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Abstract

Minimizing the rank of a matrix subject to affine constraintsis a fundamental
problem with many important applications in machine learning and statistics. In
this paper we propose a simple and fast algorithmSVP (Singular Value Projec-
tion) for rank minimization under affine constraints (ARMP) and show that SVP
recovers the minimum rank solution for affine constraints that satisfy arestricted
isometry property(RIP). Our method guarantees geometric convergence rate even
in the presence of noise and requires strictly weaker assumptions on theRIP con-
stants than the existing methods. We also introduce a Newton-step for our SVP
framework to speed-up the convergence with substantial empirical gains. Next,
we address a practically important application ofARMP - the problem of low-
rank matrix completion, for which the defining affine constraints do not directly
obey RIP, hence the guarantees of SVP do not hold. However, weprovide partial
progress towards a proof of exact recovery for our algorithmby showing a more
restricted isometry property and observe empirically thatour algorithm recovers
low-rank incoherentmatrices from an almost optimal number of uniformly sam-
pled entries. We also demonstrate empirically that our algorithms outperform ex-
isting methods, such as those of [5, 18, 14], forARMP and the matrix completion
problem by an order of magnitude and are also more robust to noise and sampling
schemes. In particular, results show that our SVP-Newton method is significantly
robust to noise and performs impressively on a more realistic power-law sampling
scheme for the matrix completion problem.

1 Introduction

In this paper we study the general affine rank minimization problem (ARMP),

min rank(X) s.t A(X) = b, X ∈ R
m×n, b ∈ R

d, (ARMP)

whereA is an affine transformation fromRm×n to R
d.

The affine rank minimization problem above is of considerable practical interest and many important
machine learning problems such as matrix completion, low-dimensional metric embedding, low-
rank kernel learning can be viewed as instances of the above problem. Unfortunately,ARMP is
NP-hard in general and is also NP-hard to approximate ([22]).

Until recently, most known methods forARMP were heuristic in nature with few known rigorous
guarantees. In a recent breakthrough, Recht et al. [24] gavethe first nontrivial results for the
problem obtaining guaranteed rank minimization for affine transformationsA that satisfy arestricted
isometry property(RIP). Define the isometry constant ofA, δk to be the smallest number such that
for all X ∈ R

m×n of rank at mostk,

(1 − δk)‖X‖2
F ≤ ‖A(X)‖2

2 ≤ (1 + δk)‖X‖2
F . (1)
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The aboveRIP condition is a direct generalization of theRIP condition used in the compressive
sensing context. Moreover,RIP holds for many important practical applications ofARMP such
as image compression, linear time-invariant systems. In particular, Recht et al. show that for most
natural families of random measurements,RIP is satisfied even for onlyO(nk log n) measurements.
Also, Recht et al. show that forARMP with isometry constantδ5k < 1/10, the minimum rank
solution can be recovered by the minimum trace-norm solution.

In this paper we propose a simple and efficient algorithmSVP (Singular Value Projection) based
on the projected gradient algorithm. We present a simple analysis showing thatSVP recovers the
minimum rank solution for noisy affine constraints that satisfy RIP and prove the following guar-
antees. (Independent of our work, Goldfarb and Ma [12] proposed an algorithm similar toSVP.
However, their analysis and formulation is different from ours. They also require stronger isometry
assumptions,δ3k < 1/

√
30, than our analysis.)

Theorem 1.1 Suppose the isometry constant ofA satisfiesδ2k < 1/3 and letb = A(X∗) for a
rank-k matrix X∗. Then,SVP (Algorithm 1) with step-sizeηt = 1/(1 + δ2k) converges toX∗.
Furthermore,SVP outputs a matrixX of rank at mostk such that‖A(X) − b‖2

2 ≤ ǫ and‖X −
X∗‖2

F ≤ ǫ/(1 − δ2k) in at most
⌈

1
log((1−δ2k)/2δ2k) log ‖b‖2

2ǫ

⌉

iterations.

Theorem 1.2 (Main) Suppose the isometry constant ofA satisfiesδ2k < 1/3 and letb = A(X∗)+e
for a rankk matrix X∗ and an error vectore ∈ R

d. Then,SVP with step-sizeηt = 1/(1 + δ2k)
outputs a matrixX of rank at mostk such that‖A(X) − b‖2

2 ≤ C‖e‖2 + ǫ and‖X − X∗‖2
F ≤

C‖e‖2+ǫ
1−δ2k

, ǫ ≥ 0, in at most
⌈

1
log(1/D) log ‖b‖2

2(C‖e‖2+ǫ)

⌉

iterations for universal constantsC,D.

As our SVP algorithm is based on projected gradient descent, it behaves as a first order methods
and may require a relatively large number of iterations to achieve high accuracy, even after iden-
tifying the correct row and column subspaces. To this end, weintroduce a Newton-type step in
our framework (SVP-Newton) rather than using a simple gradient-descent step. Guarantees sim-
ilar to Theorems 1.1, 1.2 follow easily forSVP-Newton using the proofs forSVP. In practice,
SVP-Newton performs better thanSVP in terms of accuracy and number of iterations.

We next consider an important application ofARMP: the low-rank matrix completion problem
(MCP)— given a small number of entries from an unknown low-rank matrix, the task is to complete
the missing entries. Note thatRIP does not hold directly for this problem. Recently, Candes and
Recht [6], Candes and Tao [7] and Keshavan et al. [14] gave thefirst theoretical guarantees for the
problem obtaining exact recovery from an almost optimal number of uniformly sampled entries.

While RIP does not hold for MCP, we show that a similar property holds for incoherentmatrices
[6]. Given our refinedRIP and a hypothesis bounding the incoherence of the iterates arising inSVP,
an analysis similar to that of Theorem 1.1 immediately implies thatSVP optimally solves MCP.
We provide strong empirical evidence for our hypothesis andshow that that both of our algorithms
recover a low-rank matrix from an almost optimal number of uniformly sampled entries.

In summary, our main contributions are:

• Motivated by [11], we propose a projected gradient based algorithm,SVP, for ARMP and show
that our method recovers the optimal rank solution when the affine constraints satisfyRIP. To the
best of our knowledge, our isometry constant requirements are least stringent: we only require
δ2k < 1/3 as opposed toδ5k < 1/10 by Recht et al.,δ3k < 1/4

√
3 by Lee and Bresler [18] and

δ4k < 0.04 by Lee and Bresler [17].
• We introduce a Newton-type step in theSVP method which is useful if high precision is criti-

cally. SVP-Newton has similar guarantees to that ofSVP, is more stable and has better empirical
performance in terms of accuracy. For instance, on the Movie-lens dataset [1] and rankk = 3,
SVP-Newton achieves an RMSE of0.89, while SVT method [5] achieves an RMSE of0.98.

• As observed in [23], most trace-norm based methods perform poorly for matrix completion when
entries are sampled from more realistic power-law distributions. Our methodSVP-Newton is
relatively robust to sampling techniques and performs significantly better than the methods of
[5, 14, 23] even for power-law distributed samples.

• We show that the affine constraints in the low-rank matrix completion problem satisfy a weaker
restricted isometry property and as supported by empiricalevidence, conjecture thatSVP (as
well asSVP-Newton) recovers the underlying matrix from an almost optimal number of uni-
formly random samples.
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• We evaluate our method on a variety of synthetic and real-world datasets and show that our
methods consistently outperform, both in accuracy and time, various existing methods [5, 14].

2 Method

In this section, we first introduce our Singular Value Projection (SVP) algorithm forARMP and
present a proof of its optimality for affine constraints satisfying RIP (1). We then specialize our
algorithm for the problem of matrix completion and prove a more restricted isometry propertyfor
the same. Finally, we introduce a Newton-type step in our SVPalgorithm and prove its convergence.

2.1 Singular Value Decomposition (SVP)

Consider the following more robust formulation ofARMP (RARMP),

min
X

ψ(X) =
1

2
‖A(X) − b‖2

2 s.t X ∈ C(k) = {X : rank(X) ≤ k}. (RARMP)

The hardness of the above problem mainly comes from the non-convexity of the set of low-rank
matricesC(k). However, the Euclidean projection ontoC(k) can be computed efficiently using
singular value decomposition (SVD). Our algorithm uses this observation along with the projected
gradient method for efficiently minimizing the objective function specified in (RARMP).

Let Pk : R
m×n → R

m×n denote the orthogonal projection on to the setC(k). That is,Pk(X) =
argminY {‖Y − X‖F : Y ∈ C(k)}. It is well known thatPk(X) can be computed efficiently by
computing the topk singular values and vectors ofX.

In SVP, a candidate solution toARMP is computed iteratively by starting from the all-zero ma-
trix and adapting the classical projected gradient descentupdate as follows (note that∇ψ(X) =
AT (A(X) − b)):

Xt+1 ← Pk

(

Xt − ηt∇ψ(Xt)
)

= Pk

(

Xt − ηtAT (A(Xt) − b)
)

. (1)
Figure 1 presentsSVP in more detail. Note that the iteratesXt are always low-rank, facilitating
faster computation of the SVD. See Section 3 for a more detailed discussion of computational issues.

Algorithm 1 Singular Value Projection (SVP) Algorithm
Require: A, b, toleranceε, ηt for t = 0, 1, 2, . . .
1: Initialize: X0 = 0 andt = 0
2: repeat
3: Y t+1 ← Xt − ηtAT (A(Xt) − b)
4: Compute topk singular vectors ofY t+1: Uk, Σk, Vk

5: Xt+1 ← UkΣkV T
k

6: t ← t + 1
7: until ‖A(Xt+1) − b‖2

2 ≤ ε

Analysis for Constraints SatisfyingRIP

Theorem 1.1 shows thatSVP converges to anǫ-approximate solution of RARMP inO(log ‖b‖2

ǫ )
steps. Theorem 1.2 shows a similar result for the noisy case.The theorems follow from the following
lemma that bounds the objective function after each iteration.

Lemma 2.1 LetX∗ be an optimal solution of(RARMP)and letXt be the iterate obtained by SVP
at t-th iteration. Then,ψ(Xt+1) ≤ ψ(X∗) + δ2k

(1−δ2k)‖A(X∗ − Xt)‖2
2, whereδ2k is the rank2k

isometry constant ofA.

The lemma follows from elementary linear algebra, optimality of SVD (Eckart-Young theorem) and
two simple applications ofRIP. We refer to the supplementary material (Appendix A) for a detailed
proof. We now prove Theorem 1.1. Theorem 1.2 can also be proved similarly; see supplementary
material (Appendix A) for a detailed proof.

Proof of Theorem 1.1 Using Lemma 2.1 and the fact thatψ(X∗) = 0, it follows that

ψ(Xt+1) ≤ δ2k

(1 − δ2k)
‖A(X∗ − Xt)‖2

2 =
2δ2k

(1 − δ2k)
ψ(Xt).

Also, note that for δ2k < 1/3, 2δ2k

(1−δ2k) < 1. Hence, ψ(Xτ ) ≤ ǫ where τ =
⌈

1
log((1−δ2k)/2δ2k) log ψ(X0)

ǫ

⌉

. Further, usingRIP for the rank at most2k matrix Xτ − X∗ we
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get: ‖Xτ − X∗‖ ≤ ψ(Xτ )/(1 − δ2k) ≤ ǫ/(1 − δ2k). Now, the SVP algorithm is initialized using

X0 = 0, i.e.,ψ(X0) = ‖b‖2

2 . Hence,τ =
⌈

1
log((1−δ2k)/2δ2k) log ‖b‖2

2ǫ

⌉

.

2.2 Matrix Completion

We first describe the low-rank matrix completion problem formally. ForΩ ⊆ [m] × [n], let PΩ :
R

m×n → R
m×n denote the projection onto the index setΩ. That is,(PΩ(X))ij = Xij for (i, j) ∈

Ω and(PΩ(X))ij = 0 otherwise. Then, the low-rank matrix completion problem (MCP) can be
formulated as follows,

min
X

rank(X) s.t PΩ(X) = PΩ(X∗), X ∈ R
m×n. (MCP)

Observe thatMCP is a special case ofARMP, so we can applySVP for matrix completion. We
use step-sizeηt = 1/(1 + δ)p, wherep is the density of sampled entries andδ is a parameter which
we will explain later in this section. Using the given step-size and update (1), we get the following
update for matrix-completion:

Xt+1 ← Pk

(

Xt − 1

(1 + δ)p
(PΩ(Xt) − PΩ(X∗))

)

. (2)

Although matrix completion is a special case ofARMP, the affine constraints that defineMCP, PΩ,
do not satisfyRIP in general. Thus Theorems 1.1, 1.2 above and the results of Recht et al. [24] do
not directly apply toMCP. However, we show that the matrix completion affine constraints satisfy
RIP for low-rank incoherentmatrices.

Definition 2.1 (Incoherence)A matrix X ∈ R
m×n with singular value decompositionX =

UΣV T is µ-incoherent ifmaxi,j |Uij | ≤
√

µ√
m

, maxi,j |Vij | ≤
√

µ√
n
.

The above notion of incoherence is similar to that introduced by Candes and Recht [6] and also used
by [7, 14]. Intuitively, high incoherence (i.e.,µ is small) implies that the non-zero entries ofX
are not concentrated in a small number of entries. Hence, a random sampling of the matrix should
provide enough global information to satisfyRIP.

Using the above definition, we prove the following refined restricted isometry property.

Theorem 2.2 There exists a constantC ≥ 0 such that the following holds for all0 < δ < 1,
µ ≥ 1, n ≥ m ≥ 3: For Ω ⊆ [m] × [n] chosen according to the Bernoulli model with density
p ≥ Cµ2k2 log n/δ2m, with probability at least1−exp(−n log n), the following restricted isometry
property holds for allµ-incoherent matricesX of rank at mostk:

(1 − δ)p ‖X‖2
F ≤ ‖PΩ(X)‖2

F ≤ (1 + δ)p ‖X‖2
F . (3)

Roughly, our proof combines a Chernoff bound estimate for‖PΩ(X)‖2
F with a union bound over

low-rank incoherent matrices. A proof sketch is presented in Section 2.2.1.

Given the above refinedRIP, if the iterates arising inSVP are shown to be incoherent, the arguments
of Theorem 1.1 can be used to show thatSVP achieves exact recovery for low-rank incoherent
matrices from uniformly sampled entries. As supported by empirical evidence, we hypothesize that
the iteratesXt arising inSVP remain incoherent when the underlying matrixX∗ is incoherent.

Figure 1 (d) plots the maximum incoherencemaxt µ(Xt) =
√

n maxt,i,j |U t
ij |, whereU t are the

left singular vectors of the intermediate iteratesXt computed bySVP. The figure clearly shows
that the incoherenceµ(Xt) of the iterates is bounded by a constant independent of the matrix size
n and densityp throughout the execution ofSVP. Figure 2 (c) plots the threshold sampling density
p beyond which matrix completion for randomly generated matrices is solved exactly bySVP for
fixedk and varying matrix sizesn. Note that the density threshold matches the optimal information-
theoretic bound [14] ofΘ(k log n/n).

Motivated by Theorem 2.2 and supported by empirical evidence (Figures 2 (c), (d)) we hypothesize
thatSVP achieves exact recovery from an almost optimal number of samples for incoherent matrices.

Conjecture 2.3 Fix µ, k and δ ≤ 1/3. Then, there exists a constantC such that for aµ-
incoherent matrixX∗ of rank at mostk and Ω sampled from the Bernoulli model with density
p = Ωµ,k((log n)/m), SVP with step-sizeηt = 1/(1 + δ)p converges toX∗ with high probability.
Moreover,SVP outputs a matrixX of rank at mostk such that‖PΩ(X) − PΩ(X∗)‖2

F ≤ ǫ after
Oµ,k

(⌈

log
(

1
ǫ

)⌉)

iterations.
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2.2.1 RIP for Matrix Completion on Incoherent Matrices
We now prove the restricted isometry property of Theorem 2.2for the affine constraints that result
from the projection operatorPΩ. To prove Theorem 2.2 we first show the theorem for adiscrete
collection of matrices using Chernoff type large-deviation bounds and use standard quantization
arguments to generalize to the continuous case. We first introduce some notation and provide useful
lemmas for our main proof1. First, we introduce the notion ofα-regularity.

Definition 2.2 A matrixX ∈ R
m×n is α-regular if maxi,j |Xij | ≤ α√

mn
· ‖X‖F .

Lemma 2.4 below relates the notion of regularity to incoherence and Lemma 2.5 proves (3) for a
fixedregular matrix when the samplesΩ are selected independently.

Lemma 2.4 LetX ∈ R
m×n be aµ-incoherent matrix of rank at mostk. ThenX is µ

√
k-regular.

Lemma 2.5 Fix a α-regularX ∈ R
m×n and0 < δ < 1. Then, forΩ ⊆ [m]× [n] chosen according

to the Bernoulli model, with each pair(i, j) ∈ Ω chosen independently with probabilityp,

Pr
[ ∣

∣‖PΩ(X)‖2
F − p‖X‖2

F

∣

∣ ≥ δp‖X‖2
F

]

≤ 2 exp

(

−δ2pmn

3α2

)

.

While the above lemma shows Equation (3) for a fixed rankk, µ-incoherentX (i.e.,(µ
√

k)-regular
X using Lemma 2.4), we need to show Equation (3) forall such rankk incoherent matrices. To
handle this problem, we discretize the space of low-rank incoherent matrices so as to be able to
use the above lemma and a union bound. We now show the existence of a small set of matrices
S(µ, ǫ) ⊆ R

m×n such that every low-rankµ-incoherent matrix is close to an appropriately regular
matrix from the setS(µ, ǫ).

Lemma 2.6 For all 0 < ǫ < 1/2, µ ≥ 1, m,n ≥ 3 andk ≥ 1, there exists a setS(µ, ǫ) ⊆ R
m×n

with |S(µ, ǫ)| ≤ (mnk/ǫ)3 (m+n)k such that the following holds. For anyµ-incoherentX ∈ R
m×n

of rankk with ‖X‖2 = 1, there existsY ∈ S(µ, ǫ) s.t.‖Y − X‖F < ǫ andY is (4µ
√

k)-regular.

We now prove Theorem 2.2 by combining Lemmas 2.5, 2.6 and applying a union bound. We present
a sketch of the proof but defer the details to the supplementary material (Appendix B).

Proof Sketch of Theorem 2.2Let S′(µ, ǫ) = {Y : Y ∈ S(µ, ǫ), Y is 4µ
√

k-regular}, where
S(µ, ǫ) is as in Lemma 2.6 forǫ = δ/9mnk. Let m ≤ n. Then, by Lemma 2.5 and union bound,
for anyY ∈ S′(µ, ǫ),

Pr
[ ∣

∣‖PΩ(Y )‖2
F − p‖Y ‖2

F

∣

∣ ≥ δp‖Y ‖2
F

]

≤ 2(mnk/ǫ)3(m+n)k exp

(−δ2pmn

16µ2k

)

≤ exp(C1nk log n)·exp

(−δ2pmn

16µ2k

)

,

whereC1 ≥ 0 is a constant independent ofm,n, k. Thus, ifp > Cµ2k2 log n/δ2m, whereC =
16(C1 + 1), with probability at least1 − exp(−n log n), the following holds

∀Y ∈ S′(µ, ǫ), |‖PΩ(Y )‖2
F − p‖Y ‖2

F | ≤ δp‖Y ‖2
F . (4)

As the statement of the theorem is invariant under scaling, it is enough to show the statement for all
µ-incoherent matricesX of rank at mostk and‖X‖2 = 1. Fix such aX and suppose that (4) holds.
Now, by Lemma 2.6 there existsY ∈ S′(µ, ǫ) such that‖Y − X‖F ≤ ǫ. Moreover,

‖Y ‖2
F ≤ (‖X‖F + ǫ)2 ≤ ‖X‖2

F + 2ǫ‖X‖F + ǫ2 ≤ ‖X‖2
F + 3ǫk.

Proceeding similarly, we can show that

|‖X‖2
F − ‖Y ‖2

F | ≤ 3ǫk, |‖PΩ(Y )‖2
F − ‖PΩ(X)‖2

F | ≤ 3ǫk. (5)
Combining inequalities (4), (5) above, with probability atleast1 − exp(−n log n) we have,

|‖PΩ(X)‖2
F − p‖X‖2

F | ≤ |‖PΩ(X)‖2
F − ‖PΩ(Y )‖2

F | + p |‖X‖2
F − ‖Y ‖2

F | + |‖PΩ(Y )‖2
F − p‖Y ‖2

F | ≤ 2δp‖X‖2
F .

The theorem follows using the above inequality.

2.3 SVP-Newton

In this section we introduce a Newton-type step in our SVP method to speed up its convergence.
Recall that each iteration of SVP (Equation (1)) takes a stepalong the gradient of the objective
function and then projects the iterate to the set of low rank matrices using SVD. Now, the topk

1Detailed proofs of all the lemmas in this section are provided in Appendix B ofthe supplementary material.
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singular vectors (Uk, Vk) of Y t+1 = Xt−ηtAT (A(Xt)−b) determine the range-space and column-
space of the next iterate inSVP. Then,Σk is given byΣk = Diag(UT

k (Xt−ηtAT (A(Xt)−b))Vk).
Hence,Σk can be seen as a product of gradient-descent step for a quadratic objective function, i.e.,
Σk = argminS ψ(UkSV T

k ). This leads us to the following variant ofSVP we callSVP-Newton:2

Compute topk-singular vectorsUk, Vk of Y t+1 = Xt − ηtAT (A(Xt) − b)

Xt+1 = UkΣkVk, Σk = argmin
S

Ψ(UkSV T
k ) = argmin

S
‖A(UkΣkV T

k ) − b‖2.

Note that asA is an affine transformation,Σk can be computed by solving a least squares problem
onk×k variables. Also, for a single iteration, given the same starting point,SVP-Newton decreases
the objective function more thanSVP. This observation along with straightforward modifications of
the proofs of Theorems 1.1, 1.2 show that similar guaranteeshold forSVP-Newton as well3.

Note that the least squares problem for computingΣk hask2 variables. This makes SVP-Newton
computationally expensive for problems with large rank, particularly for situations with a large
number of constraints as is the case for matrix completion. To overcome this issue, we also consider
the alternative where we restrictΣk to be a diagonal matrix, leading to the update

Σk = argmin
S,s.t.,Sij=0 for i6=j

‖A(UkSV T
k ) − b‖2 (6)

We call the above method SVP-NewtonD (for SVP-Newton Diagonal). As for SVP-Newton, guar-
antees similar toSVP follow for SVP-NewtonD by observing that for each iteration, SVP-NewtonD
decreases the objective function more thanSVP.

3 Related Work and Computational Issues

The general rank minimization problem with affine constraints is NP-hard and is also NP-hard to
approximate [22]. Most methods forARMP either relax the rank constraint to a convex function
such as the trace-norm [8], [9], or assume a factorization and optimize the resulting non-convex
problem by alternating minimization [4, 3, 15].

The results of Recht et al. [24] were later extended to noisy measurements and isometry constants
up toδ3k < 1/4

√
3 by Fazel et al. [10] and Lee and Bresler [18]. However, even the best existing

optimization algorithms for the trace-norm relaxation arerelatively inefficient in practice. Recently,
Lee and Bresler [17] proposed an algorithm (ADMiRA) motivated by theorthogonal matching pur-
suit line of work in compressed sensing and show that for affine constraints with isometry constant
δ4k ≤ 0.04, their algorithm recovers the optimal solution. However, their method is not very effi-
cient for large datasets and when the rank of the optimal solution is relatively large.

For the matrix-completion problem until the recent works of[6], [7] and [14], there were few meth-
ods with rigorous guarantees. The alternating least squares minimization heuristic and its variants
[3, 15] perform the best in practice, but are notoriously hard to analyze. Candes and Recht [6],
Candes and Tao [7] show that ifX∗ is µ-incoherent and the known entries are sampled uniformly
at random with|Ω| ≥ C(µ) k2n log2 n, finding the minimum trace-norm solution recovers the min-
imum rank solution. Keshavan et.al obtained similar results independently for exact recovery from
uniformly sampledΩ with |Ω| ≥ C(µ, k)n log n.

Minimizing the trace-norm of a matrix subject to affine constraints can be cast as a semi-definite
program (SDP). However, algorithms for semi-definite programming, as used by most methods for
minimizing trace-norm, are prohibitively expensive even for moderately large datasets. Recently,
a variety of methods based mostly on iterative soft-thresholding have been proposed to solve the
trace-norm minimization problem more efficiently. For instance, Cai et al. [5] proposed a Singular
Value Thresholding (SVT) algorithm which is based on Uzawa’s algorithm [2]. A related approach
based on linearized Bregman iterations was proposed by Ma etal. [20], Toh and Yun [25], while Ji
and Ye [13] use Nesterov’s gradient descent methods for optimizing the trace-norm.

2We call our methodSVP-Newton as the Newton method when applied to a quadratic objective function
leads to the exact solution by solving the resulting least squares problem.

3As a side note, we can show a stronger result for SVP-Newton when applied to the special case of
compressed-sensing, i.e., when the matrixX is restricted to be diagonal. Specifically, we can show that under
certain assumptions SVP-Newton converges to the optimal solution inO(log k), improving upon the result of
Maleki [21]. We give the precise statement of the theorem and proof in the supplementary material.
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Figure 1: (a) Time taken bySVP and SVT for random instances of the Affine Rank Minimization
Problem (ARMP) with optimal rankk = 5. (b) Reconstruction error for the MIT logo.(c) Empirical
estimates of the sampling density threshold required for exact matrix completion bySVP (here
C = 1.28). Note that the empirical bounds match the information theoretically optimal bound
Θ(k log n/n). (d) Maximum incoherencemaxt µ(Xt) over the iterates ofSVP for varying densities
p and sizesn. Note that the incoherence is bounded by a constant, supporting Conjecture 2.3.

While the soft-thresholding based methods for trace-norm minimization are significantly faster than
SDP based approaches, they suffer from slow convergence (see Figure 2 (d)). Also, noisy measure-
ments pose considerable computational challenges for trace-norm optimization as the rank of the
intermediate iterates can become very large (see Figure 3(b)).

For the case of matrix completion,SVP has an important property facilitating fast computation
of the main update in equation (2); each iteration ofSVP involves computing the singular value
decomposition (SVD) of the matrixY = Xt + PΩ(Xt − X∗), whereXt is a matrix of rank at
mostk whose SVD is known andPΩ(Xt − X∗) is a sparse matrix. Thus, matrix-vector products
of the formY v can be computed in timeO((m + n)k + |Ω|). This facilitates the use of fast SVD
computing packages such as PROPACK [16] and ARPACK [19] thatonly require subroutines for
computing matrix-vector products.

4 Experimental Results
In this section, we empirically evaluate our methods for theaffine rank minimization problem and
low-rank matrix completion. For both problems we present empirical results on synthetic as well
as real-world datasets. ForARMP we compare our method against the trace-norm based singular
value thresholding (SVT) method [5]. Note that although Caiet al. present the SVT algorithm in the
context of MCP, it can be easily adapted forARMP. For MCP we compare against SVT, ADMiRA
[17], the OptSpace (OPT) method of Keshavan et al. [14], and regularized alternating least squares
minimization (ALS). We use our own implementation of SVT forARMP and ALS, while for matrix
completion we use the code provided by the respective authors for SVT, ADMiRA and OPT. We
report results averaged over20 runs. All the methods are implemented in Matlab and use mex files.

4.1 Affine Rank Minimization

We first compare our method against SVT on random instances ofARMP. We generate random
matricesX ∈ R

n×n of different sizesn and fixed rankk = 5. We then generated = 6kn random
affine constraint matricesAi and computeb = A(X). Figure 1(a) compares the computational time
required bySVP and SVT (inlog-scale) for achieving a relative error (‖A(X)−b‖2/‖b‖2) of 10−3,
and shows that our method requires many fewer iterations andis significantly faster than SVT.

Next we evaluate our method for the problem of matrix reconstruction from random measurements.
As in Recht et al. [24], we use the MIT logo as the test image forreconstruction. The MIT logo
we use is a38 × 73 image and has rank four. For reconstruction, we generate random measurement
matricesAi and measurebi = Tr(AiX). We let both SVP and SVT converge and then compute the
reconstruction error for the original image. Figure 1 (b) shows that our method incurs significantly
smaller reconstruction error than SVT for the same number ofmeasurements.

Matrix Completion: Synthetic Datasets (Uniform Sampling)
We now evaluate our method against various matrix completion methods for random low-rank ma-
trices and uniform samples. We generate a random rankk matrix X ∈ R

n×n and generate random
Bernoulli samples with probabilityp. Figure 2 (a) compares the time required by various methods
(in log-scale) to obtain a root mean square error (RMSE) of10−3 on the sampled entries for fixed
k = 2. Clearly,SVP is substantially faster than the other methods. Next, we evaluate our method
for increasingk. Figure 2 (b) compares the overall RMSE obtained by various methods. Note that
SVP-Newton is significantly more accurate than both SVP and SVT. Figure 2 (c) compares the time
required by various methods to obtain a root mean square error (RMSE) of 10−3 on the sampled
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Figure 2:(a), (b) Running time (on log scale) and RMSE of various methods for matrix completion
problem with sampling densityp = .1 and optimal rankk = 2. (c) Running time (on log scale) of
various methods for matrix completion with sampling density p = .1 andn = 1000. (d) Number of
iterations needed to get RMSE0.001.
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Figure 3: (a): RMSE incurred by various methods for matrix completion with different rank (k)
solutions on Movie-Lens Dataset.(b): Time(on log scale) required by various methods for matrix
completion withp = .1, k = 2 and10% Gaussian noise. Note that all the four methods achieve
similar RMSE.(c): RMSE incurred by various methods for matrix completion with p = 0.1, k = 10
when the sampling distribution follows Power-law distribution (Chung-Lu-Vu Model).(d): RMSE
incurred for the same problem setting as plot (c) but with added Gaussian noise.

entries for fixedn = 1000 and increasingk. Note that our algorithms scale well with increasingk
and are faster than other methods. Next, we analyze reasons for better performance of our methods.
To this end, we plot the number of iterations required by our methods as compared to SVT (Fig-
ure 2 (d)). Note that even though each iteration of SVT is almost as expensive as our methods’, our
methods converge in significantly fewer iterations.

Finally, we study the behavior of our method in presence of noise. For this experiment, we generate
random matrices of different size and add approximately10% Gaussian noise. Figure 2 (c) plots
time required by various methods asn increases from1000 to 5000. Note that SVT is particularly
sensitive to noise. One of the reason for this is that due to noise, the rank of the intermediate iterates
arising in SVT can be fairly large.

Matrix Completion: Synthetic Dataset (Power-law Sampling)We now evaluate our methods
against existing matrix-completion methods under more realistic power-law distributed samples.
As before, we generate a random rank-k = 10 matrix X ∈ R

n×n and sample the entries ofX
using a graph generated using Chung-Lu-Vu model with power-law distributed degrees (see [23])
for details. Figure 3 (c) plots the RMSE obtained by various methods for varyingn and fixed
sampling densityp = 0.1. Note that SVP-NewtonD performs significantly better than SVT as well
as SVP. Figure 3 (d) plots the RMSE obtained by various methods when each sampled entry is
corrupted with around1% Gaussian noise. Note that here again SVP-NewtonD performs similar to
ALS and is significantly better than the other methods including the ICMC method [23] which is
specially designed for power-law sampling but is quite sensitive to noise.

Matrix Completion: Movie-Lens Dataset
Finally, we evaluate our method on the Movie-Lens dataset [1], which contains 1 million ratings for
3900 movies by6040 users. Figure 3 (a) shows the RMSE obtained by each method with varyingk.
ForSVP and SVP-Newton, we fix step size to beη = 1/p

√

(t), wheret is the number of iterations.
For SVT, we fixδ = .2p using cross-validation. Since, rank cannot be fixed in SVT, we try various
values for the parameterτ to obtain the desired rank solution. Note that SVP-Newton incurs a
RMSE of0.89 for k = 3. In contrast, SVT achieves a RMSE of0.98 for the same rank. We remark
that SVT was able to achieve RMSE up to0.89 but required rank17 solution and was significantly
slower in convergence because many intermediate iterates had large rank (up to around150). We
attribute the relatively poor performance ofSVP and SVT as compared with ALS and SVP-Newton
to the fact that the ratings matrix is not sampled uniformly,thus violating the crucial assumption of
uniformly distributed samples.
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