoherentX € R™*"
of rankk with || X || = 1, there exist&” € S(u, ) s.t.||Y — X||r < e andY is (4u/k)-regular.

We now prove Theorem 2.2 by combining Lemmas 2.5, 2.6 and/aqgpa union bound. We present
a sketch of the proof but defer the details to the supplemgntaterial (Appendix B).

Proof Sketch of Theorem 2.2Let S'(p,e) = {Y : Y € S(u,¢),Y is4uv/k-regulay, where
S(p,€) is as in Lemma 2.6 for = §/9mnk. Letm < n. Then, by Lemma 2.5 and union bound,
foranyY € S'(u,€),

3 (mtm —82pmn
Pr[IPaM)IIE — plIYIIE| = op[[Y 7] < 2(mnk/e)* "k exp (

< 16/ﬂk) < exp(Cynklogn)-exp (

—5%pmn
162k )’

whereC; > 0 is a constant independent of, n, k. Thus, ifp > Cu2k?logn/d*m, whereC' =
16(Cy + 1), with probability at least — exp(—nlogn), the following holds

VY € S (), [Pa()E = plIY I < opl Y% (4)

As the statement of the theorem is invariant under scaling gnhough to show the statement for all
u-incoherent matriceX of rank at most and|| X || = 1. Fix such aX and suppose that (4) holds.
Now, by Lemma 2.6 there exisi§ € S’(u, €) such thaf]Y” — X||» < e. Moreover,

Y15 < (IX1F+ ) < | X|F + 26| X || + € < || XI5 + 3ek.
Proceeding similarly, we can show that
IXNE = IYIE <3k, [[Pa(Y)IF — [Pa(X)|E] < 3ek. ()
Combining inequalities (4), (5) above, with probabilityleastl — exp(—nlogn) we have,
IPa(ONE = pIXIE < [IPe(ONE — 1Pa®)IE+p IXIE — Y]+ [[PeM)IF - pIY 7] < 26p] X7

The theorem follows using the above inequality.

2.3 SVP-Newton

In this section we introduce a Newton-type step in our SVPhoeto speed up its convergence.
Recall that each iteration of SVP (Equation (1)) takes a stepg the gradient of the objective
function and then projects the iterate to the set of low ramitrites using SVD. Now, the top

!Detailed proofs of all the lemmas in this section are provided in AppendixtBeafupplementary material.



singular vectorsi((y, V) of Y1 = Xt —n, AT (A(X")—b) determine the range-space and column-
space of the next iterate §/P. Then,S; is given byS, = Diag(U (Xt —n, AT (A(XY)—b))Vi).
Hence, X, can be seen as a product of gradient-descent step for a tjuaahjgctive function, i.e.,
¥, = argming ¢(U,SV,T'). This leads us to the following variant 6% P we call SVP-Newton:2

Compute topk-singular vectord/y,, Vi, of Y1 = X — 5, AT (A(X") — b)
X = U5 Vi, B = argmin (U, SV,') = argmin [|A(ULS,VE) — b||%.
S S

Note that as4 is an affine transformatiort;;, can be computed by solving a least squares problem
onk x k variables. Also, for a single iteration, given the sametistgupoint,SVP-Newton decreases
the objective function more th&VP. This observation along with straightforward modificataf

the proofs of Theorems 1.1, 1.2 show that similar guararitetesfor SVP-Newton as welf.

Note that the least squares problem for computinghask? variables. This makes SVP-Newton
computationally expensive for problems with large rankitipalarly for situations with a large
number of constraints as is the case for matrix completiorovErcome this issue, we also consider
the alternative where we restriy, to be a diagonal matrix, leading to the update

Y=  argmin  |JAULSVT) — b|? (6)
S,s.t.,8;;=0for i#j

We call the above method SVP-NewtonD (for SVP-Newton DiadjprAs for SVP-Newton, guar-
antees similar t6VP follow for SVP-NewtonD by observing that for each iterati®@vP-NewtonD
decreases the objective function more tSastp.

3 Related Work and Computational Issues

The general rank minimization problem with affine constisis NP-hard and is also NP-hard to
approximate [22]. Most methods f&fRMP either relax the rank constraint to a convex function
such as the trace-norm [8], [9], or assume a factorizatiah gptimize the resulting non-convex

problem by alternating minimization [4, 3, 15].

The results of Recht et al. [24] were later extended to noisgsurements and isometry constants
up tods, < 1/4+/3 by Fazel et al. [10] and Lee and Bresler [18]. However, everbibst existing
optimization algorithms for the trace-norm relaxation eglatively inefficient in practice. Recently,
Lee and Bresler [17] proposed an algorithm (ADMiRA) motaby theorthogonal matching pur-
suitline of work in compressed sensing and show that for affinestraimts with isometry constant
04 < 0.04, their algorithm recovers the optimal solution. Howevegitimethod is not very effi-
cient for large datasets and when the rank of the optimatisalis relatively large.

For the matrix-completion problem until the recent work$adf [7] and [14], there were few meth-
ods with rigorous guarantees. The alternating least squaim@mization heuristic and its variants
[3, 15] perform the best in practice, but are notoriouslydhtar analyze. Candes and Recht [6],
Candes and Tao [7] show thatX* is u-incoherent and the known entries are sampled uniformly
at random with Q2| > C'(12) k*nlog® n, finding the minimum trace-norm solution recovers the min-
imum rank solution. Keshavan et.al obtained similar resuallependently for exact recovery from
uniformly sampled? with [Q2| > C(u, k) nlogn.

Minimizing the trace-norm of a matrix subject to affine coastts can be cast as a semi-definite
program (SDP). However, algorithms for semi-definite paogming, as used by most methods for
minimizing trace-norm, are prohibitively expensive even fhoderately large datasets. Recently,
a variety of methods based mostly on iterative soft-thrieBhg have been proposed to solve the
trace-norm minimization problem more efficiently. For aste, Cai et al. [5] proposed a Singular
Value Thresholding (SVT) algorithm which is based on Uzavedgorithm [2]. A related approach
based on linearized Bregman iterations was proposed by ldha [@0], Toh and Yun [25], while Ji
and Ye [13] use Nesterov’s gradient descent methods fomagitig the trace-norm.

2\We call our metho&®VP-Newton as the Newton method when applied to a quadratic objective function
leads to the exact solution by solving the resulting least squares problem.

3As a side note, we can show a stronger result for SVP-Newton wheliedpp the special case of
compressed-sensing, i.e., when the makixs restricted to be diagonal. Specifically, we can show that under
certain assumptions SVP-Newton converges to the optimal solutiOtlisg &), improving upon the result of
Maleki [21]. We give the precise statement of the theorem and proo€isupplementary material.
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Figure 1:(a) Time taken bySVP and SVT for random instances of the Affine Rank Minimization
Problem (ARMP) with optimal rank = 5. (b) Reconstruction error for the MIT logdc) Empirical
estimates of the sampling density threshold required faceratrix completion bysVP (here
C = 1.28). Note that the empirical bounds match the information tégcally optimal bound
O(klogn/n). (d) Maximum incoherenceax; (X *) over the iterates @VP for varying densities
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While the soft-thresholding based methods for trace-nornimikzation are significantly faster than
SDP based approaches, they suffer from slow convergeneé-igere 2 (d)). Also, noisy measure-
ments pose considerable computational challenges fag-trtaom optimization as the rank of the
intermediate iterates can become very large (see Figujg 3(b

For the case of matrix completioSVP has an important property facilitating fast computation
of the main update in equation (2); each iteratiorS®P involves computing the singular value
decomposition (SVD) of the matriX’ = X' + Po(X" — X*), where X" is a matrix of rank at
mostk whose SVD is known an®q, (X' — X*) is a sparse matrix. Thus, matrix-vector products
of the formY v can be computed in tim@((m + n)k + |€2]). This facilitates the use of fast SVD
computing packages such as PROPACK [16] and ARPACK [19] d¢hét require subroutines for
computing matrix-vector products.

4 Experimental Results

In this section, we empirically evaluate our methods fordffae rank minimization problem and
low-rank matrix completion. For both problems we presenpigical results on synthetic as well

as real-world datasets. F&GlRMP we compare our method against the trace-norm based singular
value thresholding (SVT) method [5]. Note that although €ail. present the SVT algorithm in the
context of MCP, it can be easily adapted ARMP. For MCP we compare against SVT, ADMiRA
[17], the OptSpace (OPT) method of Keshavan et al. [14], agdlarized alternating least squares
minimization (ALS). We use our own implementation of SVT /lRMP and ALS, while for matrix
completion we use the code provided by the respective aafioorSVT, ADMIRA and OPT. We
report results averaged ov&s runs. All the methods are implemented in Matlab and use me fil

4.1 Affine Rank Minimization

We first compare our method against SVT on random instancd®RkbfP. We generate random
matricesX € R™*" of different sizes: and fixed rankc = 5. We then generaté = 6kn random
affine constraint matriced; and computé = A(X). Figure 1(a) compares the computational time
required bySVP and SVT (inlog-scale) for achieving a relative errdrd(X) —b||2/||b]|2) of 1073,
and shows that our method requires many fewer iterationgsasignificantly faster than SVT.

Next we evaluate our method for the problem of matrix requiesion from random measurements.
As in Recht et al. [24], we use the MIT logo as the test imagadopnstruction. The MIT logo
we use is 88 x 73 image and has rank four. For reconstruction, we generatrameasurement
matrices4,; and measurg; = T'r(A4;X). We let both SVP and SVT converge and then compute the
reconstruction error for the original image. Figure 1 (kdwh that our method incurs significantly
smaller reconstruction error than SVT for the same numberedsurements.

Matrix Completion: Synthetic Datasets (Uniform Sampling)

We now evaluate our method against various matrix complatiethods for random low-rank ma-
trices and uniform samples. We generate a random kanktrix X € R™*™ and generate random
Bernoulli samples with probability. Figure 2 (a) compares the time required by various methods
(in log-scale) to obtain a root mean square error (RMSE)0f® on the sampled entries for fixed

k = 2. Clearly,SVP is substantially faster than the other methods. Next, wiiat@our method

for increasingk. Figure 2 (b) compares the overall RMSE obtained by varioathods. Note that
SVP-Newton is significantly more accurate than both SVP arifl Sigure 2 (c) compares the time
required by various methods to obtain a root mean square @®MSE) of 102 on the sampled
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Figure 2:(a), (b) Running time ¢n log scal¢ and RMSE of various methods for matrix completion
problem with sampling density = .1 and optimal rank: = 2. (c) Running time ¢n log scal¢ of
various methods for matrix completion with sampling densit= .1 andn = 1000. (d) Number of
iterations needed to get RMSENO1.
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Figure 3: (a): RMSE incurred by various methods for matrix completionhndifferent rank k)
solutions on Movie-Lens Datasdth): Time(on log scal@ required by various methods for matrix
completion withp = .1, K = 2 and10% Gaussian noise. Note that all the four methods achieve
similar RMSE.(c): RMSE incurred by various methods for matrix completiorhwit= 0.1, k£ = 10
when the sampling distribution follows Power-law disttion (Chung-Lu-Vu Model).(d): RMSE
incurred for the same problem setting as plot (c) but witheald@aussian noise.

entries for fixedn = 1000 and increasing:.. Note that our algorithms scale well with increasing
and are faster than other methods. Next, we analyze reasobstfer performance of our methods.
To this end, we plot the number of iterations required by oethuds as compared to SVT (Fig-
ure 2 (d)). Note that even though each iteration of SVT is alnas expensive as our methods’, our
methods converge in significantly fewer iterations.

Finally, we study the behavior of our method in presence ifend~or this experiment, we generate
random matrices of different size and add approximatély Gaussian noise. Figure 2 (c) plots
time required by various methods asncreases from000 to 5000. Note that SVT is particularly
sensitive to noise. One of the reason for this is that due igenthe rank of the intermediate iterates
arising in SVT can be fairly large.

Matrix Completion: Synthetic Dataset (Power-law Sampling)We now evaluate our methods
against existing matrix-completion methods under mordistéa power-law distributed samples.
As before, we generate a random radnk= 10 matrix X € R"*" and sample the entries of
using a graph generated using Chung-Lu-Vu model with pdardistributed degrees (see [23])
for details. Figure 3 (c) plots the RMSE obtained by variousthods for varying: and fixed
sampling densitp = 0.1. Note that SVP-NewtonD performs significantly better thafT &s well
as SVP. Figure 3 (d) plots the RMSE obtained by various methvaten each sampled entry is
corrupted with around% Gaussian noise. Note that here again SVP-NewtonD perfarmiksto
ALS and is significantly better than the other methods inicigdhe ICMC method [23] which is
specially designed for power-law sampling but is quite &mesto noise.

Matrix Completion: Movie-Lens Dataset

Finally, we evaluate our method on the Movie-Lens datagewHhich contains 1 million ratings for
3900 movies by6040 users. Figure 3 (a) shows the RMSE obtained by each methbdanying#.
For SVP and SVP-Newton, we fix step size to he= l/p\/(t), wheret is the number of iterations.
For SVT, we fixd = .2p using cross-validation. Since, rank cannot be fixed in SV tmy various
values for the parameter to obtain the desired rank solution. Note that SVP-Newtauis a
RMSE 0of0.89 for & = 3. In contrast, SVT achieves a RMSE @8 for the same rank. We remark
that SVT was able to achieve RMSE upt&9 but required rank 7 solution and was significantly
slower in convergence because many intermediate iteratk$ange rank (up to arounthb0). We
attribute the relatively poor performanceS¥P and SVT as compared with ALS and SVP-Newton
to the fact that the ratings matrix is not sampled uniforrtiiys violating the crucial assumption of
uniformly distributed samples.



References

[1] Movie lens dataset. Public dataset. URttp://www.grouplens.org/taxonomy/term/14

[2] K. Arrow, L. Hurwicz, and H. UzawaStudies in Linear and Nonlinear Programmirfgtanford UnlverS|ty
Press, Stanford, 1958.

[3] Robert Bell and Yehuda Koren. Scalable collaborative filtering withtjp derived neighborhood inter-
polation weights. IHCDM, pages 43-52, 2007. doi: 10.1109/ICDM.2007.90.

[4] Matthew Brand. Fast online SVD revisions for lightweight recomneergystems. I'$IAM International
Conference on Data Minin@003.

[5] Jian-Feng Cai, Emmanuel J. Casl and Zuowei Shen. A singular value thresholding algorithm for
matrix completion.SIAM Journal on Optimizatiqr20(4):1956-1982, 2010.

[6] Emmanuel J. Carisb and Benjamin Recht. Exact matrix completion via convex optimizafmmdations
of Computational Mathematic9(6):717—772, December 2009.

[71 Emmanuel J. Caries and Terence Tao. The power of convex relaxation: Near-optimizibncompletion.
IEEE Trans. Inform. Theorp6(5):2053-2080, 2009.

[8] M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with apgiiea to minimum order
system approximation. lAmerican Control Conference, Arlington, Virgini2001.

[9] M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix ranknimization with applications to
Hankel and Euclidean distance matricesAmerican Control Conferen¢c003.

[10] M. Fazel, E. Candes, B. Recht, and P. Parrilo. Compressesingeand robust recovery of low rank
matrices. InSignals, Systems and Computers, 2008 42nd Asilomar Conferenpages 1043-1047,
Oct. 2008. doi: 10.1109/ACSSC.2008.5074571.

[11] Rahul Garg and Rohit Khandekar. Gradient descent with Bjgat#on: an iterative algorithm for sparse
recovery with restricted isometry property. IOML, 2009.

[12] Donald Goldfarb and Shigian Ma. Convergence of fixed pointinoation algorithms for matrix rank
minimization, 2009. Submitted.

[13] Shuiwang Ji and Jieping Ye. An accelerated gradient methoddoe thorm minimization. InCML,
2009.

[14] Raghunandan H. Keshavan, Sewoong Oh, and Andrea Mantafetrix completion from a few entries.
In ISIT’09: Proceedings of the 2009 IEEE international conferenceyomsium on Information Theqry
pages 324-328, Piscataway, NJ, USA, 2009. IEEE Press. ISBN-9284-4312-3.

[15] Yehuda Koren. Factorization meets the neighborhood: a multifdaataborative filtering model. In
KDD, pages 426434, 2008. doi: 10.1145/1401890.1401944.

[16] R.M. Larsen. Propack: a software for large and sparse SAl€ufations. Available online. URhttp:
/Isun.stanford.edu/rmunk/PROPACK/

[17] Kiryung Lee and Yoram Bresler. Admira: Atomic decompositionfanimum rank approximation, 2009.

[18] Kiryung Lee and Yoram Bresler. Guaranteed minimum rank appration from linear observations by
nuclear norm minimization with an ellipsoidal constraint, 2009.

[19] Richard B. Lehoucq, Danny C. Sorensen, and Chao Ya&kRPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Meth&l&aM, Philadelphia, 1998.

[20] S. Ma, D. Goldfarb, and L. Chen. Fixed point and bregman itegatiethods for matrix rank minimiza-
tion. To appear, Mathematical Programming Serie2810.

[21] Arian Maleki. Coherence analysis of iterative thresholding algorsthioRR abs/0904.1193, 2009.

[22] Raghu Meka, Prateek Jain, Constantine Caramanis, and Inddjiilon. Rank minimization via online
learning. INICML, pages 656-663, 2008. doi: 10.1145/1390156.1390239.

[23] Raghu Meka, Prateek Jain, and Inderjit S. Dhillon. Matrix complefiom power-law distributed sam-
ples. INNIPS 2009.

[24] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guarantdatmmm-rank solutions of linear
matrix equations via nuclear norm minimization, 2007. To appear in SIAMd®e

[25] K.C. Toh and S. Yun. An accelerated proximal gradient algoritbmnuclear norm regularized least
squares problems. Preprint, 2009. URttp://www.math.nus.edu.sg/ matys/apg.pdf



