
A New O(n2) Algorithm for the Symmetric Tridiagonal
Eigenvalue/Eigenvector Problem

by

Inderjit Singh Dhillon

B.Tech. (Indian Institute of Technology, Bombay) 1989

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor James W. Demmel, Chair
Professor Beresford N. Parlett
Professor Phil Colella

1997

The dissertation of Inderjit Singh Dhillon is approved:

Chair Date

Date

Date

University of California, Berkeley

1997

A New O(n2) Algorithm for the Symmetric Tridiagonal

Eigenvalue/Eigenvector Problem

Copyright 1997

by

Inderjit Singh Dhillon

1

Abstract

A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector

Problem

by

Inderjit Singh Dhillon

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James W. Demmel, Chair

Computing the eigenvalues and orthogonal eigenvectors of an n× n symmetric tridiagonal

matrix is an important task that arises while solving any symmetric eigenproblem. All

practical software requires O(n3) time to compute all the eigenvectors and ensure their

orthogonality when eigenvalues are close. In the first part of this thesis we review earlier

work and show how some existing implementations of inverse iteration can fail in surprising

ways.

The main contribution of this thesis is a new O(n2), easily parallelizable algorithm

for solving the tridiagonal eigenproblem. Three main advances lead to our new algorithm.

A tridiagonal matrix is traditionally represented by its diagonal and off-diagonal elements.

Our most important advance is in recognizing that its bidiagonal factors are “better” for

computational purposes. The use of bidiagonals enables us to invoke a relative criterion to

judge when eigenvalues are “close”. The second advance comes by using multiple bidiag-

onal factorizations in order to compute different eigenvectors independently of each other.

Thirdly, we use carefully chosen dqds-like transformations as inner loops to compute eigen-

pairs that are highly accurate and “faithful” to the various bidiagonal representations.

Orthogonality of the eigenvectors is a consequence of this accuracy. Only O(n) work per

eigenpair is needed by our new algorithm.

Conventional wisdom is that there is usually a trade-off between speed and accu-

racy in numerical procedures, i.e., higher accuracy can be achieved only at the expense of

greater computing time. An interesting aspect of our work is that increased accuracy in

2

the eigenvalues and eigenvectors obviates the need for explicit orthogonalization and leads

to greater speed.

We present timing and accuracy results comparing a computer implementation

of our new algorithm with four existing EISPACK and LAPACK software routines. Our

test-bed contains a variety of tridiagonal matrices, some coming from quantum chemistry

applications. The numerical results demonstrate the superiority of our new algorithm. For

example, on a matrix of order 966 that occurs in the modeling of a biphenyl molecule

our method is about 10 times faster than LAPACK’s inverse iteration on a serial IBM

RS/6000 processor and nearly 100 times faster on a 128 processor IBM SP2 parallel machine.

Professor James W. Demmel
Dissertation Committee Chair

iii

To my parents,

for their constant love and support.

iv

Contents

List of Figures vi

List of Tables viii

1 Setting the Scene 1
1.1 Our Goals . 2
1.2 Outline of Thesis . 3
1.3 Notation . 5

2 Existing Algorithms & their Drawbacks 7
2.1 Background . 7
2.2 The QR Algorithm . 9
2.3 Bisection and Inverse Iteration . 11
2.4 Divide and Conquer Methods . 12
2.5 Other Methods . 13
2.6 Comparison of Existing Methods . 14
2.7 Issues in Inverse Iteration . 16
2.8 Existing Implementations . 20

2.8.1 EISPACK and LAPACK Inverse Iteration 22
2.9 Our Approach . 32

3 Computing the eigenvector of an isolated eigenvalue 34
3.1 Twisted Factorizations . 38
3.2 The Eigenvector Connection . 44
3.3 Zero Pivots . 49
3.4 Avoiding Divisions . 55

3.4.1 Heuristics for choosing r . 56
3.5 Twisted Q Factorizations — A Digression∗ 57

3.5.1 “Perfect” Shifts are perfect . 61
3.6 Rank Revealing Factorizations∗ . 64

4 Computing orthogonal eigenvectors when relative gaps are large 68
4.1 Benefits of High Accuracy . 69
4.2 Tridiagonals Are Inadequate . 70

v

4.3 Relative Perturbation Theory for Bidiagonals 72
4.4 Using Products of Bidiagonals . 76

4.4.1 qd-like Recurrences . 78
4.4.2 Roundoff Error Analysis . 83
4.4.3 Algorithm X — orthogonality for large relative gaps 93

4.5 Proof of Orthogonality . 94
4.5.1 A Requirement on r . 95
4.5.2 Outline of Argument . 97
4.5.3 Formal Proof . 99
4.5.4 Discussion of Error Bounds . 105
4.5.5 Orthogonality in Extended Precision Arithmetic 107

4.6 Numerical Results . 108

5 Multiple Representations 111
5.1 Multiple Representations . 112
5.2 Relatively Robust Representations (RRRs) 115

5.2.1 Relative Condition Numbers . 116
5.2.2 Examples . 119
5.2.3 Factorizations of Nearly Singular Tridiagonals 123
5.2.4 Other RRRs . 126

5.3 Orthogonality using Multiple Representations 126
5.3.1 Representation Trees . 127

5.4 Algorithm Y — orthogonality even when relative gaps are small 132

6 A Computer Implementation 134
6.1 Forming an RRR . 135
6.2 Computing the Locally Small Eigenvalues 136
6.3 An Enhancement using Submatrices . 138
6.4 Numerical Results . 139

6.4.1 Test Matrices . 140
6.4.2 Timing and Accuracy Results . 143

6.5 Future Enhancements to Algorithm Y . 152

7 Conclusions 155
7.1 Future Work . 156

Bibliography 158

A The need for accurate eigenvalues 169

B Bidiagonals are Better 173

C Multiple representations lead to orthogonality 177

vi

List of Figures

2.1 A typical implementation of Inverse Iteration to compute the jth eigenvector 20
2.2 Eigenvalue distribution in Example . 21
2.3 Tinvit — EISPACK’s implementation of Inverse Iteration 23
2.4 STEIN — LAPACK’s implementation of Inverse Iteration 24

3.1 Twisted Triangular Factorization at k = 3 (the next elements to be annihi-
lated are circled) . 40

3.2 Twisted Q Factorization at k = 3 (the next elements to be annihilated are
circled): forming Nk. 58

3.3 Twisted Triangular Factorization of a Hessenberg matrix at k = 3 (the next
elements to be annihilated are circled) . 65

3.4 Twisted Orthogonal Factorization of a Hessenberg matrix at k = 3 (the next
elements to be annihilated are circled) . 65

3.5 The above may be thought of as a twisted triangular or orthogonal factor-
ization of a dense matrix at k = 3 (the next elements to be annihilated are
circled) . 66

4.1 Effects of roundoff — dstqds transformation 85
4.2 Effects of roundoff — dqds transformation 87
4.3 Effects of roundoff — dtwqds transformation 88
4.4 Effects of roundoff — LDLT decomposition 90
4.5 dtwqds transformation applied to compute an eigenvector 97
4.6 An eigenvector of a tridiagonal : most of its entries are negligible 106

5.1 Representation Tree — Forming an extra RRR based at 1 129
5.2 Representation Tree — Only using the RRR based at 1 130
5.3 Representation Tree — An extra RRR based at 1 is essential 131

6.1 Eigenvalue distribution for Biphenyl . 142
6.2 Eigenvalue distribution for SiOSi6 . 142
6.3 Eigenvalue distribution for Zeolite ZSM-5 142
6.4 Absolute and Relative Eigenvalue Gaps for Biphenyl 152
6.5 Absolute and Relative Eigenvalue Gaps for SiOSi6 152
6.6 Absolute and Relative Eigenvalue Gaps for Zeolite ZSM-5 153

vii

C.1 The strong correlation between element growth and relative robustness . . . 181
C.2 Blow up of earlier figure : X-axis ranges from 1 + 10−8 to 1 + 3.5× 10−8 . . 181
C.3 Relative condition numbers (in the figure to the right, X-axis ranges from

1 + 10−8 to 1 + 3.5× 10−8) . 182

viii

List of Tables

2.1 Summary of xStein’s iterations to compute the second eigenvector of T . . . 31

4.1 Timing results on matrices of type 1 . 109
4.2 Accuracy results on matrices of type 1 . 109
4.3 Accuracy results on matrices of type 2 . 109

6.1 Timing Results . 144
6.2 Timing Results . 145
6.3 Maximum Residual Norms ≡ maxi ‖T v̂i − λ̂iv̂i‖/nε‖T‖ 146
6.4 Maximum Residual Norms ≡ maxi ‖T v̂i − λ̂iv̂i‖/nε‖T‖ 147
6.5 Maximum Dot Products ≡ maxi6=j |v̂T

i v̂j |/nε 148
6.6 Maximum Dot Products ≡ maxi6=j |v̂T

i v̂j |/nε 149

ix

Acknowledgements

The author would like to express his extreme gratitude to Professor Beresford Parlett for

making worthwhile the whole experience of working on this thesis. The author has bene-

fited greatly from Professor Parlett’s expertise, vision and clarity of thought in conducting

research as well as in its presentation. Moreover, helpful discussions over many a lunch has

greatly shaped this work and sparked off future ideas.

The author is grateful to Professor Demmel for introducing him to the field of

numerical linear algebra. Professor Demmel’s constant support, numerous suggestions and

careful reading have played a great role in the development of this thesis. The author also

wishes to thank Professor Kahan for much well-received advice, and Dr. George Fann for

many helpful discussions.

The author is also grateful to many friends who have made life in Berkeley an

enriching experience.

This research was supported in part by the Defense Advanced Research Projects

Agency, Contract No. DAAL03-91-C-0047 through a subcontract with the University of

Tennessee, the Department of Energy, Contract No. DOE-W-31-109-Eng-38 through a

subcontract with Argonne National Laboratory, and by the Department of Energy, Grant

No. DE-FG03-94ER25219, and the National Science Foundation Grant No. ASC-9313958,

and NSF Infrastructure Grant No. CDA-9401156.

Part of this work was done when the author was supported by a fellowship, DOE

Contract DE-AC06-76RLO 1830 through the Environmental Molecular Sciences construc-

tion project at Pacific Northwest National Laboratory (PNNL). The information presented

here does not necessarily reflect the position or the policy of the Government and no official

endorsement should be inferred.

1

Chapter 1

Setting the Scene

In this thesis, we propose a new algorithm for finding all or a subset of the eigenval-

ues and eigenvectors of a symmetric tridiagonal matrix. The main advance is in being able

to compute numerically orthogonal “eigenvectors” without taking recourse to the Gram-

Schmidt process or a similar technique that explicitly orthogonalizes vectors. All existing

software for this problem needs to do such orthogonalization and hence takes O(n3) time

in the worst case, where n is the order of the matrix. Our new algorithm is the result of

several innovations which enable us to compute, in O(n2) time, eigenvectors that are highly

accurate and numerically orthogonal as a consequence. We believe that the ideas behind

our new algorithm can be gainfully applied to several other problems in numerical linear

algebra.

As an example of the speedups possible due to our new algorithm, the parallel

solution of a 966× 966 dense symmetric eigenproblem, that comes from the modeling of a

biphenyl molecule by the Møller-Plesset theory, is now nearly 3 times faster than an earlier

implementation [39]. This speedup is a direct consequence of a 10-fold increase in speed of

the tridiagonal solution, which previously accounted for 80-90% of the total time. Detailed

numerical results are presented in Chapter 6.

Before we sketch an outline of our thesis, we list the features of an “ideal” algo-

rithm.

2

1.1 Our Goals

At the onset of our research in 1993, we listed the desirable properties of the

“ultimate” algorithm for computing the eigendecomposition of the symmetric tridiagonal

matrix T . Our wish-list was for

1. An O(n2) algorithm. Such an algorithm would achieve the minimum output com-

plexity in computing all the eigenvectors.

2. An algorithm that guarantees accuracy. Due to the limitations of finite preci-

sion, we cannot hope to compute the true eigenvalues and ensure that the computed

eigenvectors are exactly orthogonal. A plausible goal is to find approximate eigenpairs

(λ̂i, v̂i), v̂T
i v̂i = 1, i = 1, 2, . . . , n, such that

• the residual norms are small, i.e.,

‖(T − λ̂iI)v̂i‖ = O(ε‖T‖), (1.1.1)

• the computed vectors are numerically orthogonal, i.e.,

|v̂T
i v̂j | = O(ε), i 6= j, (1.1.2)

where ε is the machine precision. For some discussion on how to relate the above

goals to backward errors in T , see [87, Theorem 2.1] and [71]. However it may not

be possible to achieve (1.1.1) and (1.1.2) in all cases and we will aim for bounds that

grow slowly with n.

3. An embarrassingly parallel algorithm that allows independent computation of

each eigenvalue and eigenvector making it easy to implement on a parallel computer.

4. An adaptable algorithm that permits computation of any k of the eigenvalues and

eigenvectors at a reduced cost of O(nk) operations.

We have almost succeeded in accomplishing all these lofty goals. The algorithm

presented at the end of Chapter 5 is an O(n2), embarrassingly parallel and adaptable method

that passes all our numerical tests. Work to further improve this algorithm is still ongoing

and we believe we are very close to a provably accurate algorithm.

3

1.2 Outline of Thesis

The following summarizes the contents of this thesis.

1. In Chapter 2, we give some background explaining the importance of the symmetric

tridiagonal eigenproblem. We then briefly describe some of the existing methods —

the popular QR algorithm, bisection followed by inverse iteration and the relatively

new divide and conquer approach. In Section 2.6, we compare the existing methods in

terms of speed, accuracy and memory requirements discussing how they do not satisfy

all the desirable goals of Section 1.1. Since our new algorithm is related to inverse

iteration, in Section 2.7 we discuss in detail the tricky issues involved in its computer

implementation. In Section 2.8.1, we show how the existing LAPACK and EISPACK

inverse iteration software can fail. The expert reader may skip this chapter and move

on to Chapter 3 where we start describing our new methods.

2. In Chapter 3, we describe in detail the computation of an eigenvector corresponding

to an isolated eigenvalue that has already been computed. We begin by showing how

some of the obvious ways can fail miserably due to the tridiagonal structure. Twisted

factorizations, introduced in Section 3.1, are found to reveal singularity and provide

an elegant mechanism for computing an eigenvector. The method suggested by these

factorizations may be thought of as deterministically “picking a good starting vector”

for inverse iteration thus avoiding the random choices currently used in LAPACK

and solving a question posed by Wilkinson in [136, p.318]. Section 3.4 shows how to

modify this new method in order to eliminate divisions. We then digress a little and

in Sections 3.5 and 3.6 briefly discuss how twisted factorizations can be employed to

reveal the rank of denser matrices and guarantee deflation in perfect shift strategies.

3. In Chapter 4, we show how to independently compute eigenvectors that turn out to

be numerically orthogonal when eigenvalues differ in most of their digits. Note that

eigenvalues may have tiny absolute gaps without agreeing in any digit, e.g., 10−50 and

10−51 are far apart from each other in a relative sense. We say that such eigenvalues

have large relative gaps. The material of this chapter represents a major advance

towards our goal of an O(n2) algorithm. Sections 4.1 and 4.2 extol the benefits of high

accuracy in the computed eigenvalues, and show that for computational purposes, a

bidiagonal factorization of T is “better” than the traditional way of representing T by

4

its diagonal and off-diagonal elements. In Section 4.3, we review the known properties

of bidiagonal matrices that make them attractive for computation. Section 4.4.1 gives

the qd-like recurrences that allow us to exploit the good properties of bidiagonals,

and in Section 4.4.2 we give a detailed roundoff error analysis of their computer

implementations. Section 4.5 gives a rigorous analysis that proves the numerical

orthogonality of the computed eigenvectors when relative gaps are large. To conclude,

we present a few numerical results in Section 4.6 to verify the above claims.

4. Chapter 5 deals with the case when relative gaps between the eigenvalues are small.

In this chapter, we propose that for each such cluster of eigenvalues, we form an

additional bidiagonal factorization of T + µI where µ is close to the cluster, and then

apply the techniques of Chapter 4 to compute eigenvectors that are automatically

numerically orthogonal. The success of this approach depends on finding relatively

robust representations that are defined in Section 5.2. Section 5.3.1 introduces the

concept of a representation tree which is a tool that facilitates proving orthogonality

of the vectors computed using different representations. We present Algorithm Y in

Section 5.4 that also handles the remaining case of small relative gaps. We cannot

prove the correctness of this algorithm as yet but extensive numerical experience

indicates that it is accurate.

5. In Chapter 6 we give a detailed numerical comparison between Algorithm Y and four

existing EISPACK and LAPACK software routines. Section 6.4.1 describes our ex-

tensive collection of test tridiagonals, some of which come from quantum chemistry

applications. We find our computer implementation of Algorithm Y to be uniformly

faster than existing implementations of inverse iteration and the QR algorithm. The

speedups range from factors of 4 to about 3500 depending on the eigenvalue distribu-

tion. In Section 6.5, we speculate on further improvements to Algorithm Y.

6. Finally, in Chapter 7, we discuss how some of our techniques may be applicable to

other problems in numerical linear algebra.

In addition to the above chapters, we have included some case studies at the end

of this thesis, which examine various illuminating examples in detail. Much of the material

in the case studies appears scattered in various chapters, but we have chosen to collate and

expand on it at the end, where it can be read independently of the main text.

5

1.3 Notation

We now say a few words about our notation. The reader would benefit by occa-

sionally reviewing this section during the course of his/her reading of this thesis. We adopt

Householder’s conventions and denote matrices by uppercase roman letters such as A, B,

J , T and scalars by lowercase greek letters α, β, γ, η, or lowercase italic such as ai, bi

etc. We also try to follow the Kahan/Parlett convention of denoting symmetric matrices

by symmetric letters such as A, T and nonsymmetric matrices by B, J etc. In particular,

T stands for a symmetric tridiagonal matrix while J denotes a nonsymmetric tridiagonal.

However, we will occasionally depart from these principles, for example, the letters L and U

will denote lower and upper triangular matrices respectively while D stands for a diagonal

matrix by strong tradition. Overbars will be frequently used when more than one matrix of

a particular type is being considered, e.g., L and L̃. The submatrix of T in rows i through

j will be denoted by T i:j and its characteristic polynomial by χi:j .

We denote vectors by lowercase roman letters such as u, v and z. The ith com-

ponent of the vector v will be denoted by vi or v(i). The (i, j) element of matrix A will be

denoted by Aij . All vectors are n-dimensional and all matrices are n × n unless otherwise

stated. In cases where there are at most n non-trivial entries in a matrix, we will use only

one index to denote these matrix entries, for example L(i) might denote the L(i+1, i) entry

of a unit lower bidiagonal matrix while D(i) or Di can denote the (i, i) element of a diagonal

matrix. The ith column vector of the matrix V will be denoted by vi. We note that this

might lead to some ambiguity, but we will try and explicitly state our notation before such

usage.

We denote the n eigenvalues of a matrix by λ1, λ2, · · · , λn, while the n singular

values are denoted by σ1, σ2, . . . , σn. Normally we will assume that these quantities are

ordered, i.e., λ1 ≤ · · · ≤ λn while σ1 ≥ · · · ≥ σn. Note that the eigenvalues are arranged

in increasing order while the singular values are in decreasing order. We have done this to

abide by existing conventions. The ordering is immaterial to most of our presentation, but

we will make explicit the order of arrangement whenever our exposition requires ordering.

Eigenvectors and singular vectors will be denoted by vi and ui. The diagonal matrix of

eigenvalues and singular values will be denoted by Λ and Σ respectively, while V and U will

stand for matrices whose columns are eigenvectors and/or singular vectors.

Since finite precision computations are the driving force behind our work, we

6

briefly introduce our model of arithmetic. We assume that the floating point result of a

basic arithmetic operation ◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 + η) = (x ◦ y)/(1 + δ)

where η and δ depend on x, y, ◦, and the arithmetic unit. The relative errors satisfy

|η| < ε, |δ| < ε

for a given ε that depends only on the arithmetic unit and will be called the machine

precision. We shall choose freely the form (η or δ) that suits the analysis. We also adopt

the convention of denoting the computed value of x by x̂. In fact, we have already used

some of this notation in Section 1.1.

The IEEE single and double precision formats allow for 24 and 53 bits of precision

respectively. Thus the corresponding ε are 2−23 ≈ 1.2 × 10−7 and 2−52 ≈ 2.2 × 10−16

respectively. Whenever ε occurs in our analysis it will either denote machine precision

or should be taken to mean “of the order of magnitude of” the machine precision, i.e,

ε = O(machine precision).

Just as we did in the above sentence and in equations (1.1.1) and (1.1.2), we

will continue to abuse the “big oh” notation. Normally the O notation, introduced by

Bachmann in 1894 [68, Section 9.2], implies a limiting process. For example, when we say

that an algorithm takes O(n2) time, we mean that the algorithm performs less than Kn2

operations for some constant K as n→∞. However in our informal discussions, sometimes

there will not be any limiting process or we may not always make it precise. In the former

case, O will be a synonym for “of the order of magnitude of”. Our usage should be clear

from the context. Of course, we will be precise in the statements of our theorems — in fact,

the O notation does not appear in any theorem or proof in this thesis.

We will also be sloppy in our usage of the terms “eigenvalues” and “eigenvec-

tors”. An unreduced symmetric tridiagonal matrix has exactly n distinct eigenvalues and

n normalized eigenvectors that are mutually orthogonal. However, in several places we

will use phrases like “the computed eigenvalues are close to the exact eigenvalues” and

“the computed eigenvectors are not numerically orthogonal”. In these phrases, we refer to

approximations to the eigenvalues and eigenvectors and we are deliberately sloppy for the

sake of brevity. In a similar vein, we will use “orthogonal” to occasionally mean numerically

orthogonal, i.e., orthogonal to working precision.

7

Chapter 2

Existing Algorithms & their

Drawbacks

In this chapter, we start by giving a quick background to the problem of computing

an eigendecomposition of a dense symmetric matrix for the benefit of a newcomer. We

then discuss and compare existing methods of solving the resulting tridiagonal problem in

Sections 2.2 through 2.6. Later, in Sections 2.7 and 2.8, we show how various issues that arise

in implementing inverse iteration are handled in existing LAPACK [1] and EISPACK [128]

software, and present some examples where they fail to deliver correct answers. Finally, we

sketch our alternate approach on handling these issues in Section 2.9.

2.1 Background

Eigenvalue computations arise in a rich variety of contexts. A quantum chemist

may compute eigenvalues to reveal the electronic energy states in a large molecule, a struc-

tural engineer may need to construct a bridge whose natural frequencies of vibration lie

outside the earthquake band while eigenvalues may convey information about the stabil-

ity of a market to an economist. A large number of such physically meaningful problems

may be posed as the abstract mathematical problem of finding all numbers λ and non-zero

vectors q that satisfy the equation

Aq = λq,

where A is a real, symmetric matrix of order n. λ is called an eigenvalue of the matrix A

while q is a corresponding eigenvector.

8

All eigenvalues of A must satisfy the characteristic equation, det(A− λI) = 0 and

since the left hand side of this equation is a polynomial in λ of degree n, A has exactly n

eigenvalues. A symmetric matrix further enjoys the properties that

1. all eigenvalues are real, and

2. a complete set of n mutually orthogonal eigenvectors may be chosen.

Thus a symmetric matrix A admits the eigendecomposition

A = QΛQT ,

where Λ is a diagonal matrix, Λ = diag(λ1, λ2, . . . , λn), and Q is an orthogonal matrix,

i.e., QT Q = I. In the case of an unreduced symmetric tridiagonal matrix, i.e., where all

off-diagonal elements of the tridiagonal are non-zero, the eigenvalues are distinct while the

eigenvectors are unique up to a scale factor and are mutually orthogonal.

Armed with this knowledge, several algorithms for computing the eigenvalues of

a real, symmetric matrix have been constructed. Prior to the 1950s, explicitly forming

and solving the characteristic equation seems to have been a popular choice. However,

eigenvalues are extremely sensitive to small changes in the coefficients of the characteristic

polynomial and the inadequacy of this representation became clear with the advent of

the modern digital computer. Orthogonal matrices became, and still remain, the most

important tools of the trade. A sequence of orthogonal transformations,

A0 = A, Ai+1 = QT
i AiQi,

where QT
i Qi = I, is numerically stable and preserves the eigenvalues of Ai. Many algorithms

for computing the eigendecomposition of A attempt to construct such a sequence so that

Ai converges to a diagonal matrix. But, Galois’ work in the nineteenth century implies that

for n > 4 there can be no finite m for which Am is diagonal as long as the Qi are computed

by algebraic expressions and taking kth roots. It seems natural to try and transform A to

a tridiagonal matrix instead. In 1954, Givens proposed the reduction of A to tridiagonal

form by using orthogonal plane rotations [62]. However, most current efficient algorithms

work by reducing A to a tridiagonal matrix T by a sequence of n− 2 orthogonal reflectors,

now named after Householder who first introduced them in 1958, see [81]. Mathematically,

T = (QT
n−3 · · ·QT

1 QT
0)A(Q0Q1 · · ·Qn−3) = ZT AZ

9

The eigendecomposition of T may now be found as

T = V ΛV T , (2.1.1)

where V T V = I, and back-transformation may be used to find the eigenvectors of A,

A = (ZV)Λ(ZV)T = QΛQT .

The tridiagonal eigenproblem is one of the most intensively studied problems in numerical

linear algebra. A variety of methods exploit the tridiagonal structure to compute (2.1.1).

Extensive research has led to plenty of software, especially in the linear algebra software

libraries, EISPACK [128] and the more recent LAPACK [1]. We will examine existing

algorithms and related software in the next section.

We now briefly discuss the relative costs of the various components involved in

solving the dense symmetric eigenproblem. Reducing A to tridiagonal form by Householder

transformations costs about 4
3n3 multiplications and additions, while back-transformation to

get the eigenvectors of A from the tridiagonal solution needs 2n3 multiplication and addition

operations. The cost of solving the tridiagonal eigenproblem varies according to the method

used and the numerical values in the matrix. If the distribution of eigenvalues is favorable

some methods may solve such a tridiagonal problem in O(n2) time. However, all existing

software takes kn3 operations in the worst case, where k is a modest number that can vary

from 4 to 12. In many cases of practical importance, the tridiagonal problem can indeed be

the bottleneck in the total computation. The extent to which it is a bottleneck can be much

greater than suggested by the above numbers because the other two phases, Householder

reduction and back-transformation can exploit fast matrix-multiply based operations [12,

45], whereas most algorithms for the tridiagonal problem are sequential in nature and/or

cannot be expressed in terms of matrix multiplication. We now discuss these existing

algorithms.

2.2 The QR Algorithm

Till recently, the method of choice for the symmetric tridiagonal eigenproblem was

the QR Algorithm which was independently invented by Francis [59] and Kublanovskaja [95].

The QR method is a remarkable iteration process,

T0 = T,

10

Ti − σiI = QiRi, (2.2.2)

Ti+1 = RiQi + σiI, i = 0, 1, 2, . . .

where QT
i Qi = I, Ri is upper triangular and σi is a shift chosen to accelerate convergence.

The off-diagonal elements of Ti are rapidly driven to zero by this process. Francis, helped

by Strachey and Wilkinson, was the first to note the invariance of the tridiagonal form and

incorporate shifts in the QR method. These observations make the method computationally

viable. The initial success of the method sparked off an incredible amount of research into

the QR method, which carries on till this day. Several shift strategies were proposed and

convergence properties of the method studied. The ultimate cubic convergence of the QR

algorithm with suitable shift strategies was observed by both Kahan and Wilkinson. In 1968,

Wilkinson proved that the tridiagonal QL iteration (the QL method is intimately related

to the QR method) always converges using his shift strategy. A simpler proof of global

convergence is due to Hoffman and Parlett, see [79]. An excellent treatment of the QR

method is given by Parlett in [112].

Each orthogonal matrix Qi in (2.2.2) is a product of n − 1 elementary rotations,

known as Givens rotations [62]. The tridiagonal matrices Ti converge to diagonal form

that gives the eigenvalues of T . The eigenvector matrix of T is then given by the product

Q1Q2Q3 · · ·. When only eigenvalues are desired, the QR transformation can be reorganized

to eliminate all square roots that are required to form the Givens rotations. This was first

observed by Ortega and Kaiser in 1963 [109] and a fast, stable algorithm was developed

by Pal, Walker and Kahan (PWK) in 1968-69 [112]. Since a square root operation can be

about 20 or more times as expensive as addition or multiplication, this yields a much faster

method. In particular, the PWK algorithm finds all eigenvalues of T in approximately 9n2

multiply and add operations and 3n2 divisions, with the assumption that 2 QR iterations

are needed per eigenvalue. However, when eigenvectors are desired, the product of all the

Qi must be accumulated during the algorithm. The O(n2) square root operations cannot be

eliminated in this process and approximately 6n3 multiplications and additions are needed

to find all the eigenvalues and eigenvectors of T . In the hope of cutting down this work

by half, Parlett suggested the alternate strategy of computing the eigenvalues by the PWK

algorithm, and then executing the QR algorithm using the previously computed eigenvalues

as origin shifts to find the eigenvectors [112, p.173]. However this perfect shift strategy was

not found to work much better than Wilkinson’s shift strategy, taking an average of about

11

2 QR iterations per eigenvalue [69, 98].

2.3 Bisection and Inverse Iteration

In 1954, Wallace Givens proposed the method of bisection to find some or all of

the eigenvalues of a real, symmetric matrix [62]. This method is based on the availability of

a simple recurrence to count the number of eigenvalues less than a floating point number µ.

Let χj(τ) = det(τI−T 1:j) be the characteristic polynomial of the leading principal

j× j submatrix of T . The sequence {χ0, χ1, . . . , χn}, where χ0 = 1 and χ1 = µ−T11, forms

a Sturm sequence of polynomials. The tridiagonal nature of T allows computation of χj(µ)

using the three-term recurrence

χj+1(µ) = (µ− Tj+1,j+1)χj(µ)− T 2
j+1,jχj−1(µ). (2.3.3)

The number of sign agreements in consecutive terms of the numerical sequence

{χi(µ), i = 0, 1, . . . , n} equals the number of eigenvalues of T less than µ. Based on this

recurrence, Givens devised a method that repeatedly halves the size of an interval that

contains at least one eigenvalue. However, it was soon observed that recurrence (2.3.3) was

prone to overflow with a limited exponent range. An alternate recurrence that computes

dj(µ) = χj(µ)/χj−1(µ) is now used in most software [89],

dj+1(µ) = (µ− Tj+1,j+1)− T 2
j+1,j/dj(µ), d1(µ) = µ− T11.

The bisection algorithm permits an eigenvalue to be computed in about 2bn addi-

tion and bn division operations where b is the number of bits of precision in the numbers

(b = 24 in IEEE single while b = 53 in IEEE double precision arithmetic). Thus all eigenval-

ues may be found in O(bn2) operations. Faster iterations that are superlinearly convergent

can beat bisection and we give some references in Section 2.5.

Once an accurate eigenvalue approximation λ̂ is known, the method of inverse

iteration may be used to compute an approximate eigenvector [118, 87] :

v(0) = b, (A− λ̂I)v(i+1) = τ (i)v(i), i = 0, 1, 2, . . . ,

where b is the starting vector and τ (i) is a scalar.

Earlier fears about loss of accuracy in solving the linear system given above due to

the near singularity of T − λ̂I were allayed in [119]. Inverse iteration delivers a vector v̂ that

12

has a small residual, i.e. small ‖(T−λ̂I)v̂‖, whenever λ̂ is close to λ. However small residual

norms do not guarantee orthogonality of the computed vectors when eigenvalues are close

together. A commonly used “remedy” for clusters of eigenvalues is to orthogonalize each ap-

proximate eigenvector, as soon as it is computed, against previously computed eigenvectors

in the cluster. Typical implementations orthogonalize using the modified Gram-Schmidt

method.

The amount of work required by inverse iteration to compute all the eigenvectors

of a symmetric tridiagonal matrix strongly depends upon the distribution of eigenvalues.

If eigenvalues are well-separated, then O(n2) operations are sufficient. However, when

eigenvalues are close, current implementations can take up to 10n3 operations due to the

orthogonalization.

2.4 Divide and Conquer Methods

In 1981, Cuppen proposed a solution to the symmetric tridiagonal eigenproblem

that was meant to be efficient for parallel computation [25, 46]. It is quite remarkable that

this method can also be faster than other implementations on a serial computer!

The matrix T may be expressed as a modification of a direct sum of two smaller

tridiagonal matrices. This modification may be a rank-one update [15], or may be ob-

tained by crossing out a row and column of T [72]. The eigenproblem of T can then be

solved in terms of the eigenproblems of the smaller tridiagonal matrices, and this may be

done recursively. For several years after its inception, it was not known how to guaran-

tee numerically orthogonality of the eigenvector approximations obtained by this approach.

However in 1992, Gu and Eisenstat found a clever solution to this problem, and paved the

way for robust software based on their algorithms [72, 73, 124] and Li’s work on a faster

zero-finder [102].

The main reason for the unexpected success of divide and conquer methods on

serial machines is deflation, which occurs when an eigenpair of a submatrix of T is an ac-

ceptable eigenpair of a larger matrix. For symmetric tridiagonal matrices, this phenomenon

is quite common. The greater the amount of deflation, the lesser is the work required in

these methods. The amount of deflation depends on the distribution of eigenvalues and

on the structure of the eigenvectors. In the worst case when no deflation occurs O(n3)

operations are needed, but on matrices where eigenvalues cluster and the eigenvector ma-

13

trix contains many tiny entries, substantial deflation occurs and many fewer than O(n3)

operations are required [73].

In [71, 73], Gu and Eisenstat show that by using the fast multipole method of

Carrier, Greengard and Rokhlin [70, 16], the complexity of solving the symmetric tridiagonal

eigenproblem can be considerably lowered. All the eigenvalues and eigenvectors can be found

in O(n2) operations while all the eigenvalues can be computed in O(n log2 n) operations.

In fact, the latter method also finds the eigenvectors but in an implicit factored form

(without assembling the n2 entries of all the eigenvectors) that allows multiplication of the

eigenvector matrix by a vector in about n2 operations. However, the constant factor in

the above operation counts is quite high, and matrices encountered currently are not large

enough for these methods to be viable. There is no software available as yet that uses the

fast multipole method for the eigenproblem.

2.5 Other Methods

The oldest method for solving the symmetric eigenproblem is one due to Jacobi

that dates back to 1846 [86], and was rediscovered by von Neumann and colleagues in

1946 [7]. Jacobi’s method does not reduce the dense symmetric matrix A to tridiagonal

form, as most other methods do, but instead works on A. It performs a sequence of plane

rotations each of which annihilates an off-diagonal element (which is filled in during later

steps). There are a variety of Jacobi methods that differ solely in their strategies for

choosing the next element to be annihilated. All good strategies tend to diminish the off-

diagonal elements, and the resulting sequence of matrices converges to the diagonal matrix

of eigenvalues. Jacobi methods cost O(n3) or more operations but the constant is larger

than in any of the algorithms discussed above. Despite their slowness, these methods are

still valuable as they seem to be more accurate than other methods [37]. They can also be

quite fast on strongly diagonally dominant matrices.

The bisection algorithm discussed in Section 2.3 is a reliable way to compute

eigenvalues. However, it can be quite slow and there have been many attempts to find faster

zero-finders such as the Rayleigh Quotient Iteration [112], Laguerre’s method [90, 113] and

the Zeroin scheme [31, 13]. These zero-finders can considerably speed up the computation

of isolated eigenvalues but they seem to stumble when eigenvalues cluster.

Homotopy methods for the symmetric eigenproblem were suggested by Chu in [23,

14

24]. These methods start from an eigenvalue of a simpler matrix D and follow a smooth

curve to find an eigenvalue of A(t) ≡ D + t(A − D). D was chosen to be the diagonal

of the tridiagonal in [103], but greater success was obtained by taking D to be a direct

sum of submatrices of T [105, 99]. An alternate divide and conquer method that finds the

eigenvalues by using Laguerre’s iteration instead of homotopy methods is given in [104].

The corresponding eigenvectors in these methods are obtained by inverse iteration.

2.6 Comparison of Existing Methods

All currently implemented software for finding all the eigenvalues and eigenvectors

of a symmetric tridiagonal matrix requires O(n3) work in the worst case. The fastest current

implementation is the divide and conquer method of [73]. As mentioned in Section 2.4,

many fewer than O(n3) operations are needed when heavy deflation occurs. In fact, for

some matrices, such as a small perturbation of the identity matrix, just O(n) operations

are sufficient to solve the eigenproblem. This method was designed to work well on parallel

computers, offering both task and data parallelism [46]. Efficient parallel implementations

are not straightforward to program, and the decision to switch from task to data parallelism

depends on the characteristics of the underlying machine [17]. Due to such complications, all

the currently available parallel software libraries, such as ScaLAPACK [22] and PeIGS [52],

use algorithms based on bisection and inverse iteration. A drawback of the current divide

and conquer software in LAPACK is that it needs extra workspace of more than 2n2 floating

point numbers, which can be prohibitively excessive for large problems. Also, the divide

and conquer algorithm does not allow the computation of a subset of the eigenvalues and

eigenvectors at a proportionately reduced cost.

The bisection algorithm enables any subset of k eigenvalues to be computed with

O(nk) operations. Each eigenvalue can be found independently and this makes it suitable for

parallel computation. However, bisection is slow if all the eigenvalues are needed. A faster

root-finder, such as Zeroin [31, 13], speeds up computation when an eigenvalue is isolated

in an interval. Multisection maintains the simplicity of bisection and in certain situations,

can speed up the performance on a parallel machine [106, 11, 127]. When the k eigenvalues

are well separated, inverse iteration can find the eigenvectors independently, each in O(n)

time. However, to find eigenvectors of k close eigenvalues, all existing implementations

resort to reorthogonalization and this costs O(nk2) operations. Orthogonalization can also

15

lead to heavy communication in a parallel implementation. The computed eigenvectors

may also not be accurate enough in some rare cases. See Section 2.8.1 for more details.

Despite these drawbacks, the embarrassingly parallel nature of bisection followed by inverse

iteration makes it easy and efficient to program on a parallel computer. As a result, this is

the method that has been implemented in current software libraries for distributed memory

computers, such as ScaLAPACK [47], PeIGS [52, 54] and in [75].

Like the recent divide and conquer methods, the QR algorithm guarantees numer-

ical orthogonality of the computed eigenvectors. The O(n2) computation performed in the

QR method to find all the eigenvalues is sequential in nature and is not easily parallelized

on modern parallel machines despite the attempts in [96, 132, 93]. However, the O(n3) com-

putation in accumulating the Givens’ rotations into the eigenvector matrix is trivially and

efficiently parallelized, see [3] for more details. But the higher operation count and inability

to exploit fast matrix-multiply based operations make the QR algorithm much slower than

divide and conquer and also, slower on average than bisection followed by inverse iteration.

Prior to beginning this work, we were hopeful of finding an algorithm that could

fulfil the rather ambitious goals of Section 1.1 because

• when eigenvalues are well separated, bisection followed by inverse iteration requires

O(n2) operations, and

• when eigenvalues are clustered, the divide and conquer method is very fast.

The above observations suggest a hybrid algorithm that solves clusters by the

divide and conquer algorithm and computes eigenvectors of isolated eigenvalues by inverse

iteration. Indeed such an approach has been taken in [60]. Another alternative is to perform

bisection and inverse iteration in higher precision. This may be achieved by simulating

quadrupled precision, i.e., doubling the precision of the machine’s native arithmetic, in

software in an attempt to obviate the need for orthogonalization [38].

We choose to take a different approach in our thesis. By revisiting the problem

at a more fundamental level, we have been able to arrive at an algorithm that shares

the attractive features of inverse iteration and the divide and conquer method. Since our

approach can be viewed as an alternate way of doing inverse iteration, we now look in detail

at the issues involved in any implementation of inverse iteration. Although many surprising

aspects of current implementations are revealed by our careful examination, the reader who

is pressed for time may skip on to Chapter 3 for the main results of this thesis. The material

16

in the upcoming sections also appears in [41].

2.7 Issues in Inverse Iteration

Inverse Iteration is a method to find an eigenvector when an approximate eigen-

value λ̂ is known :

v(0) = b, (A− λ̂I)v(i+1) = τ (i)v(i), i = 0, 1, 2, (2.7.4)

Here b is the starting vector. Usually ‖v(i)‖ = 1 and τ (i) is a scalar chosen to try

and make ‖v(i+1)‖ ≈ 1. We now list the key issues that arise in a computer implementation.

I. Choice of shift. Given an approximate eigenvalue λ̂, what shift σ should be chosen

when doing the inverse iteration step :

(A− σI)v(i+1) = τ (i)v(i) ? (2.7.5)

Should σ always equal λ̂? How close should σ be to an eigenvalue? Should the

accuracy of λ̂ be checked?

II. Direction of starting vector. How should b be chosen?

III. Scaling of right hand side. When the shift σ is very close to an eigenvalue,

‖(A − σI)−1‖ is large and solving (2.7.5) may result in overflow. Can τ (i) be chosen

to prevent overflow?

IV. Convergence Criterion. When does an iterate v(i) satisfy (1.1.1)? If the criterion

for acceptance is too strict, the iteration may never stop and the danger of too loose

a criterion is that poorer approximations than necessary may be accepted.

V. Orthogonality. Will the vectors for different eigenvalues computed by (2.7.4) be

numerically orthogonal? If not, what steps must be taken to ensure orthogonality?

We now examine these issues in more detail. Before we do so, it is instructive to

look at the first iterate of (2.7.5) in the eigenvector basis. Suppose that b is a starting vector

with ‖b‖2 = 1, and that σ is an approximation to the eigenvalue λ1. Writing b in terms of

the eigenvectors, b =
∑n

i=1 ξivi, we get, in exact arithmetic

v̂1 = τ (1)(A− σI)−1b = τ (1)

(
ξ1

λ1 − σ
v1 +

n∑
i=2

ξi

λi − σ
vi

)

17

⇒ v̂1 =
ξ1τ

(1)

λ1 − σ

(
v1 +

n∑
i=2

ξi

ξ1

λ1 − σ

λi − σ
vi

)
. (2.7.6)

I. Choice of shift. The above equation shows that for v̂1 to be a good approximation

to v1, σ must be close to λ1. But in such a case, the linear system (2.7.5) is ill-

conditioned and small changes in σ or A can lead to large changes in the solution

v(i+1). Initially, it was feared that roundoff error would destroy these calculations

in finite precision arithmetic. However Wilkinson showed that the errors made in

computing v(i+1), although large, are almost entirely in the direction of v1 when λ1

is isolated. Since we are interested only in computing the direction of v1 these errors

pose no danger, see [119]. Thus to compute the eigenvector of an isolated eigenvalue,

the more accurate the shift is the better is the approximate eigenvector.

It is common practice now to compute eigenvalues first, and then invoke inverse it-

eration with very accurate σ. Due to the fundamental limitations of finite precision

arithmetic, eigenvalues of symmetric matrixes can, in general, only be computed to

a guaranteed accuracy of O(ε‖A‖) [112]. Even when a very accurate eigenvalue ap-

proximation is available, the following may influence the choice of the shift when more

than one eigenvector is desired.

• The pairing problem. In [20], Chandrasekaran gives a surprising example

showing how inverse iteration can fail to give small residuals in exact arithmetic

if the eigenvalues and eigenvectors are not paired up properly. We reproduce

the example in Section 2.8. To prevent such an occurrence, Chandrasekaran

proposes perturbing the eigenvalue approximations so that each shift used for

inverse iteration lies to the left of, i.e., is smaller than, its nearest eigenvalue (see

Example 2.8.1 for more details).

• The separation problem. The solution v(i+1) in (2.7.5) is very sensitive to

small changes in σ when there is more than one eigenvalue near σ. In [136,

p.329], Wilkinson notes that

‘The extreme sensitivity of the computed eigenvector to very small
changes in λ [σ in our notation] may be turned to practical advantage
and used to obtain independent eigenvectors corresponding to coincident
or pathologically close eigenvalues’.

Wilkinson proposed that such nearby eigenvalues be ‘artificially separated’ by a

tiny amount.

18

II. Direction of starting vector. From (2.7.6), assuming that |λ1 − σ| � |λi − σ| for

i 6= 1, v̂1 is a good approximation to v1 provided that ξ1 is not “negligible”, i.e., the

starting vector must have a non-negligible component in the direction of the desired

eigenvector. In [136, pp.315-321], Wilkinson investigates and rejects the choice of e1

or en as a starting vector (where ei is the ith column of the n×n identity matrix). ek

is a desirable choice for a starting vector if the kth component of v1 is above average

(> 1/
√

n). In the absence of an efficient procedure to find such a k, Wilkinson

proposed choosing PLe as the starting vector, where T − σI = PLU and e is the

vector of all 1’s [134, 136]. A random starting vector is a popular choice since the

probability that it has a negligible component in the desired direction is extremely

low, see [87] for a detailed study.

III. Scaling of right hand side. Equation (2.7.6) implies that ‖v̂1‖ = O(|τ (1)/(λ1−σ)|)
where τ (1) is the scale factor in the first iteration of (2.7.5). If σ is very close to an

eigenvalue, ‖v̂1‖ can be very large and overflow may occur and lead to breakdown in the

eigenvector computation. To avoid such overflow, τ (1) should be chosen appropriately

to scale down the right hand side. This approach is taken in EISPACK and LAPACK.

IV. Convergence Criterion. In the iteration (2.7.4), when is v(i+1) an acceptable eigen-

vector? The residual norm is

‖(A− λ̂1I)v(i+1)‖
‖v(i+1)‖

=
‖τ (i) · v(i)‖
‖v(i+1)‖

. (2.7.7)

The factor ‖v(i+1)‖/‖τ (i) ·v(i)‖ is called the norm growth. To guarantee (1.1.1), v(i+1)

is usually accepted when the norm growth is O(1/nε‖T‖), see [136, p.324] for details.

For the basic iteration of (2.7.4) this convergence criterion can always be met in

a few iterations, provided the starting vector is not pathologically deficient in the

desired eigenvector and |λ1 − λ̂1| = O(nε‖T‖). As we have mentioned before, these

requirements are easily met.

Since the eigenvalue approximations are generally input to inverse iteration, what

should the software do if the input approximations are not accurate, i.e., bad data

is input to inverse iteration? We believe that the software should raise some sort

of error flag either by testing for the accuracy of the input eigenvalues, or through

non-convergence of the iterates.

19

When λ1 is isolated, a small residual implies orthogonality of the computed vector to

other eigenvectors (see (2.7.8) below). However when λ1 is in a cluster, goal (1.1.2)

is not automatic. As we now discuss, the methods used to compute numerically

orthogonal vectors can impact the choice of the convergence criterion.

V. Orthogonality. Standard perturbation theory [112, Section 11-7] says that if v̂ is a

unit vector, λ is the eigenvalue closest to λ̂ and v is λ’s eigenvector then

| sin 6 (v, v̂)| ≤ ‖Av̂ − λ̂v̂‖
gap(λ̂)

(2.7.8)

where gap(λ̂) = minλi 6=λ |λ̂− λi|.

In particular, the above implies that the simple iteration scheme of (2.7.4) cannot

guarantee orthogonality of the computed “eigenvectors” when eigenvalues are close.

To achieve numerical orthogonality, current implementations modify (2.7.4) by explic-

itly orthogonalizing each iterate against eigenvectors of nearby eigenvalues that have

already been computed.

However, orthogonalization can fail if the vectors to be orthogonalized are close to

being parallel. When this happens, two surprising difficulties arise :

• The orthogonalized vectors may not provide an orthogonal basis of the desired

subspace.

• Orthogonalization may lead to cancellation and a decrease in norm of the iterate.

Thus a simple convergence criterion (as suggested above in issue IV) may not be

reached.

The eigenvalues found by the QR algorithm and the divide and conquer method can

be in error by O(ε‖T‖). As a result, approximations to small eigenvalues may not

be correct in most of their digits. Thus computed eigenvalues may not be accurate

“enough” leading to the above failures surprisingly often. We give examples of such

occurrences in Section 2.8.1. In response to the above problems, Chandrasekaran

proposes a new version of inverse iteration that is considerably different from the

EISPACK and LAPACK implementations in [20]. The differences include an alternate

convergence criterion. The drawback of this new version is the potential increase in

the amount of computation required.

20

Inverse Iteration(A,λ̂)

/* assume that v̂1, v̂2, . . . , v̂j−1 have been computed, and λ̂i, λ̂i+1, . . . , λ̂j form a cluster */

Choose a starting vector bj ;

Orthogonalize bj against v̂i, v̂i+1, . . . , v̂j−1;

l = 0; v(0) = bj ;

do

l = l + 1;

Solve (A− λ̂jI)v(l+1) = τ (l)v(l);

Orthogonalize v(l+1) against v̂i, v̂i+1, . . . , v̂j−1;

while(‖v(l+1)‖/‖τ (l)v(l)‖ is not “big” enough)

v̂j = v(l+1)/‖v(l+1)‖;

Figure 2.1: A typical implementation of Inverse Iteration to compute the jth eigenvector

2.8 Existing Implementations

Figure 2.1 gives the pseudocode for a typical implementation of inverse iteration to

compute vj , the jth eigenvector, assuming that v1, v2, . . . , vj−1 have already been computed.

Note that in this pseudocode, both the starting vectors and iterates are orthogonalized

against previously computed eigenvectors. Surprisingly, as the following example shows, this

implementation can fail to give small residual norms even in exact arithmetic by incorrectly

pairing up the eigenvalues and eigenvectors.

Example 2.8.1 [The Pairing Error.] (Chandrasekaran [20]) Let λ1 be an arbitrary real

number, and

λ2 = λ1 + ε, λi+1 − λi = λi − λ1, λn ≥ 1, i = 2, . . . , n− 1

where ε is of the order of the machine precision. Explicitly, λi = λ1 + 2i−2ε. Suppose that

λ̂i > λi, i = 1, . . . , n and most importantly λ̂1 − λ1 > λ2 − λ̂1.

Figure 2.2 illustrates the situation.

21

Figure 2.2: Eigenvalue distribution in Example

Assume that in Figure 2.1 each bj is orthogonalized against v̂1, v̂2, . . . , v̂i−1. If

bT
j vj+1 6= 0, then in exact arithmetic the computed eigenvectors are

v̂i = vi+1, i = 1, . . . , n− 1

and, because v̂n must be orthogonal to v̂1, v̂2, . . . , v̂n−1,

v̂n = v1.

Since the eigenvalues grow exponentially, the residual norm ‖(A − λ̂nI)v̂n‖ is large! This

is because even though the eigenvectors have been computed correctly, each is associated

with the wrong eigenvalue. tu

Hence, a simple inverse iteration code based on orthogonalization may appear

to fail even in exact arithmetic. To cure this problem, Chandrasekaran proposes that

λ̂i − O(nε‖A‖) be used as the shifts for inverse iteration so that all shifts are guaranteed

to lie to the left of the actual eigenvalues [20]. Neither EISPACK nor LAPACK do this

‘artificial’ perturbation.

The discerning reader will realize that the above problem is not the failure of

the basic inverse iteration process. Iterates do converge to the closest eigenvector that

is orthogonal to the eigenvectors computed earlier. The error is elusive but once seen, it

may be argued that the implementation in Figure 2.1 is sloppy. An easy cure would be

to associate with each computed eigenvector its Rayleigh Quotient, which is available at a

modest cost. Unfortunately, because of the premium on speed, most current software does

not check if its output is correct. Thus, errors can go undetected since the task of proving

correctness of numerical software is often compromised by testing it on a finite sample of a

multi-dimensional infinite space of inputs.

We now look in detail at two existing implementations of inverse iteration and

see how they address the issues discussed in the previous section. EISPACK [128] and

22

LAPACK [1] are linear algebra software libraries that contain routines to solve various

eigenvalue problems. EISPACK’s implementation of inverse iteration is named Tinvit

while LAPACK’s inverse iteration subroutine is called xStein1 (Stein is an acronym for

Symmetric Tridiagonal’s Eigenvectors through Inverse Iteration). xStein was developed to

be more accurate than Tinvit as the latter was found to deliver less than satisfactory results

in several test cases. In order to achieve accuracy comparable to that of the divide and

conquer and QR/QL methods, the search for a better implementation of inverse iteration

led to xStein [87]. However, as we will see in Section 2.8.1, xStein also suffers from some

of the same problems as Tinvit in addition to introducing a new serious error.

Both EISPACK and LAPACK solve the dense symmetric eigenproblem by re-

ducing the dense matrix to tridiagonal form by Householder transformations [81], and then

finding the eigenvalues and eigenvectors of the tridiagonal matrix. Both Tinvit and xStein

operate on a symmetric tridiagonal matrix. In the following, we will further assume that

the tridiagonal is unreduced, i.e., all the off-diagonal elements are nonzero.

2.8.1 EISPACK and LAPACK Inverse Iteration

Figure 2.3 gives the pseudocode for Tinvit [128, 118] while Figure 2.4 outlines the

pseudocode for xStein as it appears in LAPACK release 2.0. The latter code has changed

little since it was first released in 1992. It is not necessary for the reader to absorb all

details of the implementations given in Figures 2.3 and 2.4 to follow the ensuing discussion.

We provide the pseudocodes as references in case the reader needs to look in detail at a

particular aspect of the implementations.

In each iteration, Tinvit and xStein solve the scaled linear system (T−λ̂I)y = τb

by Gaussian Elimination with partial pivoting. If eigenvalues agree in more than three

digits relative to the norm, the iterates are orthogonalized against previously computed

eigenvectors by the modified Gram-Schmidt method. Note that in both these routines the

starting vector is not made orthogonal to previously computed eigenvectors, as is done in

Figure 2.1. Both Tinvit and xStein flag an error if the convergence criterion is not satisfied

within five iterations. To achieve greater accuracy, xStein does two extra iterations after

the stopping criterion is satisfied. We now compare and contrast how these implementations

handle the various issues discussed in Section 2.7.
1The prefix ‘x’ stands for the data type: real single(S) or real double(D), or complex single(C) or complex

double(Z)

23

Tinvit(T ,λ̂)

/* Tinvit computes all the eigenvectors of T given the computed eigenvalues λ̂1, . . . , λ̂n */

for j = 1, n

σj = λ̂j ;

if j > 1 and λ̂j ≤ σj−1 then

σj = σj−1 + ε‖T‖R; /* Perturb identical eigenvalues */

end if

Factor T − σjI = PLU ; /* Gaussian Elimination with partial pivoting */

if U(n, n) = 0 then U(n, n) = ε‖T‖;
τ =
√

nε‖T‖R; /* Compute scale factor */

Solve Uy = τe; /* Solve. Here, e is the vector of all 1’s */

for all k < j such that |σj − σk| ≤ 10−3‖T‖R
y = y − (yT v̂k)v̂k; /* Apply Modified Gram-Schmidt */

end for

b = y; iter = 1;

while(‖y‖1 < 1 and iter ≤ 5) do

τ = nε‖T‖R/‖b‖1; /* Compute scale factor */

Solve PLUy = τb; /* Solve with scaled right hand side */

for all k < j such that |σj − σk| ≤ 10−3‖T‖R do

y = y − (yT v̂k)v̂k; /* Apply Modified Gram-Schmidt */

end for

b = y; iter = iter + 1;

end while

if ‖y‖1 < 1 then

v̂j = 0; ierr = −j; /* set error flag */

print “jth eigenvector failed to converge”;

else

v̂j = y/‖y‖2;
end if

end for

Figure 2.3: Tinvit — EISPACK’s implementation of Inverse Iteration

24

xStein(T ,λ̂)

/* xStein computes all the eigenvectors of T given the eigenvalues λ̂ */

for j = 1, n

σj = λ̂j ;

if j > 1 and λ̂j − σj−1 ≤ 10ε|λ̂j | then

σj = σj−1 + 10ε|λ̂j |; /* Perturb nearby eigenvalues */

end if

Factor T − σjI = PLU ; /* Gaussian Elimination with partial pivoting */

Initialize vector b with random vector;

iter = 0; extra = 0; converged = false;

do

τ = n‖T‖1 max(ε, |U(n, n)|)/‖b‖1; /* Compute scale factor */

Solve PLUy = τb; /* Solve with scaled right hand side */

for all k < j such that |σj − σk| ≤ 10−3‖T‖1 do

y = y − (yT v̂k)v̂k; /* Apply Modified Gram-Schmidt */

end for

b = y; iter = iter + 1;

if converged == true then extra = extra + 1; end if

if ‖y‖∞ ≥
√

1
10n then converged = true; end if

while((converged == false or extra < 2) and iter ≤ 5)

v̂j = y/‖y‖2;
if iter == 5 and extra < 2 then

print “jth eigenvector failed to converge”;

end if

end for

Figure 2.4: STEIN — LAPACK’s implementation of Inverse Iteration

25

I. Direction of starting vector. Tinvit chooses the starting vector to be PLe where

T −σI = PLU , σ being an approximation to the eigenvalue, and e is the vector of all

1’s. Note that this choice of starting vector reduces the first iteration to simply solving

Uy = τe. On the other hand, xStein chooses a random starting vector, each of whose

elements comes from a uniform (−1, 1) distribution. Neither choice of starting vectors

is likely to be pathologically deficient in the desired eigenvector. The random starting

vectors are designed to be superior to Tinvit’s choice [87].

II. Choice of shift. Even though in exact arithmetic all the eigenvalues of an unreduced

tridiagonal matrix are distinct, some of the computed eigenvalues may be identical

to working accuracy. In [136, p.329], Wilkinson recommends that pathologically close

eigenvalues be perturbed by a small amount in order to get an orthogonal basis of

the desired subspace. Following this, Tinvit replaces the k + 1 equal approximations

λ̂j = λ̂j+1 = · · · = λ̂j+k by

λ̂j < λ̂j + ε‖T‖R < · · · < λ̂j + kε‖T‖R,

where ‖T‖R = maxi |Tii|+ |Ti,i+1| ≤ ‖T‖1.

We now give an example where this perturbation is too big. As a result, the shifts

used to compute the eigenvectors are quite different from the computed eigenvalues

and prevent the convergence criterion from being attained.

Example 2.8.2 [Excessive Perturbation.] Using LAPACK’s test matrix genera-

tor [36], we generated a 200× 200 tridiagonal matrix such that

λ̂1 ≈ · · · ≈ λ̂100 ≈ −ε, λ̂101 ≈ · · · ≈ λ̂199 ≈ ε, λ̂n = 1

where ε ≈ 1.2 × 10−7 (this run was in single precision). ‖T‖R = O(1), and the shift

used by Tinvit to compute v̂199 is

σ = −ε + 198ε‖T‖R ≈ 2.3× 10−5.

Since |σ − λ199| can be as large as

|σ − λ̂199|+ |λ̂199 − λ199| ≈ 4.6× 10−5

the norm growth when solving (2.8.9) is not big enough to meet the convergence

criterion of (2.8.11). Tinvit flags this as an error and returns ierr = −199. tu

26

Clearly, perturbing the computed eigenvalues relative to the norm can substantially

decrease their accuracy. However, not perturbing them is also not acceptable in

Tinvit as coincident shifts would lead to identical L U factors, identical starting

vectors and hence iterates that are parallel to the eigenvectors computed previously !

In xStein, coincident eigenvalues are also perturbed. However, the perturbations

made are relative. Equal approximations λ̂j = λ̂j+1 = · · · = λ̂j+k are replaced by

λ̂j < λ̂j+1 + δλ̂j+1 < · · · < λ̂j+k + δλ̂j+k,

where δλ̂i =
∑i−1

l=j δλ̂l + 10ε|λ̂i|. This choice does not perturb the small eigenval-

ues drastically, and appears to be better than Tinvit’s. On the other hand, this

perturbation is too small in some cases to serve its purpose of finding a linearly in-

dependent basis of the desired subspace (see Example 2.8.7 and Wilkinson’s quote

given on page 17). Thus it is easier to say “tweak close eigenvalues” than to find a

satisfactory formula for it.

III. Scaling of right hand side and convergence criterion. For each λ̂, the system

(T − λ̂I)y = τb (2.8.9)

is solved in each iteration. With Tinvit’s choice of τ , the residual norm

‖(T − λ̂I)y‖
‖y‖

=
τ‖b‖
‖y‖

=
nε‖T‖R
‖y‖

, (2.8.10)

where ‖T‖R = maxi |Tii|+ |Ti,i+1| ≤ ‖T‖1. Tinvit accepts y as an eigenvector if

‖y‖ ≥ 1. (2.8.11)

By (2.8.10), the criterion (2.8.11) ensures that goal (1.1.1) is satisfied, i.e., ‖(T −
λ̂I)y‖/‖y‖ ≤ nε‖T‖R.

Suppose that in (2.8.9), λ̂ is an approximation to λ1. Then by analysis similar

to (2.7.6),

‖y‖ = O

(
τ‖b‖
|λ1 − λ̂|

)
= O

(
nε‖T‖R
|λ1 − λ̂|

)
.

Since ‖y‖ is expected to be larger than 1 at some iteration, Tinvit requires that λ̂

be such that |λ1− λ̂| = O(nε‖T‖). If the input approximations to the eigenvalues are

not accurate enough, the iterates do not “converge” and Tinvit flags an error.

27

When λ̂ is very close to an eigenvalue, ‖y‖ can be huge. Tinvit tries to avoid overflow

by replacing a zero value of the last pivot in the PLU decomposition, unn, by ε‖T‖.
However this measure cannot avoid failure in the following example.

Example 2.8.3 [Perturbing zero values is not enough.]

T =


−η 10 0

10 0 10

0 10 η(1 + ε)

 (2.8.12)

Here ε is the machine precision while η is the underflow threshold of the machine

(η ≈ 10−308 in IEEE double precision arithmetic). T is nearly singular and

λ̂2 = 0 and partial pivoting ⇒ unn = ηε.

Since PLUy = τb and τ = nε‖T‖R/‖b‖,

y(n) ≈ ε‖T‖
ηε

=
10
η
⇒ overflow!

Note that to exhibit this failure, we required gradual underflow in IEEE arithmetic

(the value ηε should not underflow to zero). However gradual underflow is not neces-

sary to exhibit such a failure. A similar error, where there is no gradual underflow,

occurs on (1/ε)T where T is as in (2.8.12). tu

In xStein, τ is chosen to be

τ =
n‖T‖1 max(ε, |unn|)

‖b‖1
, (2.8.13)

where T − λ̂I = PLU and unn is the last diagonal element of U [85]. The significant

difference between this scale factor and the one in Tinvit is the term max(ε, |unn|)
instead of ε. xStein accepts the iterate y as a computed eigenvector if

‖y‖∞ ≥
√

1
10n

. (2.8.14)

The above choice of scale factor in xStein introduces a serious error not present in

Tinvit. Suppose λ̂ approximates λ1. When λ̂ = λ1, it can be proved that unn must

28

be zero in exact arithmetic. We now examine the values unn may take when λ̂ 6= λ1.

Since T − λ̂I = PLU ,

U−1L−1 = (T − λ̂I)−1P

⇒ eT
nU−1L−1en = eT

n (T − λ̂I)−1Pen

Since L is unit lower triangular, L−1en = en. Letting Pen = ek and T = V ΛV T , we

get

1
unn

= eT
nV (Λ− λ̂I)−1V T ek

⇒ 1
unn

=
vn1vk1

λ1 − λ̂
+

n∑
i=2

vnivki

λi − λ̂
, (2.8.15)

where vki denotes the kth component of vi. By examining the above equation, we see

how the choice of scale factor in xStein opens up a Pandora’s box. Equation 2.8.15

says that for unn to be small, |λ̂− λ1| � |vn1vk1|.

Example 2.8.4 [A code may fail but should never lie.] Consider

T =


1

√
ε 0

√
ε 7ε/4 ε/4

0 ε/4 3ε/4

 (2.8.16)

where ε is about machine precision (ε ≈ 2.2× 10−16 in IEEE double precision arith-

metic). T has eigenvalues near ε/2, ε, 1+ε. Suppose, λ̂ is incorrectly input as 2. Then

by (2.8.13) and (2.8.15),

λ̂ = 2 ⇒ |unn| = O(1) ⇒ τ = O(1) !

Clearly, this value of τ does not ensure a large norm growth when the stopping crite-

rion (2.8.14) is satisfied in solving (2.8.9). As a result, any arbitrary vector can achieve

the “convergence” criterion of (2.8.14) and be output as an approximate eigenvector.

In a numerical run, the vector [−0.6446 0.6373 0.4223]T was accepted as an eigen-

vector by xStein even though it is nowhere close to any eigenvector of T ! tu

This example represents one of the more dangerous errors of numerical software — the

software performs erroneous computation but does not flag any error at all. Failure

29

to handle incorrect input data can have disastrous consequences 2. On the above

example, Tinvit correctly flags an error indicating that the computation did not

“converge”. Of course, most of the times the eigenvalues input to xStein will be

quite accurate and the above phenomenon will not occur.

Even if λ̂ is a very good approximation to λ1, (2.8.15) indicates that unn may not be

small if vn1 is tiny. It is not at all uncommon for a component of an eigenvector of a

tridiagonal matrix to be tiny [136, pp.317-321]. xStein’s choice of scale factor may

lead to unnecessary overflow as shown below.

Example 2.8.5 [Undeserved overflow.] Consider the matrix given in (2.8.16).

The eigenvector corresponding to the eigenvalue λ3 = 1 + ε + O(ε2) is

v3 =


1− ε/2 + O(ε3)
√

ε + O(ε3/2)

ε3/2/4 + O(ε5/2)

 .

If λ̂ = 1, then |(vn3vk3)/(λ3 − λ̂)| <
√

ε and by (2.8.15), |unn| = O(‖T‖). In such a

case, (2.8.13) implies that τ = O(‖T‖2) and if ‖T‖ > 1 the right hand side is scaled

up rather than being scaled down! As a consequence, xStein overflows on the scaled

matrix
√

Ω T where Ω is the overflow threshold of the computer (Ω = 21023 ≈ 10308

in IEEE double precision arithmetic). tu

Note that the above matrix does not deserve overflow. A similar overflow occurrence

(in IEEE double precision arithmetic) on an 8 × 8 matrix, with a largest element of

magnitude 2484 ≈ 10145, was reported to us by Jeremy DuCroz [48].

The problems reported above can be cured by reverting back to the choice of scale

factor in EISPACK’s Tinvit.

IV. Orthogonality. Tinvit and xStein use the modified Gram-Schmidt (MGS) proce-

dure to orthogonalize iterates corresponding to eigenvalues whose separation is less

than 10−3‖T‖. In order for the orthogonalized vectors to actually be numerically

orthogonal, the vectors must not be parallel prior to the orthogonalization. In the
2In the summer of 1996, a core dump on the main computer aboard the Ariane 5 rocket was interpreted

as flight data, causing a violent trajectory correction that led to the disintegration of the rocket

30

following example the vectors to be orthogonalized are almost parallel. The next two

examples are reproduced in Case Study A.

Example 2.8.6 [Parallel Iterates.] Consider the matrix of (2.8.16). T has the

eigenvalues

λ1 = ε/2 + O(ε2), λ2 = ε + O(ε2), λ3 = 1 + ε + O(ε2).

The eigenvalues of T as computed by MATLAB’s eig3 function are

λ̂1 = ε, λ̂2 = ε, λ̂3 = 1 + ε.

We perturb λ̂2 to ε(1 + ε) and input these approximations to Tinvit to demonstrate

this failure (equal approximations input to Tinvit are perturbed by approximately

ε‖T‖, see Example 2.8.2).

The first eigenvector is computed by Tinvit as

y1 = (T − λ̂1I)−1b1.

In exact arithmetic (taking b1 =
∑

i ξivi),

y1 =
ξ2

λ2 − λ̂1

(
v2 +

ξ1

ξ2

λ2 − λ̂1

λ1 − λ̂1

v1 +
ξ3

ξ2

λ2 − λ̂1

λ3 − λ̂1

v3

)

=
1

O(ε2)

(
v2 + O(ε)v1 + O(ε2)v3

)
provided (ξ1/ξ2) and (ξ3/ξ2) are O(1). Due to the inevitable roundoff errors in finite

precision, the best we can hope to compute is

ŷ1 =
1

O(ε2)
(v2 + O(ε)v1 + O(ε)v3) .

This vector is normalized to remove the 1/O(ε2) factor and give v̂1. The second

eigenvector is computed as

y2 = (T − λ̂2I)−1b2.

Since λ̂2 ≈ λ̂1, the computed value of y2 is almost parallel to v̂1 (assuming that b2 has

a non-negligible component in the direction of v2), i.e.,

ŷ2 =
1

O(ε2)
(v2 + O(ε)v1 + O(ε)v3) .

3MATLAB’s eig function computes eigenvalues by the QR algorithm

31

Step 1 2 3
Before MGS After MGS Before MGS After MGS Before MGS After MGS
1.05 · 10−8 1.04 · 10−8 1.05 · 10−8 1.05 · 10−8 1.05 · 10−8 1.05 · 10−8

Iterate −0.707 −0.697 −0.707 −0.7069 −0.707 −0.707108
(y) −0.707 0.716 −0.707 0.7073 −0.707 0.707105
|yT v̂1| 1.000 0.0014 1.000 3.0 · 10−4 1.000 1.9 · 10−6

|yT v̂3| 3.9 · 10−24 4.1 · 10−11 5.8 · 10−25 2.9 · 10−12 2.2 · 10−24 1.1 · 10−13

Table 2.1: Summary of xStein’s iterations to compute the second eigenvector of T .

Since λ̂1 and λ̂2 are nearly coincident, ŷ2 is orthogonalized against v̂1 by the MGS

process in an attempt to reveal the second eigenvector :

z = ŷ2 − (ŷT
2 v̂1)v̂1 (2.8.17)

=
1

O(ε2)
(O(ε)v1 + O(ε)v2 + O(ε)v3)

v̂2 = z/‖z‖.

Clearly z is not orthogonal to v̂1. But Tinvit accepts z as having “converged” since

‖z‖ is big enough to satisfy the convergence criterion (2.8.14) even after the severe

cancellation in (2.8.17). The above observations are confirmed by a numerical run in

double precision arithmetic wherein the first two eigenvectors of the matrix in (2.8.16)

as output by Tinvit had a dot product of 0.0452! tu

Unlike Tinvit, xStein computes each eigenvector from a different random starting

vector. The hope is to get greater linear independence of the iterates before orthogo-

nalization by the MGS method [87]. However, as we now show, the Tinvit error as

reported above persists.

Example 2.8.7 [Linear Dependence Persists.] Consider again the matrix T

given in (2.8.16). The eigenvalues input to xStein are computed by the eig func-

tion in MATLAB as λ̂1 = λ̂2 = ε and λ̂3 = 1 + ε. As in Tinvit the first eigenvector

computed as v̂1 is almost parallel to v2. The iterations to compute the second eigen-

vector are summarized in Table 2.1.

32

This behavior is very similar to that of Tinvit (see Example 2.8.6). xStein does two

more iterations than Tinvit and alleviates the problem slightly, but a dot product

of 1.9× 10−6 between computed eigenvectors is far from satisfactory (this run was in

double precision). tu

xStein avoids the overflow problems of Tinvit shown in example 2.8.3. It checks

to see if overflow would occur, and if so, perturbs tiny entries on the diagonal of U [85]. This

check is in the inner loop when solving Uy = x where x = τL−1P−1b. Coupled with the

extra iterations done after convergence, this results in xStein being slower than Tinvit.

On an assorted collection of test matrices of sizes 50 to 1000, we observed xStein to be 2-3

times slower than Tinvit. However xStein was more accurate than Tinvit in general.

2.9 Our Approach

As we observed in the previous section, the computer implementation of a seem-

ingly straightforward task can lead to surprising failures. We want to avoid such failures

and indicate our approach to the various aspects of inverse iteration discussed above.

I. Choice of shift. Of the various issues discussed in Section 2.7, the choice of starting

vector and convergence criterion have been extensively studied [136, 118, 119, 87].

Surprisingly, the choice of shift for inverse iteration seems to have drawn little at-

tention. We feel that the shift is probably the most important variable in inverse

iteration. Examples 2.8.6 and 2.8.7 highlight the importance of shifts that are as

accurate as possible. We present our solution in Chapter 4.

II. Direction of starting vector and scaling of right hand side. This problem is

solved. It is now possible to deterministically find a starting vector that is guaranteed

to have an above average component in the direction of the desired eigenvector v.

Knowing the position of a large component of v also enables us to avoid the possibility

of overflow in the eigenvector computation. See Chapter 3 for more details.

III. Convergence criterion and Orthogonality. It is easy to find a criterion that

guarantees small residual norms (goal (1.1.1)). However, as we saw in earlier sections,

the goal of orthogonality (1.1.2) can lead to a myriad of problems. Most of the “diffi-

cult” errors in the EISPACK and LAPACK implementations arise due to the explicit

33

orthogonalization of iterates when eigenvalues are close. In [20], Chandrasekaran ex-

plains the theory behind some of these failures, and proposes an alternate version

of inverse iteration that is provably correct. However, this version is more involved

and potentially requires much more orthogonalization than in existing implementa-

tions. We want to take a different approach to orthogonality, and this is discussed in

Chapters 4, 5 and 6.

34

Chapter 3

Computing the eigenvector of an

isolated eigenvalue

Given an eigenvalue λ of a tridiagonal matrix J̃ , a natural way to solve for v 6= 0

in

(J̃ − λI)v = 0 (3.0.1)

is to set v(1) = 1 and to use the first equation of (3.0.1) to determine v(2), and the second

to determine v(3), using v(1) and v(2). Proceeding like this, the rth equation may be used

to determine v(r + 1) and thus v may be obtained without actually making use of the nth

equation which will be satisfied automatically since the system (3.0.1) is singular.

It would be equally valid to begin with ṽ(n) = 1 and to take the equations in

reverse order to compute ṽ(n − 1), . . . , ṽ(2), ṽ(1) in turn without using the first equation

in (3.0.1). When normalized in the same way v and ṽ will yield the same eigenvector in

exact arithmetic.

The method described above is ‘obvious’ and was mentioned by W. Givens in

1957, see [61]. It often gives good results when realized on a computer but, at other times,

delivers vectors pointing in completely wrong directions for the following reason. It is

rare that an eigenvalue of a tridiagonal (or any other) matrix is representable in limited

precision. Consequently the systems such as (3.0.1) that are to be solved are not singular

and, in (3.0.1), the unused equation will not be satisfied automatically even if the solutions

of the other equations were obtained exactly. The two methods given above result in solving

(J̃ − λ̂I)x(n) = δnen (3.0.2)

35

and

(J̃ − λ̂I)x(1) = δ1e1 (3.0.3)

respectively, where λ̂ is an approximation to λ and δ1, δn are the residuals of the equations

that are not satisfied. Note that (3.0.2) and (3.0.3) show that the natural method may be

thought of as doing one step of inverse iteration as given in (2.7.4) with the starting vector

equal to e1 or en. We now present an example illustrating how this natural method can

fail.

Example 3.0.1 [Choice of e1 is wrong.] Consider

T =


3ε/4 ε/4 0

ε/4 7ε/4
√

ε

0
√

ε 1

 (3.0.4)

where ε is of the order of the machine precision. An eigenvalue of T is

λ = 1 + ε + O(ε2),

and its associated eigenvector is

v =


ε3/2/4 + O(ε5/2)
√

ε + O(ε3/2)

1− ε/2 + O(ε2)

 . (3.0.5)

The vector obtained in exact arithmetic by ignoring the first equation, with the approxi-

mation λ̂ = 1, is

x(1) =


−4/
√

ε

0

1

 ,

but
‖(T − λ̂I)x(1)‖2
‖x(1)‖2

=
4− 3ε√
16 + ε

→ 1 as ε→ 0.

tu

In [136, pp.319–321] and[134], Wilkinson presents a similar example where omit-

ting the last equation results in a poor approximation to an eigenvector. His example matrix

36

is

W−
21 =



10 1 0

1 9 1

1 8 .

. . .

. −8 1

1 −9 1

0 1 −10


. (3.0.6)

Letting λ be the largest eigenvalue of W−
21, Wilkinson shows that there is no 9-figure ap-

proximation λ̂ to λ for which the exact normalized solution of the first 20 equations of

(W−
21 − λ̂I)x = 0 is anywhere close to the desired eigenvector. We now repeat his analysis.

Suppose

(J̃ − λ̂I)x(r) = er,

where λ̂ approximates λj . Writing er in terms of the eigenvectors, er =
∑n

i=1 ξivi, we get

x(r) = (J̃ − λ̂I)−1er

=
ξj

λj − λ̂

vj +
∑
i6=j

ξi

ξj

λj − λ̂

λi − λ̂
vi

 (3.0.7)

Fundamental limitations of finite precision arithmetic dictate that |λ̂ − λj | cannot be bet-

ter than O(nε‖J̃‖), in general, where ε is the machine precision. Even when |λ̂ − λj | ≈
nε‖J̃‖, (3.0.7) shows that x(r) may not be close to vj ’s direction if ξj = e∗rvj = vj(r) is tiny.

In Example 3.0.1, r = 1 and ξj ≈ O(ε3/2) while in Wilkinson’s example, r = n = 21 and

ξj = 10−17. As a result, in both these cases the natural method does not approximate the

eigenvector well.

Given an accurate λ̂, (3.0.7) implies that x(r) will be a good approximation to vj

provided the rth component of vj is not small. Wilkinson notes this in [136, p.318] and

concludes,

‘Hence if the largest component of uk [vj in our notation] is the rth, then it
is the rth equation which should be omitted when computing uk. This result
is instructive but not particularly useful, since we will not know a priori the
position of the largest component of uk. In fact, uk is precisely what we are
attempting to compute!’

In the absence of a reliable and cheap procedure to find r, Wilkinson compromised

by choosing the starting vector for inverse iteration as PLe, where J̃ − λ̂I = PLU and e

37

is the vector of all 1’s (this led to the choice made in EISPACK [128]). A random starting

vector is used in the LAPACK implementation of inverse iteration [87].

In this chapter, we show the following

1. Sections 3.1 and 3.2 introduce twisted factorizations that provide an answer to Wilkin-

son’s problem of choosing which equation to omit. This is due to pioneering work by

Fernando, and enables us to discard LAPACK’s random choice of starting vector to

compute an eigenvector of an isolated eigenvalue [57, 117].

2. In Section 3.3 we show how to adapt the results of Sections 3.1 and 3.2 when triangular

factorizations don’t exist. Some of the material presented in Sections 3.1-3.3 has

appeared in [117].

3. Section 3.4 shows how to eliminate the divisions in the method outlined in Section 3.2.

4. In Section 3.5, we introduce twisted Q factorizations and give an alternate method

to compute an eigenvector. We also show how the perfect shift strategy suggested by

Parlett [112, p.173] can be made to succeed.

5. In Section 3.6, we show that twisted factorizations may also be used to detect singu-

larity of Hessenberg and dense matrices.

In preparation for the upcoming theory, we state a few well known results without

proof. The informed reader should be able to furnish their proofs without much difficulty.

We expect that the reader knows the LDU decomposition and theorem concerning existence

and uniqueness of triangular factorization and the expressions for the pivots, as the diagonal

entries of D are often called.

Lemma 3.0.1 Let J̃ be an unreduced tridiagonal matrix and v be an eigenvector. Then the

first and last components of v are non-zero.

Lemma 3.0.2 Let J̃ be an unreduced normal tridiagonal matrix. Then every eigenvalue of

J̃ is simple.

Lemma 3.0.3 Let J = J̃ − λI be an unreduced singular tridiagonal matrix where λ is an

eigenvalue of J̃ and v is the corresponding eigenvector. Then the following are equivalent.

i. J admits the LDU and UDL triangular factorizations.

38

ii. All strictly leading and trailing submatrices of J are nonsingular.

Furthermore when J is normal, the following is equivalent to the above

iii. No component of v is zero.

Proof. The latter is not so obvious and follows from the fact that when J is normal

|v(i)|2χ′(λ) = χ1:i−1(λ) · χi+1:n(λ) (3.0.8)

where χl:m(µ) = det(µI − J̃ l:m). See [112, Section 7-9] to derive the above. tu

3.1 Twisted Factorizations

Despite Wilkinson’s pessimism, we ask the question: can we find reliable indica-

tors of the sizes of various components of a normalized eigenvector without knowing the

eigenvector itself? We turn to triangular factorization in search of an answer and examine

the LDU decomposition of J̃ − λ̂I. In this representation, both L and U have 1’s on the

diagonal. We will denote the ith diagonal element of D by D(i) and L(i + 1, i), U(i, i + 1)

by L(i) and U(i) respectively.

If λ̂ is an eigenvalue of J̃ , the following theorem implies that D(n) must be zero

in exact arithmetic.

Theorem 3.1.1 Let B be a matrix of order n such that the triangular factorization

B = LDU

exists, i.e., its principal submatrices B1:i, i = 1, 2, . . . , n− 1 are nonsingular. Then if B is

singular,

D(n) = 0.

Proof. The expression

D(n) =
det(B)

det(B1:n−1)
implies that if B is singular, D(n) = 0. tu

We now examine the values D(n) can take when λ̂ is not an eigenvalue. Suppose

λ̂ approximates λj . Since J̃ − λ̂I = LDU ,

U−1D−1L−1 = (J̃ − λ̂I)−1

⇒ e∗nU−1D−1L−1en = e∗n(J̃ − λ̂I)−1en

39

Since L and U∗ are unit lower triangular, Len = en and U∗en = en. Letting J̃ = V ΛV ∗, we

get

1
D(n)

= e∗nV (Λ− λ̂I)−1V ∗en

⇒ 1
D(n)

=
|vj(n)|2

λj − λ̂
+
∑
i6=j

|vi(n)|2

λi − λ̂
, (3.1.9)

where vi(n) denotes the nth component of vi. (3.1.9) implies that when λ̂ is close to λj

and λj is isolated, a large value of vj(n) results in D(n) being small. But, when vj(n) is

tiny, D(n) can be as large as O(‖J̃‖). Thus the value of D(n) reflects the value of the last

component of the desired eigenvector in addition to the accuracy of λ̂.

We can consider another triangular factorization of a matrix, i.e., the UDL de-

composition that may be obtained by taking rows in decreasing order of their index. To

differentiate this process from the standard LDU factorization, we make a notational in-

novation. We will use + to indicate a process taking rows in increasing order and − to

indicate the process going in decreasing order, i.e., LDU will henceforth be written as

L+D+U+ while UDL will be written as U−D−L−.

By repeating the analysis that led to (3.1.9), it can be shown that in the U−D−L−

factorization, D−(1) is small when vj(1) is large, but not otherwise. Thus, the value of

D−(1) mirrors the value of vj(1). Besides D+(n) and D−(1) can we find quantities that

indicate the magnitudes of other components of the desired eigenvector?

Natural candidates in this quest are elements of various twisted factorizations.

Instead of completing the L+D+U+ factorization of a matrix, we can stop it at an interme-

diate row k. Now we can start the U−D−L− factorization from the bottom of the matrix,

going up till we have a singleton in the kth row, which we will denote by γk. Such a twisted

factorization, with n = 5 and k = 3 is shown in Figure 3.1.

We formally define a twisted triangular factorization of a tridiagonal matrix J at

twist position k as

J = NkDkÑk, (3.1.10)

40



x x

x© x x

x x x

x x x©
x x


−→



x x

x x

x© x x

x x

x x


−→



x x

x x

x x©
x x

x x


−→



x x

x x

x

x x

x x



Figure 3.1: Twisted Triangular Factorization at k = 3 (the next elements to be annihilated
are circled)

where

Nk =



1

L+(1) 1

. .

. .

L+(k − 2) 1

L+(k − 1) 1 U−(k)

1 U−(k + 1)

1 .

. .

. U−(n− 1)

1



,

Ñk has the same non-zero structure as N∗
k with L+(1), . . . , L+(k−1), U−(k), . . . , U−(n−1)

being replaced by U+(1), . . . , U+(k − 1), L−(k), . . . , L−(n− 1) respectively,

Dk = diag(D+(1), . . . , D+(k − 1), γk, D−(k + 1), . . . , D−(n))

and

J = L+D+U+ = U−D−L−.

The perceptive reader may already have grasped the significance of γk, which we

now explain.

Theorem 3.1.2 (Double Factorization) Let J be a tridiagonal n × n complex matrix

that permits triangular factorization in both increasing and decreasing order of rows:

L+D+U+ = J = U−D−L−. (3.1.11)

41

Consider the twisted factorization at k given by (3.1.10). Then for 1 ≤ k ≤ n,

γk = D+(k) + D−(k)− Jkk (3.1.12)

and if J is invertible,
1
γk

= e∗kJ
−1ek. (3.1.13)

Proof. By construction of the twisted factorization,

γk = −Jk−1,kL+(k − 1) + Jkk − Jk+1,kU−(k) (3.1.14)

= (Jkk − Jk−1,kL+(k − 1))− Jkk + (Jkk − Jk+1,kU−(k))

= D+(k)− Jkk + D−(k)

for 1 ≤ k ≤ n. Here we take J1,0 = J0,1 = Jn+1,n = Jn,n+1 = 0, and L+(0) = U−(n) = 0.

Since Nkek = ek and e∗kÑk = e∗k,

e∗kJ
−1ek = e∗kÑ

−1
k D−1

k N−1
k ek

=
1
γk

tu
Note that γn = D+(n) and γ1 = D−(1). The above theorem shows how to get all

possible n twisted factorizations at the cost of 2n divisions. The alert reader would have

noted that the above theorem makes no assumption about the nearness to singularity of J .

We want to emphasize that in the theory developed here the existence of the tri-

angular factorizations (3.1.11) is not restrictive. Neither is the occasional requirement that

J be nonsingular. In fact, the singularity of J is desirable in our application of computing

an eigenvector. As we will show in Section 3.3, in the absence of these requirements, all

the theory developed in this section and the next is easily extended if ∞ is added to the

number system.

The following corollary gives alternate expressions for γk.

42

Corollary 3.1.1 With the notation of Theorem 3.1.2, for 1 < k < n,

γk =



D+(k)− Jkk + D−(k),

−Jk−1,kL+(k − 1) + Jkk − Jk+1,kU−(k),

−Jk,k−1U+(k − 1) + Jkk − Jk,k+1L−(k),

D+(k)− Jk+1,kU−(k),

−Jk−1,kL+(k − 1) + D−(k).

For k = 1 and k = n omit terms with invalid indices.

Proof. The first and second expressions are just (3.1.12) and (3.1.14). The others come

from rewriting (3.1.14) as

γk = −Jk,k−1Jk−1,k/D+(k − 1) + Jkk − Jk,k+1Jk+1,k/D−(k + 1) (3.1.15)

and using Jk,k+1 = U−(k)D−(k + 1) = D+(k)U+(k) etc., and the formula for the backward

pivots, D−(k) = Jkk − Jk,k+1Jk+1,k/D−(k + 1), etc. tu
As shown below, double factorization makes available the so called Newton correction.

Corollary 3.1.2 Assume the hypothesis (3.1.11) of Theorem 3.1.2, and let J be nonsingu-

lar. Then
n∑

i=1

γ−1
i = Trace(J−1) = − χ′(0)

χ(0)
, (3.1.16)

where χ(µ) = det(µI − J).

Proof. By (3.1.13) in Theorem 3.1.2,

∑
i

γ−1
i =

∑
i

e∗i J
−1ei = Trace(J−1) = − χ′(0)

χ(0)

since
χ′(µ)
χ(µ)

=
∑

j

∏
i6=j(µ− λi)∏

i(µ− λi)
=

∑
i

1
µ− λi

.

tu
Double factorization also allows a wide choice of expressions for det(J), and a recurrence

for computing γi that involves only multiplications and divisions.

43

Theorem 3.1.3 Assume the hypothesis of Theorem 3.1.2. Then for k = 1, . . . , n (omit

invalid indices),

det(J) = D+(1) · · ·D+(k − 1)γkD−(k + 1) · · ·D−(n) (3.1.17)

and

γkD−(k + 1) = D+(k)γk+1. (3.1.18)

Proof. From (3.1.10),

det(J) = det(Nk) det(Dk) det(Ñk) = det(Dk),

and we get (3.1.17). Applying (3.1.17) to two successive k’s leads to (3.1.18). tu
The following are immediate consequences of (3.1.17),

Corollary 3.1.3 Assuming the hypothesis of Theorem 3.1.2,

γk = D+(k)
n∏

i=k+1

(D+(i)/D−(i)),

= D−(k)
k−1∏
i=1

(D−(i)/D+(i)).

Corollary 3.1.4 Assuming the existence of the twisted factorization (3.1.10),

γk =
det(J)

det(J1:k−1) det(Jk+1:n)
.

Note that the above corollary shows that γk = 0 if J is singular and admits triangular

factorizations (3.1.11). See also Theorem 3.1.1 which proves that γn = 0 when J is singular.

The Double Factorization theorem is not new. In 1992, in [108], Meurant reviewed

a significant portion of the literature on the inverses of band matrices and presented the

main ideas in a nice unified framework. The inexpensive additive formulae for (J−1)kk

(Theorem 3.1.2 and Corollary 3.1.1) are included in Theorem 3.1 of [108], while our Corol-

lary 3.1.3 that gives the quotient/product form of (J−1)kk is given in Theorem 2.3 of [108].

We believe that such formulae have been known for quite some time in the differential

equations community. However, these researchers were not interested in computing eigen-

vectors but in obtaining analytic expressions for elements of the inverse, when possible,

and in the decay rate in terms of distance from the main diagonal. Our contribution is

in recognizing the importance of twisted factorizations and successfully applying them to

44

solve some elusive problems in numerical linear algebra. We will show some of these ap-

plications in this thesis, for other applications see [42, 115, 74]. In addition to the papers

reviewed in [108], twisted factorizations have appeared in various contexts in the literature,

see [77, 94, 5, 58, 130, 133, 44]. For a brief review, see Section 4.1 of [117]. Twisted factor-

izations have also been referred to as BABE factorizations (Begin, or Burn, at Both Ends)

in [78, 57, 74].

3.2 The Eigenvector Connection

Given an eigenvalue approximation λ̂ of J̃ , we can compute the double factorization

of J̃ − λ̂I by Theorem 3.1.2. In this section, we see how double factorization can be used to

find a “good” equation to omit when solving the system (J̃ − λ̂I)x = 0, thereby obtaining

a good approximation to the desired eigenvector. Some of the results of this section have

appeared in [117].

Since γ−1
k = e∗k(J̃ − λ̂I)−1ek, if we let J̃ = V ΛV ∗, we get an expression for γk that

is similar to (3.1.9),

1
γk

= e∗kV (Λ− λ̂I)−1V ∗ek,

⇒ 1
γk

=
|vj(k)|2

λj − λ̂
+
∑
i6=j

|vi(k)|2

λi − λ̂
. (3.2.19)

Thus when λ̂ is close to an isolated λj and λj is isolated, the value of γk reflects the value

of vj(k), i.e, an above average value of vj(k) leads to a tiny value of γk while a small vj(k)

implies a large γk. We now make this claim more precise.

Lemma 3.2.1 Let J̃ − µI be a normal, unreduced nonsingular tridiagonal matrix that sat-

isfies the hypotheses of Theorem 3.1.2 for all µ in some open interval containing the eigen-

value λj. Let γk = γk(µ) be as in (3.1.13), for each k. As µ −→ λj,

γ−1
k∑n

m=1 γ−1
m
−→ |vj(k)|2, k = 1, 2, . . . , n. (3.2.20)

Proof. For µ 6= λj ,(
J̃ − µI

)−1
= V (Λ− µI)−1V ∗ =

∑
i

viv
∗
i (λi − µ)−1.

45

From (3.1.13) in Theorem 3.1.2, γ−1
k =

[(
J̃ − µI

)−1
]
kk

. Since λj is simple by Lemma 3.0.2,

as µ −→ λj ,

(λj − µ)
(
J̃ − µI

)−1
−→ vjv

∗
j ,

(λj − µ)γ−1
k −→ |vj(k)|2, k = 1, 2, . . . , n

(λj − µ)
n∑

m=1

γ−1
m −→ ‖vj‖2 = 1.

tu
The following theorem replaces the limits of Lemma 3.2.1 with error bounds. It

implies that when µ is sufficiently close to λj then one of the γk’s must be small. Note that

in the following theorem, the matrix need not be tridiagonal and the eigenvalues may be

complex.

Theorem 3.2.1 Let J̃ − µI be a normal, invertible matrix, and let

γ−1
k = e∗k(J̃ − µI)−1ek, for k = 1, 2, . . . , n.

Then if vj(k) 6= 0,

γk =
λj − µ

|vj(k)|2
[
1 +

(
|vj(k)|−2 − 1

)
A1

]−1
. (3.2.21)

Here A1 is a weighted arithmetic mean of
{

λj−µ
λi−µ , i 6= j

}
, 0 ≤ |A1| < |λj−µ|/gap(µ), where

gap(µ) = mini6=j |λi − µ|. Furthermore, if λj is isolated enough, i.e.,

|λj − µ|
gap(µ)

≤ 1
M
· 1
n− 1

where M > 1 (3.2.22)

then for k such that |vj(k)| ≥ 1/
√

n,

|γk| ≤
|λj − µ|
|vj(k)|2

· M

M − 1
≤ n|λj − µ| · M

M − 1
(3.2.23)

Proof.

γ−1
k = e∗k(J̃ − µI)−1ek,

=
n∑

i=1

|vi(k)|2

λi − µ
.

Extract the jth term to find

γ−1
k =

(
|vj(k)|2

λj − µ

)1 +
∑
i6=j

∣∣∣∣∣ vi(k)
vj(k)

∣∣∣∣∣
2 (

λj − µ

λi − µ

) . (3.2.24)

46

Since ∑
i6=j

∣∣∣∣∣ vi(k)
vj(k)

∣∣∣∣∣
2

=
1− |vj(k)|2

|vj(k)|2

the
∑

i6=j term in (3.2.24) may be written as(
|vj(k)|−2 − 1

)
A1, |A1| ≤ |λj − µ|/gap(µ),

where

A1 =
∑
i6=j

wi

(
λj − µ

λi − µ

)
, 1 =

∑
i6=j

wi, wi ≥ 0, gap(µ) = min
i6=j
|λi − µ|,

to yield the equality in (3.2.21). If (3.2.22) holds, then

|γk| ≤
|λj − µ|
|vj(k)|2

[
1−

(
|vj(k)|−2 − 1

)(1
M · (n− 1)

)]−1

.

For k such that |vj(k)| ≥ 1/
√

n,

|γk| ≤
|λj − µ|
|vj(k)|2

[
1− 1

M

]−1

.

tu
In cases of interest, |λj −µ|/gap(µ) = O(ε) and hence M � 1. Thus the factor M/(M − 1)

in (3.2.23) is ≈ 1.

The following theorem shows a way to compute the vector z that satisfies all the

equations of (J̃ − µI)z = 0 except the kth.

Theorem 3.2.2 Let J = J̃−µI be an unreduced tridiagonal matrix that permits the twisted

factorization (3.1.10) for a fixed value of k. Then the system

(J̃ − µI)z(k) = γkek (3.2.25)

has a unique solution given by

z(k)(k) = 1,

z(k)(j) = −U+
j,j+1z

(k)(j + 1), j = k − 1, . . . , 1,

z(k)(i) = −L−i,i−1z
(k)(i− 1), i = k + 1, . . . , n.

Proof. Since Nkek = ek and Dkek = γkek,

(J̃ − µI)z(k) = γkek ⇒ Ñkz
(k) = ek

47

from which the result follows. tu
Note that when J is unreduced, the above theorem precludes z(k) from having a zero entry.

This is consistent with Theorem 3.0.3. A benefit of computing z(k) is the availability of the

Rayleigh Quotient.

Corollary 3.2.1 Let J̃ − µI satisfy the hypothesis of Theorem 3.1.2, and z = z(k) be as

in (3.2.25) for 1 ≤ k ≤ n. Then the Rayleigh Quotient of z is given by

z∗J̃z

z∗z
= µ +

γk

‖z‖2
(3.2.26)

Proof. By (3.2.25),

z∗(J̃ − µI)z = γkz
∗ek = γk

since z(k) = 1. The result (3.2.26) follows. tu
Since ‖z(k)‖ ≥ 1, Theorem 3.2.1 implies that the residual norm

‖(J̃ − µI)z(k)‖
‖z(k)‖

=
|γk|
‖z(k)‖

(3.2.27)

is small when µ is a good approximation to an isolated eigenvalue λ, and k is chosen

appropriately. The following theorem gives a better bound on mink |γk|/‖z(k)‖.

Theorem 3.2.3 Let J̃ − µI be a normal, invertible matrix, and let

(J̃ − µI)z(k) = ekγk, for k = 1, 2, . . . , n.

Then if vj(k) 6= 0,

|γk|
‖z(k)‖

=
|µ− λj |
|vj(k)|

[
1 +

(
|vj(k)|−2 − 1

)
A2

]−1/2
,

≤ |µ− λj |
|vj(k)|

≤
√

n |µ− λj | for at least one k. (3.2.28)

Here A2 is a weighted arithmetic mean of
{∣∣∣µ−λj

µ−λi

∣∣∣2 , i 6= j

}
, 0 < A2 < [|λj − µ|/gap(µ)]2.

Proof.

z(k) = (J̃ − µI)−1ekγk,

‖z(k)‖2 = |γk|2e∗kV (Λ̄− µ̄I)−1(Λ− µI)−1V ∗ek

= |γk|2
n∑

i=1

|vi(k)|2

|µ− λi|2
.

48

Extract the jth term to find(
‖z(k)‖
|γk|

)2

=

(
|vj(k)|
|µ− λj |

)2
1 +

∑
i6=j

∣∣∣∣∣ vi(k)
vj(k)

∣∣∣∣∣
2 ∣∣∣∣µ− λj

µ− λi

∣∣∣∣2


⇒ |γk|
‖z(k)‖

=
|µ− λj |
|vj(k)|

[
1 +

(
|vj(k)|−2 − 1

)
A2

]−1/2
,

where

A2 =
∑
i6=j

wi

∣∣∣∣µ− λj

µ− λi

∣∣∣∣2 , 1 =
∑
i6=j

wi, wi ≥ 0, 0 < A2 < [|λj − µ|/gap(µ)]2.

Since (|vj(k)|−2 − 1)A2 ≥ 0, (3.2.28) follows easily from the above. tu
The above theorems suggest a way to compute a vector z(k) such that the residual

norm (3.2.27) is small. In 1995, Fernando, in an equivalent formulation, proposed choosing

the index for which |γk| is minimum, say r, and then solving (J̃−µI)z(r) = γrer to compute

an approximate eigenvector z(r). See [57] for his subsequent work. Earlier, in 1985, Godunov

and his collaborates proposed a similar but more obscure method for obtaining a provably

accurate approximation to an eigenvector by ‘sewing’ together two “Sturm Sequences” that

start at either end of the matrix. See [64] and [63] for their work, and Section 4.2 of [117]

for interpretation in our notation. Fernando’s approach leads to the following algorithm

Algorithm 3.2.1 [Computing an eigenvector of an isolated eigenvalue.]

1. Compute J̃ − µI = L+D+U+ = U−D−L−.

2. Compute γk for k = 1, 2, . . . , n using the expressions in Corollary 3.1.1 or (3.1.18) in

Theorem 3.1.3 and choose the index r where |γk| is minimum.

3. Form the vector z(r) as in Theorem 3.2.2.

tu

Note that z(r) is formed by multiplications only, thus promising greater accuracy

and a more favorable error analysis than standard methods that involve additions. Us-

ing (3.2.23) and the fact that ‖z(r)‖ ≥ 1, the above algorithm bounds the residual norm

by
‖(J̃ − µI)z(r)‖
‖z(r)‖

≤ n|λj − µ| · M

M − 1
. (3.2.29)

49

This solves Wilkinson’s problem of choosing which equation to omit, modulo the mild

assumption (3.2.22) about the separation of λj . As we shall emphasize in later chapters,

we will use Algorithm 3.2.1 only when λj is sufficiently isolated.

We have noted, and so has Jessie Barlow [8], that a simple recurrence will yield

all values of ‖z(k)‖ for O(n) operations. Consequently it would be feasible to minimize

|γk|/‖z(k)‖ instead of |γk| to obtain a possibly smaller residual norm. At present we feel

that the extra expense is not warranted. The bound given by (3.2.28) is certainly better

than the above bound (3.2.29). However, the latter bound is much too pessimistic since

‖z(r)‖ can be as large as
√

n when all eigenvector entries are equal in magnitude.

3.3 Zero Pivots

We now show that the procedure to compute an eigenvector suggested by the

previous section needs to be modified only slightly when J = J̃ − µI does not admit

the triangular factorizations (3.1.11) in Theorem 3.1.2. We will continue to assume exact

arithmetic — the effect of roundoff errors in a computer implementation is examined in the

next chapter.

Triangular factorization is said to fail, or not exist, if a zero ‘pivot’, D+(j) or

D−(j) is encountered prematurely. The last pivot is allowed to vanish because it does not

occur as a denominator in the computation.

One of the attractions of an unreduced tridiagonal matrix is that the damage

done by a zero pivot is localized. Indeed, if ±∞ is added to the number system then

triangular factorization cannot break down and the algorithm always maps J into unique

triplets L+, D+, U+ and U−, D−, L−. There is no need to spoil the inner loop with tests.

It is no longer true that L+D+U+ = J = U−D−L− but equality does hold for all entries

except for those at or adjacent to any infinite pivot. IEEE arithmetic [2] allows computer

implementations to handle ±∞ and take advantage of this feature of tridiagonals.

We now show that proceeding thus, it is meaningful to pick |γr| = mink |γk|, omit

the rth equation and solve for z(r) even when triangular factorization breaks down. We first

handle the case when J is singular.

When J is singular, it may appear that any equation can be omitted to solve

Jz = 0 by the method suggested in Theorem 3.2.2. However, zero entries in z do not allow

such a simple solution.

50

Theorem 3.3.1 Let J be n×n, tridiagonal, unreduced, and singular. For each k, 1 < k <

n, J1:k−1 is singular if, and only if, Jk+1:n is singular. They are singular if, and only if,

z(k) = 0 whenever Jz = 0.

Proof. Write

z =


z+

z(k)

z−


and partition Jz = 0 conformably. Thus

J1:k−1z+ + Jk−1,kz(k)ek−1 = 0, (3.3.30)

e1Jk+1,kz(k) + Jk+1:nz− = 0, (3.3.31)

and z+(1) 6= 0, z−(n) 6= 0 by Lemma 3.0.1.

If z(k) = 0 then (3.3.30) shows that z+(6= 0) is in J1:k−1’s null space and (3.3.31)

shows that z−(6= 0) is in Jk+1:n’s null space. So both matrices are singular.

Now consider the converse, z(k) 6= 0. Since J is unreduced, rank(J) = n− 1 and

its null space is one dimensional. So the system

Jz = 0, z(k) = 1,

has a unique solution. Thus both (3.3.30) and (3.3.31) are inhomogeneous equations with

unique solutions. Thus J1:k−1 and Jk+1:n are invertible. tu
Clearly when z(k) = 0, Theorem 3.2.2 should not be used to compute z. When

z(k) = 0, Theorem 3.3.1 implies that D+(k − 1) = D−(k + 1) = 0, and the formulae for γk

in Corollary 3.1.1 give γk =∞+∞ or∞−∞. When z(k) 6= 0, Corollary 3.1.4 implies that

γk = 0. By Lemma 3.0.1, z(1) 6= 0 and z(n) 6= 0, and consequently γ1 = γn = 0. Thus the

index r where |γk| is minimum is such that z(r) 6= 0. To account for possible breakdown in

triangular factorization, the method of Theorem 3.2.2 may be modified slightly.

Algorithm 3.3.1 [Vectors with zeros.]

z(r) = 1,

z(j) =

 −U+(j)z(j + 1), z(j + 1) 6= 0,

−(Jj+1,j+2 z(j + 2)/Jj+1,j), otherwise

 , j = r − 1, . . . , 1

z(i) =

 −L−(i− 1)z(i− 1), z(i− 1) 6= 0,

−(Ji−1,i−2 z(i− 2)/Ji−1,i), otherwise

 , i = r + 1, . . . , n.

tu

51

Thus the case of singular J is handled correctly. Note that the multiplicative

recurrence given by (3.1.18) breaks down when computing γk as

γk = γk+1
D+(k)

D−(k + 1)

if D+(k) = 0, D−(k + 2) = 0 and γk+1 =∞.

Now we consider the case when J is nonsingular and triangular factorization breaks

down. When D+(k − 1) or D−(k + 1) equals zero, the expressions in Corollary 3.1.1 imply

that γk =∞. Note that both D+(k− 1) and D−(k + 1) cannot be zero, otherwise J would

be singular. Unlike the singular case, it is possible that all |γk| are ∞. We now show that

this occurs only in very special circumstances. We recall that γ−1
k = (J−1)kk.

Lemma 3.3.1 Let J be a complex tridiagonal matrix of order n with diag(J) = 0. Then

if n is odd, χn(µ) = −χn(−µ), for all µ ∈ C, and

if n is even, χn(µ) = χn(−µ), for all µ ∈ C.

where χi(µ) = det(µI − J1:i).

Proof. If diag(J) = 0,

χi(µ) = µχi−1(µ)− Ji,i−1Ji−1,iχi−2(µ).

We prove the result by induction on i. χ1(µ) = µ is an odd function, while χ2(µ) =

µ2− Ji,i−1Ji−1,i is even and the result holds for the base cases. In the inductive step, if i is

odd

χi(−µ) = (−µ)χi−1(−µ)− Ji,i−1Ji−1,iχi−2(−µ)

= −µχi−1(µ) + Ji,i−1Ji−1,iχi−2(µ) = −χi(µ).

Similarly, if i is even

χi(−µ) = (−µ)χi−1(−µ)− Ji,i−1Ji−1,iχi−2(−µ) = χi(µ).

tu

52

Nonsingular J that have zero diagonals have a special pattern of zeros and nonze-

ros, as illustrated by the following example.

0 1 0 0 0 0

−1 0 1 0 0 0

0 −1 0 1 0 0

0 0 −1 0 1 0

0 0 0 −1 0 1

0 0 0 0 −1 0



−1

=



0 1 0 1 0 1

−1 0 0 0 0 0

0 0 0 1 0 1

−1 0 −1 0 0 0

0 0 0 0 0 1

−1 0 −1 0 −1 0


. (3.3.32)

Theorem 3.3.2 Let J be a nonsingular tridiagonal matrix. Then

diag(J) = 0 ⇔ diag(J−1) = 0.

Proof. In this proof, we will use the famous Cauchy-Binet formula

J · adj(J) = det(J) · I (3.3.33)

where adj(J) is the adjugate of J and is the transpose of the matrix of cofactors [129, p.402],

to get expressions for elements of J−1. By (3.3.33),

(J−1)ii =
det(J1:i−1) det(J i+1:n)

det(J)
. (3.3.34)

Suppose diag(J) = 0. The nonsingularity of J , and Lemma 3.3.1 imply that n

must be even. Since one of J1:i−1 or J i+1:n must be of odd order, Lemma 3.3.1 and (3.3.34)

implies that (J−1)ii = 0 for 1 ≤ i ≤ n.

Now suppose that diag(J−1) = 0. In this case, the key fact needed for the proof

is that every leading (and trailing) principal submatrix of J of odd dimension is singular.

This behavior can be observed in (3.3.32). We now prove this claim.

First, we observe that no two consecutive leading submatrices can be singular since

otherwise, by the three-term recurrence

det(J1:i) = Jii det(J1:i−1)− Ji−1,iJi,i−1 det(J1:i−2), (3.3.35)

J would be singular. Similarly no two consecutive trailing submatrices can be singular.

Now

(J−1)11 = 0 ⇒ det(J2:n) = 0 by (3.3.34),

53

and hence, det(J3:n) 6= 0. Consequently,

(J−1)22 = 0 ⇒ det(J1:1) = 0, again by (3.3.34).

Similarly by setting i = 3, 4 and so on in (3.3.34), we can conclude that the principal

submatrices J4:n, J1:3, J6:n, J1:5, . . . must be singular. In particular, all leading principal

submatrices of odd dimension are singular. Now, if n is odd then n− 2 is also odd and by

the above reasoning, J1:n−2 is singular. However, by setting i = n in (3.3.34), we see that

det(J1:n−1) = 0,

but no two consecutive principal submatrices of a nonsingular J can be singular. Hence n

cannot be odd, and must be even.

When i is odd, the submatrices J1:i and J1:i−2 are singular and by (3.3.35), we

get

0 = det(J1:i) = Jii det(J1:i−1),

and Jii must be 0 since det(J1:i−1) 6= 0 in this case. Similarly, since n is even and by

considering the trailing recurrence

det(J i:n) = Ji,i det(J i+1:n)− Ji,i+1Ji+1,i det(J i+2:n),

we can conclude that Jii = 0 for even i. tu
The pattern of zeros and nonzeros in J−1 that is used to prove the above result

may also be deduced by using the following lemma which states that the upper (lower)

triangular part of J−1 is a rank-one matrix. This result has appeared in [4, 14, 83, 78, 42].

Lemma 3.3.2 Let J be a nonsingular unreduced tridiagonal matrix of order n. Then there

exist vectors x, y, p and q such that

(J−1)ik =

 xiyk, i ≤ k,

piqk, i ≥ k.

The following corollary says that the spectrum of tridiagonals that have a zero

diagonal is symmetric.

Corollary 3.3.1 Let J be a tridiagonal matrix such that diag(J) = 0. Then if λ is an

eigenvalue of J , so is −λ. If v and w are the corresponding normalized eigenvectors, then

|v(i)| = |w(i)| for 1 ≤ i ≤ n.

54

Proof. Lemma 3.3.1 implies that eigenvalues occur in ± pairs. The corresponding eigen-

vector entries are equal in magnitude by (3.0.8) since χ′(λ) = −χ′(−λ). tu
We have shown that for all |γk| to be ∞, all eigenvalues of J = J̃ − µI must

occur in ± pairs. Thus µ is equidistant to the two closest eigenvalues. Note that this

result is consistent with Theorem 3.2.1. We will be careful to avoid this situation in our

application. As we stated in the previous section, we will use Algorithm 3.2.1 to compute

an eigenvector only when the corresponding eigenvalue is “sufficiently isolated” (we make

the meaning of “isolated” more precise in the upcoming chapters). Then, as Theorem 3.2.1

shows, at least one γk must be small if µ is close to the eigenvalue. Breakdown in the

triangular factorization does not hinder finding such a γk. The corresponding eigenvector

is approximated well by Algorithm 3.3.1 given earlier in this section.

We now show how the ideas developed in this chapter enable us to correctly handle

the matrix T of (3.0.4).

Example 3.3.1 [Minimum |γk| leads to a good eigenvector approximation.] Con-

sider T as in (3.0.4) of Example 3.0.1, and the eigenvalue approximation λ̂ = 1 so that the

error in the eigenvalue is ε + O(ε2).

(T − I)−1 =


4/(−4 + 3ε) 0 −

√
ε/(−4 + 3ε)

0 0 1/
√

ε

−
√

ε/(−4 + 3ε) 1/
√

ε (−4 + 10ε− 5ε2)/ε(−4 + 3ε)


and since γ−1

k = (T−1)kk,

γ1 ≈ −1, |γ2| =∞ and γ3 ≈ ε.

Since |γ3| is the minimum, our theory predicts that z = (T − I)−1e3 is a good eigenvector

approximation. Indeed,

z

‖z‖
=


ε3/2/4 + O(ε5/2)
√

ε + O(ε3/2)

1− ε/2 + O(ε2)

 .

and from (3.0.5) we see that each entry of the above vector agrees with the corresponding

eigenvector entry in all its figures, i.e., the relative error in each entry is O(ε). tu

55

3.4 Avoiding Divisions

On modern computers, divisions may be much more costly than multiplications.

For example, on an IBM RS/6000 computer, a divide operation takes 19 cycles while a

multiplication can be done in 1 cycle. In this section, we see how to eliminate all divisions

from Algorithm 3.2.1. This may result in a faster computer implementation to compute

an eigenvector. However, elimination of divisions results in a method that is susceptible to

over/underflow and requires some care to ensure correctness. This section was inspired by

Fred Gustavson’s observation that n divisions are sufficient for a related application [74].

In this section, we will assume that T is the given unreduced real, symmetric tridi-

agonal matrix with diagonal elements α1, α2, . . . , αn and off-diagonal elements β1, . . . , βn−1.

Extensions to the normal case are trivial.

The crucial observation is that the rth column of (T − µI)−1 may be written as

χ1:nwr =



(1 · χr+1:n)(β1 · · ·βr−1)

.

.

(χ1:r−2 · χr+1:n)βr−1

(χ1:r−1 · χr+1:n)

(χ1:r−1 · χr+2:n)βr

.

.

(χ1:r−1 · 1)(βr · · ·βn−1)



(3.4.36)

for r = 1, 2, . . . , n, where χi:j = χi:j(µ) = det(µI − T i:j), taking χn+1:n(µ) = χ1:0(µ) = 1.

The above is easily derived from the Cauchy-Binet formula (3.3.33) for the entries of the

inverse of a matrix. Emphasizing that

[
(T − µI)−1

]
kk

=
χ1:k−1(µ) · χk+1:n(µ)

χ1:n(µ)
(3.4.37)

we give an alternate method to compute an eigenvector of an isolated eigenvalue.

Algorithm 3.4.1 [Computing an eigenvector with no divisions.]

1. Compute χ1:1(µ), χ1:2(µ), . . . , χ1:n−1(µ) using the 3-term recurrence

χ1:i(µ) = (µ− αi)χ1:i−1(µ)− β2
i−1χ

1:i−2(µ), χ1:0 = 1, β0 = 0.

56

2. Compute χn:n(µ), χn:n−1(µ), . . . , χn:2(µ) using the 3-term recurrence

χi:n(µ) = (µ− αi)χi+1:n(µ)− β2
i χi+2:n(µ), χn+1:n = 1, βn = 0.

3. Compute

∆k = χ1:k−1(µ) · χk+1:n(µ) for k = 1, 2, . . . , n

and choose the index r where |∆k| is maximum. In exact arithmetic, by (3.1.13)

and (3.4.37), this index r is identical to the one found in Step 2 of Algorithm 3.2.1.

4. Form the vector wr · χ1:n(µ) by multiplying the appropriate χ’s and β’s, as given

in (3.4.36). tu

The total cost involved in the above algorithm is 8n multiplications and 3n ad-

ditions. Some multiplications may be saved when computing more than one eigenvector

by forming and saving the products of β’s that are used more than once. There is also

some cost involved in monitoring and handling potential overflow and underflow. The cost

of the above algorithm should be compared to that of Algorithm 3.2.1 which requires 2n

divisions, 3n multiplications and 4n additions if an additive formula to compute γk is used.

The vector output by both these algorithms may be normalized at a further cost of 1 square

root, 1 division, 2n multiplications and n− 1 additions.

However, as is well known, the quantities χ1:i(µ) and χi:n(µ) can grow and decay

rapidly, and hence the recurrences to compute them are susceptible to severe overflow and

underflow problems. To overcome this, these quantities need to be monitored and rescaled

when approaching overflow or underflow. Some modern computers allow such monitoring to

be done in hardware but alas, this facility is not presently visible to the software developer

who programs in a high level language [92].

3.4.1 Heuristics for choosing r

In Algorithm 3.2.1, the 2n quantities D+(1), . . . , D+(n) and D−(1), . . . , D−(n) are

computed to find the minimum among all the γk’s. Once the right index r is chosen, half of

these quantities are discarded and the other half used to compute the desired eigenvector

approximation. The situation is similar in Algorithm 3.4.1.

If we have a reasonable guess at a “good” index r, we can check the value of γr

by only computing the n quantities D+(1), . . . , D+(r− 1), D−(r + 1), . . . , D−(n) and γr. If

57

γr is small enough we can accept r, otherwise we can compute all the γ’s and choose the

minimum as before. In case the guess is accurate, we can save approximately half the work

in the computation of the eigenvector. We now examine the proof of the Gerschgorin Disk

Theorem that suggests a heuristic choice of r.

Theorem 3.4.1 [Gerschgorin Disk Theorem]. Let B be a matrix of order n with an

eigenvalue λ. Then λ lies in one of the Gerschgorin disks, i.e., ∃r such that

|λ−Brr| ≤
∑
k 6=r

|Brk|

Proof. Let v be the eigenvector corresponding to λ, and let |v(r)| = ‖v‖∞. Consider the

rth equation of Bv = λv,

λv(r) = Brrv(r) +
∑
k 6=r

Brkv(k)

⇒ |λ−Brr| ≤
∑
k 6=r

|Brk||v(k)/v(r)|

from which the result follows. tu
Thus if the kth entry of v is the largest, then λ must lie in the kth Gerschgorin

disk. Consequently, if λ lies in just one Gerschgorin disk then the corresponding entry of v

must be the largest. However λ may lie in many Gerschgorin disks and there is no guarantee

that the corresponding entries of v are large. But we may use the following heuristic

Pick r such that λ lies in the rth Gerschgorin disk with minimum radius
∑

k 6=r |Brk|.

Such a heuristic is inexpensive to compute and can lead to considerable savings

on large matrices, especially ones that are even mildly graded. Such matrices seem to arise

in many real life applications. Note that the above heuristic gives the correct choice of r in

the example tridiagonals of (3.0.4) and (3.0.6).

We do not make any claim about the optimality of the above heuristic, and it may

be possible to obtain better ones. The purpose of this section was to furnish the idea of

heuristically picking r and checking it in order to potentially save half the computations.

3.5 Twisted Q Factorizations — A Digression∗

In this section, we introduce twisted QR-type factorizations. The reader who is

pressed for time and is primarily interested in seeing how to adapt inverse iteration to

58



x x©
x x x

x x x

x x x

x© x


−→



x

x x x©
x x x x x

x x x

x


−→



x

x x

x x x x x

x x© x x

x


−→



x

x x

x x x x x

x x x

x



Figure 3.2: Twisted Q Factorization at k = 3 (the next elements to be annihilated are
circled): forming Nk.

compute mutually orthogonal eigenvectors may skip to the next chapter.

We define a twisted orthogonal or Q factorization at position k as

J = NkQ
∗
k (3.5.38)

where Qk is an orthogonal matrix and Nk is such that Nk(i, j) = 0 for i,j such that j > i

when i < k and k ≤ j < i when i ≥ k. Note that Nk is a “permuted” triangular matrix,

since there exists a symmetric permutation of Nk that is a triangular matrix. Figure 3.2

illustrates how to compute such a factorization — it may be obtained by starting an LQ

factorization from the left of the matrix stopping it at column k, and then doing an RQ

factorization from the right of the matrix till there is a singleton in the kth column (note

that we are doing column operations here in contrast to row operations in Section 3.1 —

hence we refer to the left and right of the matrix rather than the top and bottom). Using the

fact that Nk is “essentially” triangular and assuming that J is of full rank, we can show that

the twisted Q factorization (3.5.38) is unique, modulo the signs of the diagonal elements

of Nk. We could have done row operations instead and looked at twisted Q factorizations

that are obtained by doing QR from the top of the matrix, and QL from the bottom to

obtain a singleton in the kth row. We have chosen instead to look at column twisted Q

factorizations in order to make a direct connection with the twisted triangular factorizations

of Section 3.1.

We now develop some theory about twisted Q factorizations along the lines of

Section 3.1.

Theorem 3.5.1 Let J be a nonsingular tridiagonal n× n complex matrix with the column

twisted Q factorization at k given by (3.5.38) for 1 ≤ k ≤ n. Let δk be the singleton in the

59

kth column of Nk, i.e., δk = Nk(k, k). Then

1
|δk|2

= e∗k(JJ∗)−1ek. (3.5.39)

Proof.

JJ∗ = NkQ
∗
kQkN

∗
k

⇒ e∗k(JJ∗)−1ek = e∗kN
−∗
k N−1

k ek.

Since Nkek = δkek, the result (3.5.39) follows. tu
We could endeavor to get expressions for δk, as we did for γk in (3.1.12), in terms

of the left and right factorizations. In particular, we can attempt to express δk in terms of

the Schur parameters {cos θ+
k , k = 1, . . . , n − 1}, {cos θ−k , k = 1, . . . , n − 1} that determine

the orthogonal matrices in the L+Q+ and R−Q− factorizations, and the diagonal elements

of L+ and R−. However, we choose not to do so since the expressions are not stated simply

with our present notation, and do not add to our exposition.

The following results parallel those of Sections 3.1 and 3.2 as do the corresponding

proofs.

Corollary 3.5.1 Let J be a nonsingular tridiagonal matrix. With the notation of Theo-

rem 3.5.1,
n∑

i=1

|δi|−2 = Trace((JJ∗)−1) =
n∑

i=1

σ−2
i ,

where σ1, σ2, . . . , σn are the singular values of J .

Theorem 3.5.2 Let J = J̃−µI be a tridiagonal matrix with the twisted factorization (3.5.38)

for a fixed value of k. Then

(J̃ − µI)qk = δkek,

where qk is the kth column of Qk.

Proof. Since Nkek = δkek and J̃ − µI = NkQ
∗
k,

(J̃ − µI)Qk = Nk ⇒ (J̃ − µI)qk = δkek.

tu
Thus the vector qk is just a normalized version of z(k) defined in (3.2.25) in The-

orem 3.2.2. The following theorems confirm that the corresponding residual norms are

equal.

60

Theorem 3.5.3 Let J = J̃ − µI be a nonsingular tridiagonal matrix and let δk, γk and

z(k) be as defined in (3.5.39), (3.1.13) and (3.2.25) respectively. Then

|γk|
‖z(k)‖

= |δk| (3.5.40)

Proof. Since (J̃ − µI)z(k) = γkek,

‖z(k)‖2

|γk|2
= e∗k(J̃ − µI)−∗(J̃ − µI)−1ek

=
1
|δk|2

.

The last equality is just (3.5.39). tu
Thus when J is normal, the bound (3.2.28) for |γk|/‖z(k)‖ applies to |δk|. The

connection between qk and z(k) suggests the following alternative to Algorithm 3.2.1 that

is guaranteed to find a small δk for a nearly singular J̃ −µI, even when the eigenvalue near

µ is not isolated.

Algorithm 3.5.1 [Computing an eigenvector of any eigenvalue.]

1. Compute the diagonal elements δk for all n twisted Q factorizations of J̃ .

2. Choose the index r where |δk| is minimum.

3. Form the vector qr, where qr is as in Theorem 3.5.2.

tu

The above results may appear somewhat surprising but the reader is reminded of

the intimate connection between the LR algorithm, the QR algorithm and inverse itera-

tion [112]. For a non-normal matrix also, as the following theorem implies, there is at least

one δk that indicates its nearness to singularity.

Theorem 3.5.4 Let B be a nonsingular matrix of order n. Let σmin = σn be the smallest

singular value of B and umin be the corresponding left singular vector. If

1
|δk|2

= e∗k(BB∗)−1ek for k = 1, 2, . . . , n

then

|δk| =
σmin

|umin(k)|

[
1 +

(
|umin(k)|−2 − 1

)
A2

]−1/2
,

≤ σmin

|umin(k)|
≤
√

n σmin for at least one k

61

where A2 is a weighted arithmetic mean of
{(

σmin
σi

)2
, i < n

}
, 0 < A2 < (σmin/σn−1)

2.

Proof. The proof is similar to that of Theorem 3.2.3 using the following eigendecomposition

of BB∗,

BB∗ = UΣ2U∗.

tu
In Section 3.1, we showed that γk = 0 when J is singular and admits the triangular

decompositions (3.1.11) (see Corollary 3.1.4 and the comments immediately following it).

Similarly, it can be shown that if J is an unreduced tridiagonal that is singular, then δk = 0

in the factorization of (3.5.38) for any k.

3.5.1 “Perfect” Shifts are perfect

In this section, we give an application of twisted Q factorizations. If λ is an

eigenvalue of the unreduced tridiagonal J̃ , then the last diagonal element of R, Rnn, in the

factorization

J̃ − λI = QR, Q∗Q = I, R upper triangular

must be zero in exact arithmetic. The QR iteration on J̃ with shift µ yields J̃1 :

J̃ − µI = QR, RQ + µI = J̃1.

When µ = λ, the (n− 1, n) entry of the tridiagonal J̃1 is zero and hence λ may be deflated

from J̃1 by simply removing the last row and column.

It may be expected that if µ is close to λ, then Rnn would be small and deflation

would again occur in one iteration. Based on this expectation, Parlett proposed the following

strategy to compute all the eigenvalues and eigenvectors of a real, symmetric tridiagonal

matrix T [112, p.173].

1. Compute eigenvalues by a fast algorithm such as the PWK algorithm, which is a QR

algorithm free of square roots.

2. Run the QR algorithm using the computed eigenvalues as shifts, accumulating the

rotations to form the eigenvector matrix.

The expectation was that deflation would occur in one step, thus saving approx-

imately 50% of the dominant O(n3) computation in the QR algorithm, which typically

requires an average of 2-3 iterations per eigenvalue.

62

However,

T − µI = QR

⇒ eT
n (T − µI)−2en =

1
|Rnn|2

⇒
n∑

i=1

|vi(n)|2

(λi − µ)2
=

1
|Rnn|2

showing that if the bottom entry of the desired eigenvector is tiny, then Rnn is not small.

As a result, immediate deflation is not always seen in the perfect-shift QR algorithm, and

it was found not to perform any better than the standard QR algorithm with Wilkinson’s

shift [69]. The situation is similar to that with D+(n) discused in Section 3.1. And it is

natural for us, as in Section 3.1, to turn to twisted factorizations to detect singularity of

T − µI. Let

T − µI = QkNk (3.5.41)

be a twisted Q factorization of T − µI. This is essentially identical to the column twisted

L factorization of J in (3.5.38) since T is symmetric. In the above factorization the kth

row of Nk is a singleton with a non-zero on the diagonal. By the theory developed in the

previous section, in particular Theorem 3.5.4, there must be a k such that Nk(k, k) is small

if µ is a good approximation to an eigenvalue of T .

With this choice of k, we can form the matrix

A1 = NkQk + µI (3.5.42)

following the standard QR algorithm. Since δk is small all the off-diagonal entries of the

kth row of A1 must be small. Since A1 = Q∗
kTQk is symmetric the off-diagonal entries in

the kth column are also tiny. An eigenvalue close to µ may be deflated by crossing out the

entire kth row and column of A1. Thus deflation occurs in exactly one step when perfect

shifts are used. For a more detailed treatment, the reader should wait for [40].

Each matrix in the sequence obtained in the standard QR algorithm is tridiago-

nal. Does (3.5.42) preserve tridiagonal form? The reduction uniqueness theorem in [112,

Section 7-2] states that a tridiagonal formed by an orthogonal similarity transformation,

T = Q∗AQ, is determined by A and the first or last column of Q. It follows that A1 cannot

be tridiagonal in general since, except when k = 1 or n, the first and last columns of Qk

in (3.5.41) are independent. However, it can be shown that the matrix obtained by delet-

ing the kth row and column of A1 is tridiagonal with an additional bulge at new position

63

(k + 1, k) after deflation. This bulge can then be “chased” out of the top or bottom of the

matrix, whichever is nearer. This yields a tridiagonal matrix to which the next perfect shift

may now be applied.

To form the eigenvector matrix the n−1 rotations that form Qk must be accumu-

lated as must be the rotations used to chase the bulge out of the end of the deflated matrix.

Thus in the worst case 1.5 iterations are needed per eigenvalue to compute the eigenvectors.

Assuming 1-1.5 iterations per eigenvalue, all the eigenvectors may be obtained at a cost of

3n3-4.5n3 operations. This is about twice as fast as current QR algorithms, assuming that

n is large enough to disregard the extra computation involved in the initial computation of

the eigenvalues and in finding k at each step. Heuristics for guessing k may also be used as

discussed in Section 3.4.1.

Standard QR algorithms use an implicit version to achieve greater accuracy. It

remains to be seen if similar techniques may be used in the algorithm outlined above. It

should also be possible to find k by using a procedure free from square roots as in the PWK

algorithm. But as we mentioned earlier, this section is a digression from the main theme of

this thesis and we plan to explore these questions elsewhere [40].

The reader may wonder about our inconsistency in finding the eigenvalues by a

standard QR algorithm but using twisted factorizations in finding the eigenvectors. Is it

not possible to use twisted factorizations to find the eigenvalues also? We believe that

the latter might indeed be the right approach not only in speeding up the algorithm but

also to get higher accuracy since the standard QR algorithm may violently rearrange the

matrix thereby destroying accuracy [32]. However, this is not straightforward due to the

complication that A1 in (3.5.42) is not tridiagonal. When deflation does not occur, chasing

the bulges in A1 off the top or bottom of the matrix will give the standard QR or QL

algorithm respectively (by the reduction uniqueness theorem in [112, Section 7-2]). Thus

in order to develop a “twisted algorithm”, we must give up the tridiagonal nature of the

intermediate matrices. The number of bulges increase by 2 at each step, and it is for

future research to determine if it is computationally feasible to handle this increase. We

also believe that such a twisted algorithm may lead to better shifts than the Francis or

Wilkinson shifts.

64

3.6 Rank Revealing Factorizations∗

In earlier sections of this study, we exhibited twisted triangular and twisted or-

thogonal (or Q) factorizations for tridiagonals. In our applications, we were successfully

able to reveal the singularity of the tridiagonal by one of the n possible twisted factors.

In this section, we show that such factorizations can also be done for denser matri-

ces and may be used to reveal the rank of the matrix. We convey our ideas through pictures

and make no pretence to being complete in this section.

Formally, we define a row twisted triangular factorization of a matrix B at posi-

tion k as the decomposition

B = NkDkÑk (3.6.43)

where Dk is diagonal, while Nk and Ñk are such that (Nk)ij = 0 for i,j such that j > i when

i < k and k ≤ j < i otherwise, and Ñ∗
k has the same requirement on its zeros. We take

both Nk and Ñk to have 1’s on their diagonals. Note that Nk and Ñk are simultaneously

permuted triangular matrices, i.e., ∃ a permutation Pk such that P T
k NkPk is lower triangular

and P T
k ÑkPk is upper triangular. (3.6.43) may be written as

P T
k BPk = (P T

k NkPk)(P T
k DkPk)(P T

k ÑkPk)

and this is just the LDU decomposition of P T
k BPk. This implies the uniqueness of the

factorization in (3.6.43).

Figures 3.3 and 3.5 suggest a way to compute the twisted LU decomposition for

Hessenberg and dense matrices respectively. Note that when B is normal, Theorem 3.2.1

is applicable with γk = Dk(k, k). Thus when B is nearly singular with an isolated small

eigenvalue, Theorem 3.2.1 implies the existence of a small bottom pivot in all possible

LU -factorizations of B that can be obtained by symmetric permutations of the rows and

columns of B. A generalization of such a result was proved by Tony Chan in 1984 [19] (he

considered non-normal B as well, and arbitrary row and column permutations of B). We

briefly compare our results with Chan’s results of [19] at the end of this section.

We now formally define a row twisted Q decomposition of B at position k as

B = QkNk (3.6.44)

where Qk is orthogonal and Nk is a permuted triangular matrix as made precise earlier in this

section. Figures 3.4 and 3.5 suggest computational procedures to find such a factorization

65



x x x x x

x© x x x x

x x x x

x x x©
x x


−→



x x x x x

x x x x

x© x x x

x x

x x


−→



x x x x x

x x x x

x x x©
x x

x x


−→



x x x x x

x x x x

x x©
x x

x x



−→



x x x x x

x x x x

x

x x

x x



Figure 3.3: Twisted Triangular Factorization of a Hessenberg matrix at k = 3 (the next
elements to be annihilated are circled)



x x x x x

x© x x x x

x x x x

x x x©
x x


−→



x x x x x

x x x x

x© x x x

x x

x x x


−→



x x x x x

x x x x

x x x©
x x

x x x


−→



x x x x x

x x x x

x x©
x x

x x x



−→



x x x x x

x x x x

x

x x

x x x



Figure 3.4: Twisted Orthogonal Factorization of a Hessenberg matrix at k = 3 (the next
elements to be annihilated are circled)

66



x x x x x

x© x x x x

x© x x x x

x© x x x x

x© x x x x


−→



x x x x x

x x x x

x© x x x

x© x x x

x© x x x


−→



x x x x x

x x x x

x x x©
x x x©
x x x


−→



x x x x x

x x x x

x x©
x x

x x x



−→



x x x x x

x x x x

x

x x

x x x



Figure 3.5: The above may be thought of as a twisted triangular or orthogonal factorization
of a dense matrix at k = 3 (the next elements to be annihilated are circled)

for Hessenberg and dense matrices respectively. Since ∃ Pk such that P T
k NkPk is upper

triangular, (3.6.44) may be written as

BPk = QkPk(P T
k NkPk)

to give a QR decomposition of B after a column permutation. Thus the factorization (3.6.44)

is unique in the same sense as the QR factorization of B is unique.

The result of Theorem 3.5.4 holds for the decomposition (3.6.44) with J replaced

by B∗. This proves the existence of a column permutation of B such that the bottom

element of R in B’s QR decomposition is tiny when B is nearly singular. This result was

proved by Chan in [18] and earlier by Golub, Klema and Stewart in [66].

Thus twisted factorizations can be rank-revealing. Rank-revealing LU and QR

factorizations have been extensively studied and several algorithms to compute such fac-

torizations exist. Twisted factorizations seem to have been overlooked and may offer com-

putational advantages. We consider our results outlined above to be stronger than those

of Chan [19, 18] and Golub et al. [66] since the permutations we consider are restricted.

In particular, as seen in the tridiagonal and Hessenberg case, twisted factorizations respect

the sparsity structure of the given matrix, and thus may offer computational advantages in

terms of speed and accuracy.

We believe that twisted factorizations of Hessenberg matrices can be used for a

better solution to the non-symmetric eigenproblem. For banded and sparse matrices, twisted

67

factorizations may offer considerable savings in computing rank-revealing factorizations. We

intend to conduct further research in these two areas. The innovative reader may be able

to think of other applications.

68

Chapter 4

Computing orthogonal eigenvectors

when relative gaps are large

In the last chapter, we showed how to compute the eigenvector corresponding to

an isolated eigenvalue of a normal, unreduced tridiagonal matrix. In particular, we showed

how to choose a right hand side for inverse iteration that has a guaranteed large component

in the direction of the desired eigenvector. Even though this is both a theoretical and

practical advance, it does not solve the most pressing problem with inverse iteration —

that of computing approximate eigenvectors that are numerically orthogonal.

When eigenvalues are well separated, vectors that give a small residual norm,

as in (1.1.1), are numerically orthogonal. In such a case, the methods of Chapter 3 are

sufficient. However this is not the case with close eigenvalues and current implementations

of inverse iteration resort to explicit orthogonalization. As mentioned in Chapter 1 and

Section 2.8.1 this can take an inordinately large amount of computation, and even then,

the computed vectors may not be numerically orthogonal.

The rest of this thesis is devoted to the computation of “good eigenvectors” that are

automatically numerically orthogonal thus avoiding the need for explicit orthogonalization.

In this chapter, we show that an alternate representation of a tridiagonal is the key to better

approximations. Coupled with the theory developed in Chapter 3 this allows us to compute

orthogonal eigenvectors when the corresponding eigenvalues have large relative gaps, even

though the eigenvalues may be very close together in an absolute sense. More precisely,

1. In Section 4.1, we extol the virtues of high accuracy. Tridiagonals do not always

“allow” such high accuracy computations and in Section 4.2, we advocate representing

69

the tridiagonal as a product of bidiagonal matrices.

2. In Section 4.3, we recap earlier work on relative perturbation theory as applied to

bidiagonal matrices.

3. In Section 4.4.1, we give qd-like recurrences that allow us to exploit the properties of

bidiagonals in order to compute highly accurate approximations to eigenvectors. In

Section 4.4.2, we do a roundoff error analysis of their computer implementations while

in Section 4.4.3 we give an algorithm to compute eigenvectors based on these qd-like

recurrences.

4. In Section 4.5 we prove that the dot products between the eigenvectors computed by

the algorithm given in Section 4.4.3 are inversely proportional to the relative gaps

between eigenvalues. As a consequence, the computed eigenvectors are numerically

orthogonal if the corresponding eigenvalues are relatively far apart. These results

are new and are a major advance towards our goal of obtaining guaranteed numerical

orthogonality in O(n2) time.

5. In Section 4.6, we present numerical results that support the above claims.

We consider the case of eigenvalues that have small relative gaps in the next two chapters.

4.1 Benefits of High Accuracy

Consider the matrix T0 in (2.8.16) of Section 2.8.1,

T0 =


1

√
ε 0

√
ε 7ε/4 ε/4

0 ε/4 3ε/4


where ε is the machine precision. T0 has two small eigenvalues λ1 = ε/2 + O(ε2) and

λ2 = ε + O(ε2), while λ3 ≈ 1. Suppose that λ̂1 and λ̂2 are approximations to λ1 and λ2,

and inverse iteration as in (2.7.4) is used to find the corresponding eigenvectors. In exact

arithmetic, taking b1 =
∑

i ξivi and b2 =
∑

i ηivi, ‖b1‖ = ‖b2‖ = 1, we get

y1 = (T0 − λ̂1I)−1b1 =
ξ1

λ1 − λ̂1

(
v1 +

ξ2

ξ1

λ1 − λ̂1

λ2 − λ̂1

v2 +
ξ3

ξ1

λ1 − λ̂1

λ3 − λ̂1

v3

)
, (4.1.1)

y2 = (T0 − λ̂2I)−1b2 =
η2

λ2 − λ̂2

(
η1

η2

λ2 − λ̂2

λ1 − λ̂2

v1 + v2 +
η3

η2

λ2 − λ̂2

λ3 − λ̂2

v3

)
. (4.1.2)

70

We assume that ξ1, ξ2, η1 and η2 are O(1). Earlier we showed that y1 and y2 are

nearly parallel if λ̂1 ≈ λ̂2, and in such a case, EISPACK and LAPACK implementations fail

to deliver orthogonal vectors despite explicit orthogonalization. See Section 2.8.1 and Case

Study A for more details. It is clearly desirable that λ̂1 and λ̂2 be more accurate so that

their difference is discernible. Given limited precision to represent numbers in a computer,

how accurate can λ̂1 and λ̂2 be? We say that λ̂i agrees with λi to d digits if

|λi − λ̂i|
|λi|

= 10−d.

The IEEE double precision format allows for 53 bits of precision, thus ε = 2−52 ≈
2.2 · 10−16 and d can take a maximum value of about 16. Suppose λ̂1 and λ̂2 agree with λ1

and λ2 respectively to d digits, where d ≥ 1. Since λ1 and λ2 do not agree in any digit,

|λi − λ̂i|
|λj − λ̂i|

= O(10−d) where i = 1, 2, j 6= i

and by (4.1.1) and (4.1.2),

|yT
1 y2|

‖y1‖ · ‖y2‖
= O

(
|λ1 − λ̂1|
|λ2 − λ̂1|

+
|λ2 − λ̂2|
|λ1 − λ̂2|

)
= O(10−d).

Thus the more accurate λ̂1 and λ̂2 are, the more orthogonal are y1 and y2. In fact when

d = 16, i.e., when λ̂1 and λ̂2 have full relative accuracy, y1 and y2 are numerically orthogonal

and no further orthogonalization is needed.

Of course, the above is true only in exact arithmetic. We now see why the standard

representation of a tridiagonal matrix does not allow computation of eigenvalues to such

high accuracy.

4.2 Tridiagonals Are Inadequate

A real, symmetric tridiagonal matrix T is traditionally represented by its 2n − 1

diagonal and off-diagonal elements. In this section, we show that for our computational

purposes it is better to represent T by its bidiagonal factors.

To account for the roundoff errors that occur in a computer implementation, it is

common practice to show that the computed eigenvalues and eigenvectors are exact for a

slightly perturbed matrix. For highly accurate algorithms such as bisection we can show

that the eigenvalues computed for T are exact eigenvalues of T + δT where δT represents a

71

small componentwise perturbation in only the off-diagonals of T . In the following example,

we show that such a perturbation can cause a large relative change in the eigenvalues and

eigenvector entries.

Example 4.2.1 [Tridiagonals are inadequate.] Consider the tridiagonal

T1 =


1−
√

ε ε1/4
√

1− 7ε/4 0

ε1/4
√

1− 7ε/4
√

ε + 7ε/4 ε/4

0 ε/4 3ε/4

 ,

and a small relative perturbation

T1 + δT1 =


1−
√

ε ε1/4(1 + ε)
√

1− 7ε/4 0

ε1/4(1 + ε)
√

1− 7ε/4
√

ε + 7ε/4 ε(1 + ε)/4

0 ε(1 + ε)/4 3ε/4

 .

where ε is the machine precision. The two smallest eigenvalues of T1 and T1 + δT1 are1:

λ1 = ε/2 + ε3/2/8 + O(ε2),

λ1 + δλ1 = ε/2− 7ε3/2/8 + O(ε2)

and

λ2 = ε− ε3/2/8 + O(ε2),

λ2 + δλ2 = ε− 9ε3/2/8 + O(ε2).

Thus ∣∣∣∣δλi

λi

∣∣∣∣ = O(
√

ε), i = 1, 2

and the relative change in these eigenvalues is much larger than the initial relative pertur-

bations in the entries of T1. Similarly the corresponding eigenvectors of T1 and T1 + δT1

are:

v1 =


√

ε
2(1 +

√
ε

2) + O(ε5/4)

− 1√
2
(1−

√
ε

2) + O(ε)
1√
2
(1− 3ε

4) + O(ε3/2)

 v1 + δv1 =


√

ε
2(1 + 5

√
ε

2) + O(ε5/4)

− 1√
2
(1 + 3

√
ε

2) + O(ε)
1√
2
(1− 2

√
ε) + O(ε)

 .

1we artfully constructed this matrix to have the desired behavior which may be verified by using a symbol
manipulator such as Maple [21] or Mathematica [137]

72

and

v2 =


−
√

ε
2(1 +

√
ε

2) + O(ε5/4)
1√
2
(1−

√
ε

2) + O(ε)
1√
2
(1 + 3ε

4) + O(ε3/2)

 , v2 + δv2 =


−
√

ε
2(1− 3

√
ε

2) + O(ε5/4)
1√
2
(1− 5

√
ε

2) + O(ε)
1√
2
(1 + 2

√
ε) + O(ε)

 ,

whereby ∣∣∣∣δvi(j)
vi(j)

∣∣∣∣ = O(
√

ε) for i = 1, 2 and j = 1, 2, 3.

Since a small relative change of ε in the off-diagonal entries of T1 results in a much

larger relative change in its eigenvalues and eigenvectors, we say that T1 does not deter-

mine its eigenvalues and eigenvector components to high relative accuracy. Consequently,

it is unlikely that we can compute numerically orthogonal eigenvectors without explicit or-

thogonalization. To confirm this, we turned off all orthogonalization in the EISPACK and

LAPACK implementations of inverse iteration and found the computed vectors to have dot

products as large as O(
√

ε). For more details, see Case Study B. tu

The situation can be retrieved by computing the bidiagonal Cholesky factor of T1,

T1 = L̃1L̃
T
1 .

It is now known that small relative changes to the entries of a bidiagonal matrix cause small

relative changes to its singular values (note that the singular values of L̃1 are the square

roots of the eigenvalues of T1). When relative gaps between the singular values of L̃1 are

large, it is also known that the changes in the corresponding singular vectors are small.

In the rest of this chapter, we show how to exploit this property of bidiagonal matrices to

compute numerically orthogonal eigenvectors without any explicit orthogonalization.

The relative perturbation results for bidiagonal matrices mentioned above have

appeared in [89, 29, 35, 49, 50, 51, 100, 101]. We state the precise results in the next

section.

4.3 Relative Perturbation Theory for Bidiagonals

In 1966, Kahan proved the remarkable result that a real, symmetric tridiagonal

with zero entries on the diagonal determines its eigenvalues to high relative accuracy with

respect to small relative perturbations in its off-diagonal elements. This result appears to

73

have lain neglected in the technical report [89] until Demmel and Kahan used it in 1990

to devise a method to compute the singular values of a bidiagonal matrix to high relative

accuracy [35]. Subsequently, these results have been extended and simplified, and we cite

some contributions during the course of this section.

Consider the lower bidiagonal matrix

L̃ =



a1 0

b1 a2

b2 a3

. .

. .

0 bn−1 an


, (4.3.3)

and a componentwise perturbation

L̃ + δL̃ =



a1α1 0

b1α2 a2α3

b2α4 a3α5

. .

. .

0 bn−1α2n−2 anα2n−1


(4.3.4)

where αi > 0.

The key fact is that L̃ + δL̃ may be written as

L̃ + δL̃ = D1L̃D2

where D1 = diag
(

1,
α2

α1
,
α2α4

α1α3
,
α2α4α6

α1α3α5
, ,

α2α4α6 · · ·α2n−2

α1α3α5 · · ·α2n−3

)
,

and D2 = diag
(

α1,
α1α3

α2
,
α1α3α5

α2α4
, ,

α1α3α5 · · ·α2n−1

α2α4 · · ·α2n−2

)
.

In [49], Eisenstat and Ipsen considered such multiplicative perturbations for sin-

gular value problems and proved the results presented below which show that if D1 and

D2 are close to unitary matrices then the singular values of L̃ + δL̃ are close in a relative

measure to the corresponding singular values of L̃. These results are also an immediate

consequence of Ostrowski’s theorem in [80, Thm. 4.5.9]. In the following, σj and σj + δσj

denote the jth singular values of L̃ and L̃ + δL̃ respectively, while uj , uj + δuj , vj and

vj + δvj denote the corresponding left and right singular vectors.

74

Theorem 4.3.1 (Eisenstat and Ipsen [49, Thm. 3.1]). Let L̃ + δL̃ = DT
1 L̃D2, where D1

and D2 are nonsingular matrices. Then

σj

‖D−1
1 ‖ · ‖D

−1
2 ‖

≤ σj + δσj ≤ σj‖D1‖ · ‖D2‖.

Corollary 4.3.1 (Barlow and Demmel [9, Thm. 1], Deift et al. [29, Thm. 2.12], Demmel

and Kahan [35, Cor. 2], Eisenstat and Ipsen [49, Cor. 4.2]). Let L̃ and L̃+ δL̃ be bidiagonal

matrices as in (4.3.3) and (4.3.4). Then

1
1 + η

σj ≤ σj + δσj ≤ (1 + η)σj ,

where η =
∏2n−1

i=1 max{|αi|, 1/|αi|} − 1.

Proof. The proof follows by noting that ‖D1‖ · ‖D2‖ ≤ 1 + η and ‖D−1
1 ‖ · ‖D

−1
2 ‖ ≤ 1 + η,

and then applying Theorem 4.3.1. tu
More recently, in [116] Parlett gives relative condition numbers that indicate the

precise amount by which a singular value changes due to a relative perturbation in a par-

ticular element of a bidiagonal matrix.

Theorem 4.3.2 (Parlett [116, Thm. 1]) Let L̃ be a bidiagonal matrix as in (4.3.3), with

ai 6= 0, bi 6= 0. Let σ denote a particular singular value of L̃ and let u, v be the corresponding

singular vectors. Then, since σ 6= 0,

(a)
∂σ

∂ak
· ak

σ
=

k∑
i=1

v(i)2 −
k−1∑
j=1

u(j)2 =
n∑

m=k

u(m)2 −
n∑

l=k+1

v(l)2,

(b)
∂σ

∂bk
· bk

σ
=

k∑
i=1

(u(i)2 − v(i)2) =
n∑

m=k+1

(v(m)2 − u(m)2).

Traditional error bounds on singular vector perturbations show them to be in-

versely proportional to the absolute gaps between the corresponding singular values. Recent

work has shown that in the case of multiplicative perturbations, as in Theorem 4.3.1 above,

absolute gaps may be replaced by relative gaps.

Before we quote the relevant results, we introduce some notation. We define the

relative distance between two numbers α and β as

reldist(α, β) def=
|α− β|
|α|

. (4.3.5)

75

By the above definition, reldist(α, β) 6= reldist(β, α). On the other hand, the measures

reldistp(α, β) def=
|α− β|

p
√
|α|p + |β|p

. (4.3.6)

are symmetric for 1 ≤ p ≤ ∞. Note that

reldist∞(α, β) def=
|α− β|

max(|α|, |β|)
. (4.3.7)

For more discussion and comparison between these measures, see [100]. Relative gaps

between singular values will figure prominently in our discussion, and we define

relgap(ν, {σ}) def= min
y∈{σ}

reldist(ν, y), (4.3.8)

where ν is a real number while {σ} denotes a set of real numbers. Typically, {σ} will denote

a subset of the singular values. Similarly, we define the relative gaps for the symmetric

measures to be

relgapp(ν, {σ}) def= min
y∈{σ}

reldistp(ν, y).

The following theorem bounds the perturbation angle in terms of the relative gaps.

It is a special case of Li’s Theorem 4.7 [101].

Theorem 4.3.3 Let L̃ + δL̃ = DT
1 L̃D2, where D1 and D2 are nonsingular matrices. If

σi + δσi 6= σj for i 6= j, then

| sin 6 (uj , uj + δuj)| ≤

√
‖I −DT

1 ‖2 + ‖I −D−1
1 ‖+ ‖I −DT

2 ‖2 + ‖I −D−1
2 ‖

relgap2(σj , {σi + δσi|i 6= j})
.

Corollary 4.3.2 Let L̃ and L̃ + δL̃ be bidiagonal matrices as in (4.3.3) and (4.3.4). If

σi + δσi 6= σj for i 6= j, then

| sin 6 (uj , uj + δuj)| ≤
η

relgap2(σj , {σi + δσi|i 6= j})
,

where η =
∏2n−1

i=1 max{|αi|, 1/|αi|} − 1.

See also Eisenstat and Ipsen [49, Theorem 3.3 and Cor. 4.5].

The above results can be generalized to singular subspaces of larger dimension.

Before we present the results, we need to introduce additional notation. We partition the

singular value decomposition of the square matrices L̃ and L̃ + δL̃ as

L̃ = UΣV T = (U1, U2)

 Σ1 0

0 Σ2

 V T
1

V T
2

 ,

76

and

L̃ + δL̃ = (U1 + δU1, U2 + δU2)

 Σ1 + δΣ1 0

0 Σ2 + δΣ2

 V T
1 + δV T

1

V T
2 + δV T

2

 ,

where Σ1 = diag(σ1, . . . , σk) and Σ2 = diag(σk+1 + δσk+1, . . . , σn + δσn) for 1 ≤ k < n, and

the other arrays are partitioned conformally. In such a case, we measure the angle between

the eigenvector uj and the invariant subspace U1 + δU1, j ≤ k, as

‖ sin 6 (uj , U1 + δU1)‖ = ‖(UT
2 + δUT

2)uj‖.

For more on angles between subspaces, see [67, Section 12.4.3]. The following is an easily

obtained extension of Theorem 4.8 in [101].

Theorem 4.3.4 Let L̃ + δL̃ = DT
1 L̃D2, where D1 and D2 are nonsingular matrices. If

max
k<i≤n

σi + δσi < min
1≤l≤k

σl,

then for j ≤ k and 1 ≤ p ≤ ∞,

‖ sin 6 (uj , U1 + δU1)‖ ≤
max

{√
‖I −D−1

2 ‖2 + ‖I −DT
1 ‖2,

√
‖I −D−1

1 ‖2 + ‖I −DT
2 ‖2

}
relgapp(σj , {σi + δσi|k < i ≤ n})

.

Corollary 4.3.3 Let L̃ and L̃ + δL̃ be bidiagonal matrices as in (4.3.3) and (4.3.4). If

max
k<i≤n

σi + δσi < min
1≤l≤k

σl,

then for j ≤ k and 1 ≤ p ≤ ∞,

‖ sin 6 (uj , U1 + δU1)‖ ≤
η

relgapp(σj , {σi + δσi|k < i ≤ n})
,

where η =
∏2n−1

i=1 max{|αi|, 1/|αi|} − 1.

See also Eisenstat and Ipsen [50, Theorem 3.1].

4.4 Using Products of Bidiagonals

We now show how to exploit the properties of a bidiagonal matrix that were out-

lined in the previous section. Consider the tridiagonal matrix T1 given in Example 4.2.1. In

77

section 4.2, we gave the inherent limitations of using the 2n−1 diagonal and off-diagonal el-

ements of T1. Since T1 is positive definite we can compute its bidiagonal Cholesky factor L̃1.

The singular values, σj , of L̃1 may now be computed to high relative accuracy using either

bisection or the much faster and more elegant dqds algorithm given in [56] (remember that

in exact arithmetic the eigenvalues of T1 are the squares of the singular values of L̃1 and

the eigenvectors of T1 are the left singular vectors of L̃1). Recall that the singular values of

L̃1 are such that

σ2
1 = ε/2 + O(ε2), σ2

2 = ε + O(ε2), and σ2
3 = 1 + O(ε).

As a consequence of the large relative gaps between the singular values, the singular vectors

of L̃1 are “well-determined” with respect to small componentwise perturbations in entries

of L̃1. We can now compute these singular vectors by using a method similar to Algo-

rithm 3.2.1 of Chapter 3. In spite of being computed independently, these vectors will turn

out to be numerically orthogonal!

The errors made in computing the Cholesky factor L̃1 are irrelevant to the orthog-

onality of the computed vectors. Cholesky factorization is known to be backward stable

and it can be shown that the computed L̃1 is the exact Cholesky factor of T1 + δT1 where

‖δT1‖ = O(ε‖T1‖). Thus small residual norms with respect to L̃1L̃1
T

translate to small

residual norms with respect to T1, i.e.,

‖(L̃1L̃
T
1 − σ2

j I)v‖ = O(ε‖L̃1L̃
T
1 ‖)

⇒ ‖(T1 − σ2
j I)v‖ = O(ε‖T1‖).

The dual goals of orthogonality and small residual norms will thus be satisfied in this case

(see (1.1.1) and (1.1.2)).

The tridiagonal matrix of Example 4.2.1 is positive definite. In general, the matrix

T whose eigendecomposition is to be computed will be indefinite. In such a case, we modify

slightly the strategy outlined in the above paragraph by shifting T to make it definite. We

can apply this transformation since the eigenvectors of any matrix are shift invariant, i.e.,

Eigenvectors of T ≡ Eigenvectors of T + µI, for all µ.

Our strategy can be summarized by the following algorithm.

78

Algorithm 4.4.1 [Computes eigenvectors using bidiagonals (preliminary version).]

1. Find µ ≤ ‖T‖ such that T + µI is positive (or negative) definite.

2. Compute T + µI = L̃L̃T .

3. Compute the singular values of L̃ to high relative accuracy (by bisection or the dqds

algorithm).

4. For each computed singular value of L̃, compute its left singular vector by a method

similar to Algorithm 3.2.1 of Chapter 3. tu

We now complete Step 4 of the above algorithm that computes an individual

singular vector of L̃. We need to implement this step with care in order to get guaranteed

orthogonality, whenever possible. Note that each singular vector is computed independently

of the others. Corollary 4.3.2 implies that such vectors do exist when the singular values

have large relative gaps and when the effects of roundoff can be attributed to small relative

changes in the entries of L̃.

4.4.1 qd-like Recurrences

Before we proceed to the main content of this section, we make a slight change in

our representation. Instead of the Cholesky factorization L̃L̃T of T + µI, we will consider

its triangular decomposition LDLT , where L is unit lower bidiagonal of the form

L =



1 0

l1 1

l2 1

. .

. .

0 ln−1 1


, (4.4.9)

and

D = diag(d1, d2, . . . , dn−1, dn). (4.4.10)

Both factorizations are obviously linked and L̃ = LD1/2. The following theorem indicates

that in terms of the relative perturbation theory presented in Section 4.3, both these rep-

resentations are equivalent.

79

Theorem 4.4.1 Let LDLT = L̃ΩL̃T , where L, D and L̃ are as in (4.4.9), (4.4.10) and

(4.3.3) respectively, while Ω is a diagonal matrix with ±1 entries on its diagonal. Let

λ = sign(λ)σ2 (6= 0) be a typical eigenvalue of LDLT . Then

(a)
∂λ

∂dk
· dk

λ
=

∂σ

∂ak
· ak

σ
+

∂σ

∂bk
· bk

σ
, (4.4.11)

(b)
∂λ

∂lk
· lk

λ
= 2

∂σ

∂bk
· bk

σ
. (4.4.12)

Proof. Let (Ω)kk = ωk. The two factorizations are related by

dk = wka
2
k, lk = bk/ak.

By applying the chain rule for derivatives,

∂λ

∂ak
=

∂λ

∂dk
· ∂dk

∂ak
+

∂λ

∂lk
· ∂lk
∂ak

, (4.4.13)

and
∂λ

∂bk
=

∂λ

∂dk
· ∂dk

∂bk
+

∂λ

∂lk
· ∂lk
∂bk

. (4.4.14)

By substituting
∂λ

∂x
= 2σ sign(λ)

∂σ

∂x
,

∂dk

∂ak
= 2ωkak,

∂lk
∂ak

=
−bk

a2
k

, and
∂lk
∂bk

=
1
ak

in (4.4.13) and (4.4.14), we get

2σ sign(λ)
∂σ

∂ak
=

∂λ

∂dk
· 2ωkak −

∂λ

∂lk
· bk

a2
k

, (4.4.15)

and 2σ sign(λ)
∂σ

∂bk
=

∂λ

∂lk
· 1
ak

. (4.4.16)

The result (4.4.12) now follows from multiplying (4.4.16) by bk/λ, while (4.4.11) is similarly

obtained by substituting (4.4.12) in (4.4.15). tu
From now on, we will deal exclusively with the LDLT representation instead of

the Cholesky factorization. This choice avoids the need to take square roots when forming

the Cholesky factor.

To find an individual eigenvector by Algorithm 3.2.1, we needed to form the

L+D+LT
+ and U−D−UT

− decompositions of T − λ̂I. Instead of T we now have the fac-

tored matrix LDLT . Algorithm 4.4.2 listed below implements the transformation

LDLT − µI = L+D+LT
+. (4.4.17)

80

We call this the “stationary quotient-difference with shift”(stqds) transformation for his-

torical reasons. This term was first coined by Rutishauser for similar transformations that

formed the basis of his qd algorithm first developed in 1954 [121, 122, 123]. Although (4.4.17)

is not identical to the stationary transformation given by Rutishauser, the differences are

not significant enough to warrant inventing new terminology. More recently, Fernando and

Parlett have developed another qd algorithm that gives a fast way of computing the singular

values of a bidiagonal matrix to high relative accuracy [56]. The term ‘stationary’ is used

for (4.4.17) since it represents an identity transformation when µ = 0. Rutishauser used

the term ‘progressive’ instead for the formation of U−D−UT
− from LDLT .

In the rest of this chapter, we will denote L+(i + 1, i) by L+(i), U−(i, i + 1) by

U−(i) and the ith diagonal entries of D+ and D− by D+(i) and D−(i) respectively.

Algorithm 4.4.2 (stqds)

D+(1) := d1 − µ

for i = 1, n− 1

L+(i) := (dili)/D+(i) (4.4.18)

D+(i + 1) := dil
2
i + di+1 − L+(i)dili − µ (4.4.19)

end for

We now see how to eliminate some of the additions and subtractions from the

above algorithm. We introduce the intermediate variable

si+1 = D+(i + 1)− di+1, (4.4.20)

= dil
2
i − L+(i)dili − µ, by (4.4.19)

= L+(i)li(D+(i)− di)− µ, by (4.4.18)

= L+(i)lisi − µ. (4.4.21)

Using this intermediate variable, we get the so-called differential form of the sta-

tionary qd transformation (dstqds). This term was again coined by Rutishauser in the

context of similar transformations in [121, 122].

Algorithm 4.4.3 (dstqds)

s1 := −µ

81

for i = 1, n− 1

D+(i) := si + di

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − µ

end for

D+(n) := sn + dn

In the next section we will show that the above differential algorithm has some

nice properties in the face of roundoff errors.

We also need to compute the transformation

LDLT − µI = U−D−UT
− .

which we call the “progressive quotient-difference with shift”(qds) transformation. The

following algorithm gives an obvious way to implement this transformation.

Algorithm 4.4.4 (qds)

U−(n) := 0

for i = n− 1, 1,−1

D−(i + 1) := dil
2
i + di+1 − U−(i + 1)di+1li+1 − µ (4.4.22)

U−(i) := (dili)/D−(i + 1) (4.4.23)

end for

D−(1) := d1 − U−(1)d1l1 − µ

As in the stationary transformation, we introduce the intermediate variable

pi = D−(i)− di−1l
2
i−1, (4.4.24)

= di − U−(i)dili − µ, by (4.4.22)

=
di

D−(i + 1)
(D−(i + 1)− dil

2
i)− µ, by (4.4.23)

=
di

D−(i + 1)
· pi+1 − µ. (4.4.25)

Using this intermediate variable, we get the differential form of the progressive qd transfor-

mation,

82

Algorithm 4.4.5 (dqds)

pn := dn − µ

for i = n− 1, 1,−1

D−(i + 1) := dil
2
i + pi+1

t := di/D−(i + 1)

U−(i) := lit

pi := pi+1t− µ

end for

D−(1) := p1

Note that we have denoted the intermediate variables by the symbols si and pi to

stand for stationary and progressive respectively.

As in Algorithm 3.2.1, we also need to find all the γk’s in order to choose the

appropriate twisted factorization for computing the eigenvector. Since (LDLT)k,k+1 = dklk,

by the fourth formula for γk in Corollary 3.1.1, we have

γk = D+(k)− (dklk)2

D−(k + 1)
,

= sk + dk −
(dklk)2

D−(k + 1)
, by (4.4.20)

= sk +
dk

D−(k + 1)

(
D−(k + 1)− dkl

2
k

)
.

By (4.4.24), (4.4.25) and (4.4.21), we can express γk as

γk =


sk + dk

D−(k+1) · pk+1,

sk + pk + µ,

pk + L+(k − 1)lk−1sk−1.

(4.4.26)

In the next section, we will see that the top and bottom formulae in (4.4.26) are

“better” for computational purposes. We can now choose r as the index where |γk| is

minimum. The twisted factorization at position r is given by

LDLT − µI = NrDrN
T
r ,

where Dr = diag(D+(1), . . . , D+(r−1), γr, D−(r+1), . . . , D−(n)) and Nr is the correspond-

ing twisted factor (see (3.1.10)). It may be formed by the following “differential twisted

quotient-difference with shift”(dtwqds) transformation.

83

Algorithm 4.4.6 (dtwqds)

s1 := −µ

for i = 1, r − 1

D+(i) := si + di

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − µ

end for

pn := dn − µ

for i = n− 1, r,−1

D−(i + 1) := dil
2
i + pi+1

t := di/D−(i + 1)

U−(i) := lit

pi := pi+1t− µ

end for

γr := sr +
dr

D−(r + 1)
· pr+1

Note: In cases where we have already computed the stationary and progressive transforma-

tions, i.e., we have computed L+, D+, U− and D−, the only additional work needed for

dtwqds is one multiplication and one addition to compute γr.

In the next section, we exhibit desirable properties of the differential forms of

our qd-like transformations in the face of roundoff errors. Before we do so, we emphasize

that the particular qd-like transformations presented in this section are new. Similar qd

recurrences have been studied by Rutishauser [121, 122, 123], Henrici [76], Fernando and

Parlett [56], Yao Yang [138] and David Day [28].

4.4.2 Roundoff Error Analysis

First, we introduce our model of arithmetic. We assume that the floating point

result of a basic arithmetic operation ◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 + η) = (x ◦ y)/(1 + δ)

84

where η and δ depend on x, y, ◦, and the arithmetic unit but satisfy

|η| < ε, |δ| < ε

for a given ε that depends only on the arithmetic unit. We shall choose freely the form (η

or δ) that suits the analysis. As usual, we will ignore O(ε2) terms in our analyses. We also

adopt the convention of denoting the computed value of x by x̂.

Ideally, we would like to show that the differential qd transformations introduced

in the previous section produce an output that is exact for data that is very close to the input

matrix. Since we desire relative accuracy, we would like this backward error to be relative.

However, our algorithms do not admit such a pure backward analysis (see [138, 110] for a

backward analysis where the backward errors are absolute but not relative). Nevertheless,

we will give a hybrid interpretation involving both backward and forward relative errors.

Our error analysis is on the lines of that presented in [56].

The best way to understand our first result is by studying Figure 4.1. Following

Rutishauser, we merge elements of L and D into a single array,

Z := {d1, l1, d2, l2, . . . , dn−1, ln−1, dn}.

Likewise, the array
→
Z is made up of elements

→
di and

→
l i, Ẑ+ contains elements D̂+(i), L̂+(i)

and so on. The acronym ulp in Figure 4.1 stands for units in the last place held. It is the

natural way to refer to relative differences between numbers. When a result is correctly

rounded the error is not more than half an ulp.

In all our results of this section, numbers in the computer are represented by

letters without any overbar, such as Z, or by “hatted” symbols, such as Ẑ+. For example

in Figure 4.1, Z represents the input data while Ẑ+ represents the output data obtained by

executing the dstqds algorithm in finite precision. Intermediate arrays, such as
→
Z and

_

Z+,

are introduced for our analysis but are typically unrepresentable in a computer’s limited

precision. Note that we have chosen the symbols → and _ in Figure 4.1 to indicate a

process that takes rows and columns in increasing order, i.e., from “left to right” and “top

to bottom”. Later, in Figure 4.2 we use← and ^ to indicate a “right to left” and “bottom

to top” process.

Figure 4.1 states that the computed outputs of the dstqds transformation (see

Algorithm 4.4.3), D̂+(i) and L̂+(i) are small relative perturbations of the quantities
_

D+ (i)

and
_

L+ (i) which in turn are the results of an exact dstqds transformation applied to the per-

turbed matrix represented by
→
Z. The elements of

→
Z are obtained by small relative changes

85

-

6

-

?
→
Z

_

Z+

Z Ẑ+

dstqds

exact

dstqds

computed

change each
di by 1 ulp,
li by 3 ulps.

change each
_

D+ (i) by 2 ulps,
_

L+ (i) by 3 ulps.

Figure 4.1: Effects of roundoff — dstqds transformation

in the inputs L and D. Analogous results hold for the dqds and dtwqds transformation

(see Algorithms 4.4.5 and 4.4.6). As we mentioned above, this is not a pure backward error

analysis. We have put small perturbations not only on the input but also on the output in

order to obtain an exact dstqds transform. This property is called mixed stability in [30]

but note that our perturbations are relative ones.

Theorem 4.4.2 Let the dstqds transformation be computed as in Algorithm 4.4.3. In the

absence of overflow and underflow, the diagram in Figure 4.1 commutes and
→
di (

→
l i) differs

from di (li) by 1 (3) ulps, while D̂+(i) (L̂+(i)) differs from
_

D+ (i) (
_

L+ (i)) by 2 (3) ulps.

Proof. We write down the exact equations satisfied by the computed quantities.

D̂+(i) = (ŝi + di)/(1 + ε+),

L̂+(i) = di li(1 + ε∗)(1 + ε/)/D̂+(i) =
di li(1 + ε∗)(1 + ε/)(1 + ε+)

ŝi + di
,

and ŝi+1 =
L̂+(i) liŝi(1 + ε◦)(1 + ε∗∗)− µ

1 + εi+1
.

In the above, all ε’s depend on i but we have chosen to single out the one that accounts for

the subtraction as it is the only one where the dependence on i must be made explicit. In

more detail the last relation is

(1 + εi+1)ŝi+1 =
di l

2
i ŝi

ŝi + di
(1 + ε∗)(1 + ε/)(1 + ε+)(1 + ε◦)(1 + ε∗∗)− µ.

86

The trick is to define
→
di and

→
l i so that the exact dstqds relation

→
s i+1 =

→
di

→
l
2

i
→
s i

→
s i +

→
di

− µ (4.4.27)

is satisfied. This may be achieved by setting

→
di = di(1 + εi),
→
s i = ŝi(1 + εi), (4.4.28)

→
l i = li

√
(1 + ε∗)(1 + ε/)(1 + ε+)(1 + ε◦)(1 + ε∗∗)

1 + εi
.

In order to satisfy the exact mathematical relations of dstqds,

_

D+ (i) =
→
s i +

→
di, (4.4.29)

_

L+ (i) =
→
di

→
l i

→
s i +

→
di

, (4.4.30)

we set

_

D+ (i) = D̂+(i)(1 + ε+)(1 + εi),

_

L+ (i) = L̂+(i)

√
(1 + ε◦)(1 + ε∗∗)

(1 + ε∗)(1 + ε/)(1 + ε+)(1 + εi)
(4.4.31)

and the result holds. tu
A similar result holds for the dqds transformation.

Theorem 4.4.3 Let the dqds transformation be computed as in Algorithm 4.4.5. In the

absence of overflow and underflow, the diagram in figure 4.2 commutes and
←
di (

←
l i) differs

from di (li) by 3 (3) ulps, while D̂−(i) (Û−(i)) differs from
^

D− (i) (
^

U− (i)) by 2 (4) ulps.

Proof. The proof is similar to that of Theorem 4.4.2. The computed quantities satisfy

D̂−(i + 1) = (di l
2
i (1 + ε∗)(1 + ε∗∗) + p̂i+1)/(1 + ε+), (4.4.32)

t̂ = di(1 + ε/)/D̂−(i + 1),

Û−(i) = lit̂(1 + ε◦) =
di li(1 + ε/)(1 + ε◦)(1 + ε+)
di l2i (1 + ε∗)(1 + ε∗∗) + p̂i+1

,

p̂i =
(di/D̂−(i + 1))p̂i+1(1 + ε/)(1 + ε◦◦)− µ

1 + εi
,

⇒ (1 + εi)p̂i =
di p̂i+1

di l2i (1 + ε∗)(1 + ε∗∗) + p̂i+1
(1 + ε/)(1 + ε◦◦)(1 + ε+)− µ.

87

-

6

-

?
←
Z

^

Z−

Z Ẑ−

dqds

exact

dqds

computed

change each
di by 3 ulps,
li by 3 ulps.

change each
^

D− (i) by 2 ulps,
^

U− (i) by 4 ulps.

Figure 4.2: Effects of roundoff — dqds transformation

Note that the above ε’s are different from the ones in the proof of the earlier Theorem 4.4.2.

As in Theorem 4.4.2, the trick is to satisfy the exact relation,

←
p i =

←
di
←
p i+1

←
di

←
l
2

i +
←
p i+1

− µ, (4.4.33)

which is achieved by setting

←
di = di(1 + ε/)(1 + ε◦◦)(1 + ε+),
←
p i = p̂i(1 + εi), (4.4.34)

and
←
l i = li

√
(1 + ε∗)(1 + ε∗∗)(1 + εi+1)
(1 + ε/)(1 + ε◦◦)(1 + ε+)

, (4.4.35)

so that
←
di

←
l
2

i = di l
2
i (1 + ε∗)(1 + ε∗∗)(1 + εi+1).

The other dqds relations,

^

D− (i + 1) =
←
di

←
l
2

i +
←
p i+1, (4.4.36)

^

U− (i) =
←
di

←
l i

←
di

←
l
2

i +
←
p i+1

, (4.4.37)

may be satisfied by setting

^

D− (i + 1) = D̂−(i + 1)(1 + ε+)(1 + εi+1),

^

U− (i) =
Û−(i)
1 + ε◦

√
(1 + ε∗)(1 + ε∗∗)(1 + ε◦◦)
(1 + ε/)(1 + ε+)(1 + εi+1)

. (4.4.38)

88

-

6

-

?

Z̄ Z̃k

Z Ẑk

dtwqds
exact

dtwqds

computed

change each
di by 1 ulp, 1 ≤ i < k,
li by 3 ulps, 1 ≤ i < k,
dk by 4 ulps, lk by 3 1

2 ulps,
di by 3 ulps, k < i ≤ n,
li by 3 ulps, k < i < n.

change each
_

D+ (i) by 2 ulps, 1 ≤ i < k,
_

L+ (i) by 3 ulps, 1 ≤ i < k.
γ̃k by 2 ulps, Ũ−(k) by 4 1

2 ulps,
^

D− (i) by 2 ulps, k < i ≤ n,
^

U− (i) by 4 ulps, k < i < n.

Figure 4.3: Effects of roundoff — dtwqds transformation

By combining parts of the analyses for the dstqds and dqds transformations, we

can also exhibit a similar result for the twisted factorization computed by Algorithm 4.4.6.

In Figure 4.3, the various Z arrays represent corresponding twisted factors that may be

obtained by “concatenating” the stationary and progressive factors. In particular, for any

twist position k,

Ẑk := {D̂+(1), L̂+(1), . . . , L̂+(k − 1), γ̂k, Û−(k), . . . , Û−(n− 1), D̂−(n)},

Z̃k := {
_

D+ (1),
_

L+ (1), . . . ,
_

L+ (k − 1), γ̃k,
^

U− (k), . . . ,
^

U− (n− 1),
^

D− (n)},

while

Z̄ := {
→
d1,

→
l 1, . . . ,

→
l k−1, d̄k,

←
l k, . . . ,

←
l n−1,

←
dn}.

Ẑk and Z̃k represent the twisted factorizations

N̂kD̂kN̂
T
k and ÑkD̃kÑ

T
k

respectively (note that ∼ is a concatenation of the symbols _ and ^, while − may also be

derived by concatenating ← and →).

Theorem 4.4.4 Let the dtwqds transformation be computed as in Algorithm 4.4.6. In the

absence of overflow and underflow, the diagram in Figure 4.3 commutes and
→
di (

→
l i) differs

from di (li) by 1 (3) ulps for 1 ≤ i < k, d̄k (l̄k) differs from dk (lk) by 4 (31
2) ulps, while

89

←
di (

←
l i) differs from di (li) by 3 (3) ulps for k < i ≤ n. On the output side, D̂+(i) (L̂+(i))

differs from
_

D+ (i) (
_

L+ (i)) by 2 (3) ulps for 1 ≤ i < k, γ̂k (Ũ−(k)) differs from γ̃k (Ũ−(k))

by 2 (41
2) ulps, while D̂−(i) (Û−(i)) differs from

^

D− (i) (
^

U− (i)) by 2 (4) ulps for k < i ≤ n.

Proof. The crucial observation is that for the exact stationary transformation ((4.4.27),

(4.4.29) and (4.4.30)) to be satisfied for 1 ≤ i ≤ k−1, roundoff errors need to be put only on

d1, d2, . . . , dk−1 and l1, l2, . . . , lk−1. Similarly for the progressive transformation ((4.4.33),

(4.4.36) and (4.4.37)) to hold for k + 1 ≤ i ≤ n, roundoff errors need to be put only on

the bottom part of the matrix, i.e., on dk+1, . . . , dn and lk+1, . . . , ln−1. By the top formula

in (4.4.26),

γ̂k =

(
ŝk +

dk

D̂−(k + 1)
p̂k+1(1 + ε−/)(1 + ε−◦◦)

)/
(1 + εk).

Note that in the above, we have put the superscript − on some ε’s to indicate that they are

identical to the corresponding ε’s in the proof of Theorem 4.4.3. By (4.4.28) and (4.4.32),

(1 + εk)γ̂k =
→
sk

1 + ε+
k

+
p̂k+1 · dk(1 + ε−/)(1 + ε−◦◦)(1 + ε−+)

dk l2k(1 + ε−∗)(1 + ε−∗∗) + p̂k+1
,

⇒ (1 + εk)(1 + ε+
k)γ̂k =

→
sk +

p̂k+1(1 + ε−k+1) · dk(1 + ε−/)(1 + ε−◦◦)(1 + ε−+)(1 + ε+
k)

dk l2k(1 + ε−∗)(1 + ε−∗∗)(1 + ε−k+1) + p̂k+1(1 + ε−k+1)
.

Note that we are free to attribute roundoff errors to dk and lk in order to preserve exact

mathematical relations at the twist position k. In particular, by setting

γ̃k = γ̂k(1 + εk)(1 + ε+
k),

d̄k = dk(1 + ε−/)(1 + ε−◦◦)(1 + ε−+)(1 + ε+
k),

l̄k = lk

√√√√ (1 + ε−∗)(1 + ε−∗∗)(1 + ε−k+1)
(1 + ε−/)(1 + ε−◦◦)(1 + ε−+)(1 + ε+

k)
,

and recalling that
←
pk= p̂k(1 + ε−k) (see (4.4.34)), the following exact relation holds,

γ̃k =
→
sk +

d̄k
←
pk+1

d̄k l̄2k+
←
pk+1

.

In addition, the exact relation

Ũ−(k) =
d̄k l̄k

d̄k l̄2k+
←
pk+1

90

-

6

-

?

T̄ = (ak, b̄k) Z̃

T = (ak, bk) Ẑ

LDLT decomposition

exact

LDLT decomposition
computed

change each
bk by 21

2 ulps.
change each
dk by 2 ulps,

lk by 21
2 ulps.

Figure 4.4: Effects of roundoff — LDLT decomposition

holds if we set

Ũ−(k) =
Û−(k)
1 + ε−◦

√√√√(1 + ε−∗)(1 + ε−∗∗)(1 + ε−◦◦)(1 + ε+
k)

(1 + ε−/)(1 + ε−k+1)(1 + ε−+)
, (4.4.39)

where ε−◦ is identical to the ε◦ of (4.4.38). tu
Note: A similar result may be obtained if γk is computed by the last formula in (4.4.26).

Before we proceed to the next section, we give an algorithm and error analysis for

the initial decomposition

T + µI = LDLT .

We denote the diagonal elements of T by ai and off-diagonal elements by bi.

Algorithm 4.4.7 [Computes the initial LDLT decomposition.]

d1 := a1 + µ

for i = 1, n− 1

li := bi/di

di+1 := (ai+1 + µ)− libi

end for

91

Theorem 4.4.5 Let the LDLT decomposition be computed as in Algorithm 4.4.7. In the

absence of overflow and underflow, the diagram in Figure 4.4 commutes and b̄i differs from

bi by 21
2 ulps, while d̂i (l̂i) differs from d̃i (l̃i) by 2 (21

2) ulps.

Proof. The computed quantities satisfy

l̂i =
bi

d̂i

· (1 + ε/),

d̂i+1 =
(ai+1 + µ)/(1 + ε+

i+1)− bi l̂i(1 + ε∗)
1 + ε−i+1

,

⇒ (1 + ε+
i+1)(1 + ε−i+1)d̂i+1 = (ai+1 + µ)− b2

i

d̂i

(1 + ε/)(1 + ε∗)(1 + ε+
i+1).

By setting

d̃i+1 = d̂i+1(1 + ε+
i+1)(1 + ε−i+1), d̃1 = d̂1(1 + ε+

1),

l̃i = l̂i

√√√√ (1 + ε∗)(1 + ε+
i+1)

(1 + ε/)(1 + ε+
i)(1 + ε−i)

,

b̄i = bi

√
(1 + ε/)(1 + ε∗)(1 + ε+

i+1)(1 + ε+
i)(1 + ε−i), (4.4.40)

the following exact relations hold

l̃i =
b̄i

d̃i

,

d̃i+1 = ai+1 + µ− b̄2
i

d̃i

.

tu
We can obtain a purely backward error analysis in the above case by showing

that the LDLT decomposition computed by Algorithm 4.4.7 is exact for T + δT , where δT

represents an absolute perturbation in the nonzero elements of T .

Theorem 4.4.6 In the absence of overflow and underflow, the L̂D̂L̂T decomposition com-

puted by Algorithm 4.4.7 is exact for a slightly perturbed matrix T + δT , i.e.,

T + δT + µI = L̂D̂L̂T ,

where

|δbi| = |ηi1 d̂i l̂i + ηi2bi|, ηi1 , ηi2 < 2.5ε, (4.4.41)

|δai+1| = |ηi3 d̂i l̂
2
i + ηi4 d̂i+1|, ηi3 < 3ε, ηi4 < 2ε. (4.4.42)

92

Proof. From Theorem 4.4.5, the following relation holds

T̄ + µI = L̃D̃L̃T , (4.4.43)

where T̄ , L̃ and D̃ are as in Figure 4.4 and Theorem 4.4.5. Equating the diagonal and

off-diagonal elements of (4.4.43), we get

b̄i = d̃i l̃i, (4.4.44)

ai+1 + µ = d̃i l̃
2
i + d̃i+1. (4.4.45)

By Theorem 4.4.5,

d̃i l̃i = d̂i l̂i

√√√√(1 + ε+
i)(1 + ε−i)(1 + ε∗)(1 + ε+

i+1)
1 + ε/

= d̂i l̂i(1 + ηi1),

d̃i l̃
2
i = d̂i l̂

2
i

(1 + ε∗)(1 + ε+
i+1)

1 + ε/

= d̂i l̂
2
i (1 + ηi3),

d̃i+1 = d̂i+1(1 + ε+
i+1)(1 + ε−i+1) = d̂i+1(1 + ηi4),

where ηi1 < 2.5ε, ηi3 < 3ε and ηi4 < 2ε. Substituting the above in (4.4.44) and (4.4.45) we

get

bi + (b̄i − bi − ηi1 d̂i l̂i) = d̂i l̂i,

ai+1 − (ηi3 d̂i l̂
2
i + ηi4 d̂i+1) + µ = d̂i l̂

2
i + d̂i+1.

The result now follows by recalling the relation between bi and b̄i given in (4.4.40). tu
The backward error given above is small when there is no “element growth” in the

LDLT decomposition. The following lemma proves the well known fact that no element

growth is obtained when factoring a positive definite tridiagonal matrix.

Lemma 4.4.1 Suppose T̃ is a positive definite tridiagonal matrix. Its L̃D̃L̃T factorization,

i.e.,

T̃ = L̃D̃L̃T

satisfies

0 < d̃i ≤ T̃ (i, i) ≤ ‖T̃‖, for i = 1, 2, . . . , n

0 ≤ d̃i−1 l̃
2
i−1 ≤ T̃ (i, i) ≤ ‖T̃‖, for i = 1, . . . , n− 1

and d̃i l̃i = T̃ (i + 1, i) ⇒ |d̃i l̃i| ≤ ‖T̃‖, for i = 1, . . . , n− 1.

93

Proof. The proof is easily obtained by noting that

d̃i−1 l̃
2
i−1 + d̃i = T̃ (i, i),

d̃i l̃i = T̃ (i + 1, i)

and using properties of a positive definite matrix by which the diagonal elements of T̃ and

D̃ must be positive. tu
Note that in the above lemma, we do not claim that the elements of L̃ are bounded

by ‖T̃‖. Indeed, the elements of L̃ can be arbitrarily large as seen from the following

example,  ε2p εp

εp 1 + ε

 =

 1 0

ε−p 1

 ε2p 0

0 ε

 1 ε−p

0 1

 .

Corollary 4.4.1 Suppose T + µI is a positive definite tridiagonal matrix. In the absence

of overflow and underflow, Algorithm 4.4.7 computes L̂ and D̂ such that

T + δT + µI = L̂D̂L̂T ,

where

|δbi| < 5ε|bi|,

|δai+1| < 3ε|ai+1 + µ|,

and since |µ| ≤ ‖T‖,

‖δT‖1 < 5ε‖T‖1 + 3ε|µ| < 8ε‖T‖1.

Proof. The result follows by recalling that d̃i and l̃i are obtained by small relative changes

in d̂i and l̂i respectively, and then substituting the inequalities of Lemma 4.4.1 in (4.4.41)

and (4.4.42). tu
Note: The backward error on T is relative if µ = 0.

4.4.3 Algorithm X — orthogonality for large relative gaps

In this section, we complete the preliminary version of the method outlined in

Algorithm 4.4.1. It is based on the differential qd-like transformations of Section 4.4.1. The

following algorithm computes eigenvectors that are numerically orthogonal whenever the

relative gaps between the eigenvalues of LDLT are large, i.e., O(1).

94

Algorithm X [Computes eigenvectors using bidiagonals.]

1. Find µ ≤ ‖T‖ such that T + µI is positive (or negative) definite.

2. Compute T + µI = LDLT .

3. Compute the eigenvalues, σ̂2
j , of LDLT to high relative accuracy (by bisection or the

dqds algorithm [56]).

4. For each computed eigenvalue, λ̂ = σ̂2
j , do the following

(a) Compute LDLT − λ̂I = L+D+LT
+ by the dstqds transform (Algorithm 4.4.3).

(b) Compute LDLT − λ̂I = U−D−UT
− by the dqds transform (Algorithm 4.4.5).

(c) Compute γk by the top formula of (4.4.26). Pick r such that |γr| = mink |γk|.

(d) Form the approximate eigenvector zj = z
(r)
j by solving N̂rD̂rN̂

T
r zj = γ̂rer (see

Theorem 3.2.2):

zj(r) = 1,

zj(i) = −L̂+(i) · zj(i + 1), i = r − 1, . . . , 1, (4.4.46)

zj(l + 1) = −Û−(l) · zj(l), l = r, . . . , n− 1.

(e) If needed, compute znrm = ‖zj‖ and set v̂j = zj/znrm.

tu
We will refer to the above method as Algorithm X in anticipation of Algorithm Y

which will handle the case of small relative gaps.

4.5 Proof of Orthogonality

In this section, we prove that the pairs (σ̂2
j ,v̂j) computed by Algorithm X satisfy

‖(T − σ̂2
j I)v̂j‖ = O(nε‖T‖), (4.5.47)

|v̂T
j v̂m| =

m−1
min
k=j

{
O(nε)

reldist2(σj , σk+1)
+

O(nε)
reldist2(σk, σm)

}
, j < m, (4.5.48)

where reldist2 is the relative distance as defined in Section 4.3 and ε is the machine precision.

In particular, the neighboring vectors computed by Algorithm X are such that

|v̂T
j v̂j+1| =

O(nε)
reldist2(σj , σj+1)

. (4.5.49)

95

The O in the above bounds will be replaced by the appropriate expressions in the formal

treatment given in Section 4.5.3. Here, and for the rest of this chapter, we assume that the

singular values are arranged in decreasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn.

As a special case, we provide a rigorous proof that Algorithm X computes numer-

ically orthogonal eigenvectors whenever the eigenvalues of LDLT have large relative gaps.

The key to our success is that we exploit the relative perturbation properties of bidiagonal

matrices given in Section 4.3 by using carefully chosen inner loops in all our computations.

The bounds of (4.5.48) and (4.5.49) are meaningful only when the relative distances

are not too small. In this section, we are only interested in the order of magnitudes of these

relative distances and not in their exact values. Thus in our discussions, quantities such as

relgapp(σj , σi) and reldistp(σ̂j , σi),

where σj and σ̂j agree in almost all their digits, are to be treated equivalently. We will, of

course, be precise in the formal statement of our theorems and their proofs.

4.5.1 A Requirement on r

As explained in Section 3.2, we require that the choice of the index r in Step (4c)

of Algorithm X be such that the residual norm of the computed eigenpair, |γr|/‖zj‖, is

“small”. For the rest of this thesis we assume that our new algorithms always choose such

a “good” r. We now explain why we can ensure such a choice of r.

1. Theorem 3.2.3 proves that there exists a “good” choice of r, i.e., ∃r such that

|γr|
‖zj‖

≤
√

n|σ̂2
j − σ2

j |, (4.5.50)

where zj is the vector computed in Step (4d) of Algorithm X. Note that in all our

methods to compute eigenvectors, σ̂j will be a very good approximation to σj , i.e.,

|σ̂j − σj |
|σj |

= O(ε), (4.5.51)

and so the residual norm given by (4.5.50) will be small.

2. Theorem 3.2.1 showed that a “good” choice of r is often revealed by a small |γr| (this

fact is utilized in Step (4c) of Algorithm X). The following mild assumption on the

approximations σ̂2
j and the separation of the eigenvalues σ2

j ,

|σ2
j − σ̂2

j |
gap(σ̂2

j , {σ2
i |i 6= j})

≤ 1
2(n− 1)

, (4.5.52)

96

where gap(σ̂2
j , {σ2

i |i 6= j}) = mini6=j |σ̂2
j − σ2

i |, ensures that

|γr| ≤ 2n · |σ̂2
j − σ2

j | (4.5.53)

(note that we have obtained the above bound by choosing M in Theorem 3.2.1 to

equal 2). Note that ‖zj‖ ≥ 1 and so a small value of |γr| implies a small residual

norm. Recall that σ̂j will satisfy (4.5.51) and so the eigenvalues have to be very close

together to violate (4.5.52). When the latter happens, there is a theoretical danger

that no γk will be small and we shortly see how to handle such a situation. However,

in all our extensive random numerical testing, we have never come across an example

where small gaps cause all γ’s to be large.

3. We can make a “good” choice of r even in the situation described above by using

twisted Q factorizations that were discussed in Section 3.5. Theorems 3.5.3 and 3.5.4

indicate how to use these factorizations to choose an r that satisfies (4.5.50). Of

course, Step (4c) of Algorithm X needs to be modified when γr is not small enough.

For an alternate approach to compute a good r that does not involve orthogonal

factorizations the reader is referred to [42].

In summary, we have seen how to ensure that r is “good” and either (4.5.50)

or (4.5.53) is satisfied.

Of course, we look for a small residual norm since it implies that the computed

vector is close to the exact eigenvector. The following sin θ theorem, see [112, Chapter 11],

is well known and shows that a small residual norm implies a good eigenvector if the

corresponding eigenvalue is isolated. The theorem, which we will often refer to in the next

few sections, is valid for all Hermitian matrices.

Theorem 4.5.1 Let A = A∗ have an isolated eigenvalue λ with normalized eigenvector v.

Consider y, y∗y = 1, and real µ closer to λ than to any other eigenvalue. Then

| sin 6 (v, y)| ≤ ‖Ay − yµ‖2
gap(µ)

,

where gap(µ) = min{|ν − µ| : ν 6= λ, ν ∈ spectrum (A)}.

The extension of this theorem to higher-dimensional subspaces is due to Davis and

Kahan, see [26] and [27] for more details.

97

-

6

-

?

(ūj) Z̄ Z̃k (ṽj)

(uj) Z Ẑk (v̂j)

dtwqds
exact

dtwqds

computed

change each
di by 1 ulp, 1 ≤ i < k,
li by 3 ulps, 1 ≤ i < k,
dk by 4 ulps, lk by 3 1

2 ulps,
di by 3 ulps, k < i ≤ n,
li by 3 ulps, k < i < n.

change each
_

D+ (i) by 2 ulps, 1 ≤ i < k,
_

L+ (i) by 3 ulps, 1 ≤ i < k.
γ̃k by 2 ulps, Ũ−(k) by 4 1

2 ulps,
^

D− (i) by 2 ulps, k < i ≤ n,
^

U− (i) by 4 ulps, k < i < n.

Figure 4.5: dtwqds transformation applied to compute an eigenvector

4.5.2 Outline of Argument

We alert the reader to the fact that the analysis to follow involves close but different

quantities such as v̂, ṽ, L, L̄, L̃, etc. So watch the overbars carefully. Recall that quantities

with a ∼ or − on top are ideal whereas others like di and D̂+(i) are stored in the computer.

We repeat the commutative diagram for the dtwqds transformation in Figure 4.5

for easy reference. We will relate the computed vector v̂j to an eigenvector uj of LDLT by

first relating it to the intermediate vectors ṽj and ūj . We have associated these vectors with

the various Z arrays in Figure 4.5, and the reader may find it helpful to refer to this figure

during our upcoming exposition. Before we give the formal proofs, we sketch a detailed

outline.

1. The vector computed in Step (4d) of Algorithm X is formed only by multiplications.

As a result, the computed vector v̂j is a small componentwise perturbation of the

vector ṽj which is the exact solution to

(L̄D̄L̄T − σ̂2
j I)ṽj =

γ̃r

‖z̃j‖
er,

i.e.,
|v̂j(i)− ṽj(i)|
|ṽj(i)|

= O(nε) for i = 1, 2, . . . , n, (4.5.54)

and L̄, D̄ are the matrices represented by Z̄ in Figure 4.5. For a formal proof, see

Theorem 4.5.2 and Corollary 4.5.3 below.

98

2. To relate ṽj to an eigenvector ūj of L̄D̄L̄T , we invoke Theorem 4.5.1 to show that

| sin 6 (ūj , ṽj)| ≤
|γ̃r|

‖z̃j‖ · gap(σ̂2
j , {σ̄2

i |i 6= j})
, (4.5.55)

where gap(σ̂2
j , {σ̄2

i |i 6= j}) = mini6=j |σ̂2
j − σ̄2

i |, σ̄2
i being the ith eigenvalue of L̄D̄L̄T .

Section 4.5.1 explained how we can always ensure that the residual norm is small, i.e.,

|γ̃r|/‖z̃j‖ = O(nεσ̂2
j). By substituting this value in (4.5.55), the absolute gap turns

into a relative gap and we get

| sin 6 (ūj , ṽj)| =
O(nε)

relgap(σ̂j , {σ̄i|i 6= j})
. (4.5.56)

3. Next we relate ūj to an eigenvector uj of LDLT . L̄ and D̄ are small componentwise

perturbations of L and D as shown by our roundoff error analysis of the dtwqds

transformation in Theorem 4.4.4. By the properties of a perturbed bidiagonal matrix

ūj can be related to uj (see Corollary 4.3.2), i.e.,

| sin 6 (ūj , uj)| =
O(nε)

relgap2(σj , {σ̄i|i 6= j})
. (4.5.57)

The reader should note that the matrices L̃, D̃ and L̄, D̄ depend on σ̂2
j whereas LDLT

is the fixed representation. By (4.5.54), (4.5.56) and (4.5.57), we have related vectors

computed by Algorithm X to eigenvectors of LDLT ,

| sin 6 (v̂j , uj)| =
O(nε)

relgap2(σj , {σi|i 6= j})
.

Theorem 4.5.3 below contains the details.

Similarly, using the Davis-Kahan SinΘ theorem [26, 27] and the subspace theorems

given in Section 4.3, it can be shown that

| sin 6 (v̂j , U
1:j)| =

O(nε)
reldist2(σj , σj+1)

, (4.5.58)

and | sin 6 (v̂j , U
j:n)| =

O(nε)
reldist2(σj , σj−1)

, (4.5.59)

where U1:j and U j:n denote the invariant subspaces spanned by u1, u2, . . . , uj and

uj , . . . , un respectively. See Theorems 4.5.4 and 4.5.5 for the details.

4. The dot product between the neighboring vectors v̂j and v̂j+1 can now be bounded

since

| cos 6 (v̂j , v̂j+1)| ≤
∣∣∣∣cos 6

{
π

2
−
(
6 (v̂j , U

1:j) + 6 (v̂j+1, U
j+1:n)

)}∣∣∣∣ ,
⇒ |v̂T

j v̂j+1| ≤ | sin 6 (v̂j , U
1:j)|+ | sin 6 (v̂j+1, U

j+1:n)|.

99

By (4.5.58) and (4.5.59), we get

|v̂T
j v̂j+1| =

O(nε)
reldist2(σj , σj+1)

.

For details, see Corollary 4.5.2 below. The result (4.5.48) can be shown in the same

way. Hence if all the relative gaps between eigenvalues of LDLT are large, the vectors

computed by Algorithm X are numerically orthogonal.

5. The final step in the proof is to show that the residual norms with respect to the

input tridiagonal matrix T are small, i.e., (4.5.47) is satisfied. Since we can always

ensure a small value of |γr|/‖zj‖, we can show we always compute eigenpairs with

small residual norms, irrespective of the relative gaps. See Theorem 4.5.6 for details.

4.5.3 Formal Proof

Now, the formal analysis begins. We start by showing that the computed vector

is very close to an ideal vector.

Theorem 4.5.2 Let N̂r and D̂r, Ñr and D̃r be the twisted factors represented by Ẑr and

Z̃r respectively in Figure 4.5 (see Theorem 4.4.4 also). Let ẑj be the value of zj computed

in Step (4d) of Algorithm X, and let z̃j be the exact solution of

ÑrD̃rÑ
T
r z̃j = γ̃rer.

Then ẑj is a small relative perturbation of z̃j. More specifically,

ẑj(r) = z̃j(r) = 1,

ẑj(i) = z̃j(i) · (1 + ηi), i 6= r, (4.5.60)

where

|ηi| ≤

 4(r − i)ε, 1 ≤ i < r,

5(i− r)ε, r < i ≤ n.
(4.5.61)

Proof. Accounting for the rounding error in (4.4.46) of Algorithm X, we get

ẑj(i) = −L̂+(i) · ẑj(i + 1) · (1 + εi
∗).

Now replace L̂+ by
_

L+ using (4.4.31) in Theorem 4.4.2 and set i = r − 1 to get

ẑj(r − 1) = −
_

L+ (r − 1) · (1 + η+
r−1)ẑj(r) · (1 + εr−1

∗) = z̃j(r − 1) · (1 + η+
r−1)(1 + εr−1

∗),

100

where η+
r−1 < 3ε. Thus (4.5.60) holds for i = r − 1 (note that εr−1

∗ = 0 since ẑj(r) = 1),

and similarly for i < r− 1. Rounding errors can analogously be attributed to the lower half

of ẑ by

ẑj(l + 1) = −Û−(l) · ẑj(l) · (1 + εl+1
◦).

Replacing Û− by Ũ− using (4.4.39) and setting l = r, we obtain

ẑj(r + 1) = −Ũ−(r) · ẑj(r) · (1 + η−r+1)(1 + εr+1
◦) = z̃j(r − 1) · (1 + η−r+1)(1 + εr+1

◦),

where η−r+1 < 4.5ε. Thus (4.5.60) holds for i = r + 1 (note that εr+1
◦ = 0), and by

using (4.4.38) we can similarly show that it holds for i > r + 1. tu
The following theorem is at the heart of the results of this section.

Theorem 4.5.3 Let (σ2
j , uj) denote the jth eigenpair of LDLT , and let σ̂2

j be the approx-

imation used to compute zj = z
(r)
j by Step (4d) of Algorithm X, where r is an index such

that
|γ̃r|
‖z̃j‖

≤
√

n |σ̂2
j − σ̄2

j |. (4.5.62)

Then

| sin 6 (ẑj , uj)| ≤ 5nε +
√

n |σ̂2
j − σ̄2

j |
gap(σ̂2

j , {σ̄2
i |i 6= j})

+
3nε

relgap2(σj , {σ̄i|i 6= j})
,

where σ̄i
2 is the ith eigenvalue of L̄D̄L̄T (see Figure 4.5) and differs from σ2

i by a few ulps.

Proof. As we outlined in Section 4.5.2, to prove this result we will relate ẑj to uj by first re-

lating ẑj to an eigenvector of the intermediate matrix L̄D̄L̄T (see Figure 4.5). Theorem 4.5.2

links ẑj to z̃j and implies that

| sin 6 (ẑj , z̃j)| ≤ ‖ẑj − z̃j‖ ≤ 5nε. (4.5.63)

Note that z̃j is the exact solution to

(L̄D̄L̄T − σ̂2
j I)z̃j = γ̃rer.

Let (σ̄2
j ,ūj) denote the jth eigenpair of L̄D̄L̄T . By Theorem 4.5.1,

| sin 6 (z̃j , ūj)| ≤
|γ̃r|

‖z̃j‖ · gap(σ̂2
j , {σ̄2

i |i 6= j})
.

101

Since r is such that (4.5.62) is satisfied (recall that Section 4.5.1 explains why this bound

can always be satisfied), we get

| sin 6 (z̃j , ūj)| ≤
√

n |σ̂2
j − σ̄2

j |
gap(σ̂2

j , {σ̄2
i |i 6= j})

. (4.5.64)

Since L̄ and D̄ are small relative perturbations of L and D, σ̄i is a small relative perturbation

of σi by Corollary 4.3.1. In addition,

| sin 6 (ūj , uj)| ≤
3nε

relgap2(σj , {σ̄i|i 6= j})
, (4.5.65)

where we obtained the above bound by converting all the ulp changes in entries of L and

D given in Theorem 4.4.4 to ulp changes in the off-diagonal and diagonal elements of

LD1/2, and then applying Corollary 4.3.2. The result now follows from (4.5.63), (4.5.64)

and (4.5.65) since

| sin 6 (ẑj , uj)| ≤ | sin 6 (ẑj , z̃j)|+ | sin 6 (z̃j , ūj)|+ | sin 6 (ūj , uj)|.

tu
We can generalize the above result to bound the angle between the computed vector and

the invariant subspaces of LDLT .

Theorem 4.5.4 Let σ̂2
j be the approximation used to compute zj by Step (4d) of Algo-

rithm X, and r be such that (4.5.62) is satisfied. Let (σ2
j , uj) be the jth eigenpair of LDLT

and let U1:k denote the subspace spanned by u1, . . . , uk. Then for j ≤ k < n,

| sin 6 (ẑj , U
1:k)| ≤ 5nε +

√
n |σ̂2

j − σ̄2
j |

gap(σ̂2
j , {σ̄2

k+1})
+

3nε

relgap2(σj , {σ̄k+1})
,

where σ̄i
2 is the ith eigenvalue of L̄D̄L̄T (see Figure 4.5) and differs from σ2

i by a few ulps.

Proof. The proof is almost identical to that of the above Theorem 4.5.3 except that

instead of applying Theorem 4.5.1 and Corollary 4.3.2 to get bounds on the angles between

individual vectors, we apply the Davis-Kahan SinΘ Theorem [26, 27] and Corollary 4.3.3

to get similar bounds on the angles between corresponding subspaces. tu

Theorem 4.5.5 Let σ̂2
j be the approximation used to compute zj by Step (4d) of Algo-

rithm X, and r be such that (4.5.62) is satisfied. Let (σ2
j , uj) be the jth eigenpair of LDLT

and let Uk:n denote the subspace spanned by uk, . . . , un. Then for 1 < k ≤ j,

| sin 6 (ẑj , U
k:n)| ≤ 5nε +

√
n |σ̂2

j − σ̄2
j |

gap(σ̂2
j , {σ̄2

k−1})
+

3nε

relgap2(σj , {σ̄k−1})
,

where σ̄i
2 is the ith eigenvalue of L̄D̄L̄T (see Figure 4.5) and differs from σ2

i by a few ulps.

102

Finally we can bound the dot products between the computed eigenvectors using the above

results.

Corollary 4.5.1 Let σ̂2
j and σ̂2

m be the approximations used to compute zj and zm respec-

tively by Step (4d) of Algorithm X. Let the twist indices r for both these computations

satisfy (4.5.62). Then

|ẑT
j ẑm)|

‖ẑj‖ · ‖ẑm‖
≤ 10nε + min

k=j,m−1

{ √
n |σ̂2

j − σ̄2
j |

gap(σ̂2
j , {σ̄2

k+1})
+
√

n |σ̂2
m − σ̄2

m|
gap(σ̂2

m, {σ̄2
k})

+

3nε

relgap2(σj , {σ̄k+1})
+

3nε

relgap2(σm, {σ̄k})

}
, for j < m.

where σ̄i
2 is the ith eigenvalue of L̄D̄L̄T (see Figure 4.5) and differs from σ2

i by a few ulps.

Proof. The cosine of the angle between the computed vectors can be bounded by

| cos 6 (ẑj , ẑm)| ≤
∣∣∣∣cos 6

{
π

2
−
(
6 (ẑj , U

1:k) + 6 (ẑm, Uk+1:n)
)}∣∣∣∣

= | sin 6 (ẑj , U
1:k)|+ | sin 6 (ẑm, Uk+1:n)|,

where U1:k and Uk+1:n are as in Theorems 4.5.4 and 4.5.5. The result now follows by

applying the results of these theorems, and then choosing k to be the index where the

bound is minimum. tu

Corollary 4.5.2 Let σ̂2
j and σ̂2

j+1 be the approximations used to compute zj and zj+1 re-

spectively by Step (4d) of Algorithm X. Let the indices r for both these computations sat-

isfy (4.5.62). Then

|ẑT
j ẑj+1)|

‖ẑj‖ · ‖ẑj+1‖
≤ 10nε +

√
n |σ̂2

j − σ̄2
j |

gap(σ̂2
j , {σ̄2

j+1})
+
√

n |σ̂2
j+1 − σ̄2

j+1|
gap(σ̂2

j+1, {σ̄2
j })

+

3nε

relgap2(σj , {σ̄j+1})
+

3nε

relgap2(σj+1, {σ̄j})
.

where σ̄i
2 is the ith eigenvalue of L̄D̄L̄T (see Figure 4.5) and differs from σ2

i by a few ulps.

Proof. This is a special case of Corollary 4.5.1. tu
Instead of assuming (4.5.62), if we assume that

|γ̃r| ≤ 2n · |σ̂2
j − σ̄2

j |, (4.5.66)

we get a bound that is weaker by a factor of only 2
√

n. If such an index r is chosen

in Algorithm X, we can modify the middle terms in Corollaries 4.5.1 and 4.5.2 by using

103

the above bound. See Section 4.5.1 to see how we can ensure that either one of (4.5.62)

or (4.5.66) is satisfied.

Since we can compute the singular values of a bidiagonal matrix to high relative

accuracy, we can find σ̂j such that

|σ2
j − σ̂2

j | ≤ h(n) · ε · σ̂2
j (4.5.67)

where h is a slowly growing function of n.

For the sake of completeness, we prove the well known fact that normalizing ẑj , as

in Step (4e) of Algorithm X, does not change the accuracy of the computed eigenvectors.

Corollary 4.5.3 Let ẑj and z̃j be as in Theorem 4.5.2. Let ṽj = z̃j/‖z̃j‖, and v̂j be the

computed value of ẑj/‖ẑj‖ (see Step (4e) of Algorithm X). Then

v̂j(i) = ṽj(i) · (1 + εi), (4.5.68)

where |εi| ≤ (n + 2)ε + |ηi|+ maxi |ηi|, and ηi is as in (4.5.61).

Proof. The computed value of ‖ẑj‖ equals ‖ẑj‖ · (1 + ε‖) where |ε‖| < (n + 1)ε. Thus

v̂j(i) =
ẑj(i)
‖ẑj‖

· 1 + ε/

1 + ε‖
. (4.5.69)

By (4.5.60) of Theorem 4.5.2,

‖ẑj‖ =

(
n∑

i=1

z̃j(i)2 · (1 + ηi)2
)1/2

= ‖z̃j‖
(∑

i

z̃j(i)2

‖z̃j‖2
· (1 + ηi)2

)1/2

.

It follows that

‖ẑj‖ = ‖z̃j‖ · (1 + ηmax), where |ηmax| = max
i
|ηi|. (4.5.70)

Substituting (4.5.60) and (4.5.70) in (4.5.69), we get

v̂j(i) =
z̃j(i)
‖z̃j‖

· (1 + ε/)(1 + ηi)
(1 + ε‖)(1 + ηmax)

,

and the result follows. tu
Thus for the eigenpairs computed by Algorithm X, the following result holds.

Corollary 4.5.4 Let (σ̂2
j , v̂j) be the approximate eigenpairs computed by Algorithm X. As-

suming that (4.5.66) holds,

|v̂T
j v̂j+1)| ≤ 22nε +

2n|σ̂2
j − σ̄2

j |
gap(σ̂2

j , {σ̄2
j+1})

+
2n|σ̂2

j+1 − σ̄2
j+1|

gap(σ̂2
j+1, {σ̄2

j })
+

3nε

relgap2(σj , {σ̄j+1})
+

3nε

relgap2(σj+1, {σ̄j})
, (4.5.71)

104

and by the relative accuracy of σ̂2
j (see (4.5.67)),

|v̂T
j v̂j+1)| ≤ 22nε +

2nh(n)ε
relgap(σ̂2

j , {σ̄2
j+1})

+
2nh(n)ε

relgap(σ̂2
j+1, {σ̄2

j })
+

3nε

relgap2(σj , {σ̄j+1})
+

3nε

relgap2(σj+1, {σ̄j})
. (4.5.72)

where σ̄i
2 is the ith eigenvalue of L̄D̄L̄T (see Figure 4.5) and differs from σ2

i by a few ulps.

Note that we have chosen to exhibit the result in two forms, namely, (4.5.71) and

(4.5.72). The difference is in the second and third terms of the two bounds. Since we only

care about each term in the bound being O(ε), often it may not be necessary to find an

eigenvalue to full relative accuracy. For example, suppose σ2
n = ε and σ2

n−1 = 1, then there

is no need to find all the correct digits of σ2
n. Instead, absolute accuracy will suffice and be

more efficient in such a case. The first result (4.5.71) makes this clear.

We now show that irrespective of the relative gaps, Algorithm X always computes

eigenpairs with small residual norms.

Theorem 4.5.6 Let T + µI be a positive definite tridiagonal matrix and let (σ̂2
j ,v̂j) be the

approximate eigenpairs computed by Algorithm X. Then their residual norms are small, i.e.,

for j = 1, 2, . . . , n,

‖(T + µI − σ̂2
j I)v̂j‖ ≤

(
2‖T‖1(2nh(n) + 11n3/2 + 4) + 48

)
· ε, (4.5.73)

assuming that (4.5.66) holds.

Proof. We refer the reader to Figure 4.5 for notation used in this proof. Recall that by

definition the vector ṽj is the exact solution to

(L̄D̄L̄T − σ̂2
j I)ṽj =

γ̃r

‖z̃‖
er. (4.5.74)

The elements of L̄ and D̄ are small relative perturbations of the elements of L and D. In

particular,

d̄i = di(1 + ηi
1), (4.5.75)

d̄i l̄i = dili(1 + ηi
2) (4.5.76)

d̄i l̄
2
i = dil

2
i (1 + ηi

3) (4.5.77)

where

|ηi
1| < 4ε, |ηi

2| < 3.5ε, and |ηi
3| < 5ε (4.5.78)

105

(these bounds on ηi’s can be deduced from Theorems 4.4.2, 4.4.3 and 4.4.4). Consider the

ith equation of (4.5.74),

d̄i−1 l̄i−1ṽj(i− 1) + (d̄i−1 l̄
2
i−1 + d̄i − σ̂2

j)ṽj(i) + d̄i l̄iṽj(i + 1) = Ki,

where Ki = 0 if i 6= r and Kr = γ̃r/‖z̃‖. Substituting (4.5.68), (4.5.75), (4.5.76) and (4.5.77)

into the above equation, we get

di−1li−1v̂j(i− 1) + (di−1l
2
i−1 + di − σ̂2

j)v̂j(i) + diliv̂j(i + 1) = Ki + δi,

where

|δi| < |εi−1di−1li−1|+ |εi| · (|di−1l
2
i−1|+ |di|) + |εi+1dili|) +

|ηi−1
2 ṽj(i− 1)|+ (|ηi−1

3 |+ |ηi
1|) · |ṽj(i)|+ |ηi

2ṽj(i + 1)|.

In the above, the εi’s are as in (4.5.68). Since |εi| < 11nε and by (4.5.78), we can bound δi

by

|δi| < 11nε · ‖LDLT ‖1 + 16ε ·max{ṽj(i− 1), ṽj(i), ṽj(i + 1)}.

Thus

(LDLT − σ̂2
j I)v̂j = rj . (4.5.79)

Substituting the bound for |γr| from (4.5.66), we get

‖rj‖ < (2nh(n)σ̂2
j + 11n3/2‖LDLT ‖1 + 48) · ε <

(
(2nh(n) + 11n3/2)‖LDLT ‖1 + 48

)
· ε.

By the backward stability of the Cholesky factorization (see Corollary 4.4.1),

T + δT + µI = LDLT , (4.5.80)

where ‖δT‖1 ≤ 8ε‖T‖1. From (4.5.79) and (4.5.80),

(T + µI − σ̂2
j I)v̂j = (LDLT − σ̂2

j I − δT)v̂j = rj − δT · v̂j ,

and the result follows since ‖LDLT ‖1 ≤ 2‖T‖1 (recall that |µ| ≤ ‖T‖). tu

4.5.4 Discussion of Error Bounds

The careful reader may worry about the nh(n) and n3/2 terms in the bounds on the

residual norms of (4.5.73), and the nh(n) term in the dot product bound given by (4.5.72).

106

Figure 4.6: An eigenvector of a tridiagonal : most of its entries are negligible

The fear is that when n is large enough, these terms are no longer negligible and may lead to

a loss in accuracy. We reassure the reader that our error bounds can be overtly pessimistic

and this is borne out by numerical experience.

Often, an eigenvector of a tridiagonal is non-negligible only in a tiny fraction

of its entries, see Figure 4.6. When this happens we say that the eigenvector has small

“support”. In such a case, the error bounds of (4.5.72) and (4.5.73) can effectively be

reduced by replacing n with |supp| which denotes the support of the eigenvector under

consideration. For example, as in Figure 4.6, we may have n = 1000 but |supp| may be just

over 50 for some eigenvectors.

We give some pointers to the various places where our bounds may be pessimistic.

1. The small |supp| of an eigenvector can lead to smaller error bounds in Theorem 4.5.2

and Corollary 4.5.3. This would mean that n can be replaced by |supp| in the terms

22nε and 11n3/2 that occur in (4.5.72) and (4.5.73) respectively.

2. The bounds of Corollaries 4.3.2 and 4.3.3 that are used frequently may also permit n

to be replaced by |supp|.

3. The term h(n) in (4.5.67) may be quite small. Indeed, if bisection is used for com-

puting the eigenvalues, then h(n) = O(|supp|).

107

4. The
√

n term in (4.5.62) is really ‖ṽj‖−1
∞ (see Theorem 3.2.3) and can be O(1) if the

largest entry of the normalized eigenvector is O(1). Consequently, our results will be

more accurate than as suggested by our error bounds.

4.5.5 Orthogonality in Extended Precision Arithmetic

Suppose the user wants d digits of accuracy, i.e., residual norms and dot products

of about 10−d are acceptable. Until now, we have implicitly assumed that the arithmetic

precision in which we compute is identical to the acceptable level of accuracy, e.g., we desire

O(ε) accuracy in our goals of (1.1.1) and (1.1.2) where ε is the precision of the arithmetic.

Can a desired level of accuracy by guaranteed by arithmetic of a higher precision? For

example, the user may want single precision accuracy when computing in double precision,

or we may aim for double precision accuracy by computing in quadruple precision arithmetic.

The IEEE standard also specifies a Double-Extended precision format (sometimes referred

to as “80-bit” arithmetic) and on some machines, these extra precise computations may

be performed in hardware [2, 65]. Quadruple precision arithmetic is generally simulated in

software [91, 120].

In order to get single precision accuracy, we may try and execute Algorithm X in

double precision arithmetic. However, there are cases when this simple strategy will not

work. Consider Wilkinson’s matrix W+
21 where the largest pair of eigenvalues agree to more

than 16 digits (see [136, p.309] for more details). By the theory developed in Section 4.5,

the corresponding eigenvectors computed by Algorithm X can be nearly parallel even if we

compute in double precision! And indeed in a numerical run, we observe large dot products.

Thus we cannot use the doubled precision accuracy in a naive manner.

We now indicate without proof that Algorithm X can easily be modified to deliver

results that are accurate to a desired accuracy when operating in arithmetic of doubled

precision, i.e., by slightly modifying Algorithm X, it almost always delivers eigenpairs

with O(
√

ε) residual norms and dot products when using arithmetic of precision

ε. The modification is that after computing the LDLT decomposition in Step 2 of Algo-

rithm X, random componentwise perturbations of O(
√

ε) should be made in the elements

of L and D. This perturbation makes it unlikely that relative gaps between the eigenvalues

of the perturbed LDLT will be smaller than O(
√

ε). In many cases, the above effect can

be achieved just by performing the computation to get the LDLT decomposition in
√

ε

precision arithmetic. The computation of the eigenvalues and eigenvectors by Steps 3 and 4

108

of Algorithm X must, of course, be performed in the doubled precision. The results of

Theorem 4.5.6 and Corollary 4.5.4 now imply that both residual norms and dot products

are O(
√

ε).

4.6 Numerical Results

We now provide numerical evidence to verify our claims of the last two sections.

We consider two types of matrices with the following distribution of eigenvalues.

Type 1. n−1 eigenvalues uniformly distributed from ε to (n−1)ε, and the nth eigenvalue

at 1, i.e.,

λi = i · ε, i = 1, 2, . . . , n− 1, and λn = 1.

Type 2. One eigenvalue at ε, n − 2 eigenvalues uniformly distributed from 1 +
√

ε to

1 + (n− 2)
√

ε, and the last eigenvalue at 2, i.e.,

λ1 = ε, λi = 1 + (i− 1) ·
√

ε, i = 2, . . . , n− 1, and λn = 2.

We generated matrices of the above type using the LAPACK test matrix genera-

tor [36], which first forms a random dense symmetric matrix with the given spectrum and

Householder reduction of this dense matrix then yields a tridiagonal of the desired type.

In Table 4.1, we compare the times taken by our new algorithm with the LAPACK

and EISPACK implementations of inverse iteration on matrices of type 1. The O(n3)

behavior of the LAPACK and EISPACK codes is seen in this table while Algorithm X takes

O(n2) time. We see that Table 4.1 shows the new algorithm to be consistently faster — it

is about 3 times faster on a matrix of size 50 and nearly 23 times faster on a 1000 × 1000

matrix. As we proved in the last section, Algorithm X delivers vectors that are numerically

orthogonal, and this is seen in Table 4.2.

On matrices of type 2, our theory predicts that the vectors we compute will have

dot products of about
√

ε (see Corollary 4.5.4). Indeed, as Table 4.3 shows, that is what

we observe. The times taken by Algorithm X to compute the vectors in this case are

approximately the same as the times listed in Table 4.1. Vectors that have dot products

of O(
√

ε) are sometimes referred to as a semi-orthogonal basis. In some cases, such a basis

may be as good as an orthogonal basis, see [114].

109

Matrix Time(LAPACK) Time(EISPACK) Time(Alg. X) Time(Alg. X) /
Size (in s.) (in s.) (in s.) Time(LAPACK)
50 0.10 0.09 0.03 3.33
100 0.45 0.34 0.07 6.43
250 3.60 2.32 0.37 9.73
500 19.88 11.21 1.35 14.73
750 57.53 29.65 2.98 19.31
1000 124.98 60.81 5.51 22.68

Table 4.1: Timing results on matrices of type 1

Matrix maxi ‖T v̂i − σ̂2
i v̂i‖ maxi6=j |v̂T

i v̂j |
Size LAPACK EISPACK Alg. X LAPACK EISPACK Alg. X
50 1.6 · 10−16 5.9 · 10−15 1.2 · 10−16 1.1 · 10−15 2.8 · 10−15 2.5 · 10−15

100 3.1 · 10−17 1.5 · 10−15 1.3 · 10−17 1.1 · 10−15 5.7 · 10−15 2.0 · 10−15

250 1.1 · 10−16 2.1 · 10−14 1.1 · 10−16 1.7 · 10−15 1.4 · 10−14 1.5 · 10−14

500 1.1 · 10−16 4.9 · 10−14 5.5 · 10−18 3.5 · 10−15 2.0 · 10−14 4.2 · 10−14

750 1.1 · 10−16 3.6 · 10−14 3.2 · 10−18 4.6 · 10−15 3.9 · 10−14 4.1 · 10−14

1000 1.2 · 10−17 5.1 · 10−14 2.2 · 10−16 4.4 · 10−15 6.0 · 10−14 8.3 · 10−14

Table 4.2: Accuracy results on matrices of type 1

Matrix Size maxi ‖T v̂i − σ̂2
i v̂i‖ maxi6=j |v̂T

i v̂j |
50 7.2 · 10−16 5.2 · 10−9

100 1.0 · 10−15 3.9 · 10−9

250 1.5 · 10−16 2.5 · 10−9

500 2.1 · 10−15 2.1 · 10−9

750 2.6 · 10−15 2.4 · 10−9

1000 2.9 · 10−15 1.7 · 10−9

Table 4.3: Accuracy results on matrices of type 2

110

A nice property of Algorithm X is that the dot products of the vectors computed

can be predicted quite accurately, based solely on the relative separation of the eigenvalues.

As exhibited in Sections 2.8 and 4.2, existing implementations do not have such a property.

This feature is useful when larger dot products are acceptable, such as in the case of semi-

orthogonal vectors.

Algorithm X is a major step in obtaining an O(n2) algorithm for the symmetric

tridiagonal problem. However, it does not always deliver vectors that are numerically

orthogonal. In the next chapter, we investigate how to extend Algorithm X in order to

always achieve the desired accuracy while doing only O(n2) work.

111

Chapter 5

Multiple Representations

In the previous chapter, we saw how to obtain vectors that are guaranteed to

be numerically orthogonal when eigenvalues have large relative gaps. In this chapter and

the next, we concentrate our energies on the case when relative gaps are smaller than a

threshold, say 1/n. Such eigenvalues will be called a cluster throughout this chapter.

The following is our plan of attack:

1. In Section 5.1, we present two examples which suggest that orthogonality may be

achieved by shifting the matrix close to a cluster and then forming a bidiagonal factor-

ization of the shifted matrix. The aim is to clearly distinguish between the individual

eigenvalues of the cluster so that we can treat each eigenvalue as isolated and compute

the corresponding eigenvector as before. If the bidiagonal factorization is “good”, the

computed vectors will be nearly orthogonal.

2. In Section 5.2, we list the properties that a “good” bidiagonal factorization must

satisfy. We call such a factorization a relatively robust representation. Section 5.2.1

introduces relative condition numbers that indicate when a representation is relatively

robust. In Section 5.2.3, we investigate factorizations of nearly singular tridiagonal

matrices and attempt to explain why these representations are almost always relatively

robust.

3. In Section 5.3, we explain why the vectors computed using different relatively robust

representations turn out to be numerically orthogonal. We do so by introducing a

representation tree which we use as a visual tool for our exposition. A representation

112

tree summarizes the computation and helps in relating the various representations to

each other.

4. In Section 5.4, we present Algorithm Y which is an enhancement to Algorithm X that

was earlier presented in Chapter 4. Algorithm Y takes O(n2) time and handles the

remaining case of small relative gaps. Unlike Algorithm X, we do not have a proof of

correctness of Algorithm Y as yet. In all our numerical testing, which we present in

the next chapter, we have always found it to deliver accurate answers.

5.1 Multiple Representations

Example 5.1.1 [Small Relative Gaps.] Consider the matrix

T0 =


.520000005885958 .519230209355285

.519230209355285 .589792290767499 .36719192898916

.36719192898916 1.89020772569828 2.7632618547882 · 10−8

2.7632618547882 · 10−8 1.00000002235174


with eigenvalues

λ1 ≈ ε, λ2 ≈ 1 +
√

ε, λ3 ≈ 1 + 2
√

ε, λ4 ≈ 2.0,

where ε ≈ 2.2× 10−16 (all these results are in IEEE double precision arithmetic). Since

relgap2(λ2, λ3) ≈
√

ε,

Corollary 4.5.4 implies that the vectors computed by Algorithm X have a dot product of

|v̂T
2 v̂3| = O(nε/

√
ε) = O(n

√
ε).

The challenge is to obtain approximations to v2 and v3 that are numerically orthogonal

without resorting to Gram-Schmidt or a similar technique that explicitly orthogonalizes

vectors.

Note that the eigenvectors of T0 are identical to the eigenvectors of T0 − I. We

can form

T0 − I = L0D0L
T
0 , (5.1.1)

113

to get

diag(D0) =


−.4799999941140420

.1514589857947483

3.074504323352656 · 10−7

1.986821250068485 · 10−8

 , diag(L0,−1) =


−1.081729616088125

2.424365428451800

.08987666186707277

 ,

where we have used the MATLAB notation “diag(L0,−1)” to give the subdiagonal entries

of L0. Note that the interior eigenvalues of this shifted matrix are
√

ε and 2
√

ε. The relative

gap between these numbers is now large! Can we exploit these large relative gaps as we did

in the previous chapter?

Suppose LDLT is a factorization where small relative changes in L and D result

in tiny changes in all its eigenvalues and a corresponding small change in the eigenvectors.

By revisiting the proofs that lead to Corollary 4.5.4, we discover that in such a case if

Steps 3 and 4 of Algorithm X are applied to LDLT , then the computed vectors will be

nearly orthogonal. Indeed, if we apply these steps to L0D0L
T
0 , the vectors computed are

v̂2 =


.4999999955491866

.4622227251939223

−.1906571596350473

.7071067841882251

 , v̂3 =


.4999999997942006

.4622227434674882

−.1906571264658161

−.7071067781848689

 ,

and v̂T
2 v̂3 = 2ε! It appears to be a miracle that by considering a translate of the original T

that makes the relative gap small, we are able to compute eigenvectors that are orthogonal

to working accuracy. tu

Clearly, success in the above example is due to the property of the decomposi-

tion L0D0L
T
0 by which all of its eigenvalues change by small relative amounts under small

componentwise perturbations. In Section 4.3, we saw that every positive definite tridiago-

nal LDLT enjoys this benign property. However, not every decomposition of an indefinite

tridiagonal shares this property, see Example 5.2.3 for one such decomposition. But the

important question is: can we always find such “relatively robust” representations “near”

a cluster?

One distinguishing feature of the LDLT decomposition of a positive definite matrix

is the lack of any element growth. For the decomposition T − µI = LDLT , let us define1

Element Growth def= max
∣∣∣∣ D(i, i)
T (i, i)− µ

∣∣∣∣1/2

. (5.1.2)

1we do not have a strong preference for this particular definition of element growth; indeed, it may be
possible to get a “better” definition

114

When T − µI is positive definite, the element growth always equals 1 (see Lemma 4.4.1).

For the matrix T0 of Example 5.1.1, we can verify that the element growth at µ = 1 also

equals 1. We might suspect a correlation between the lack of element growth and high

relative accuracy. We speculate further on this correlation in Section 5.2.3.

Suppose there is a large element growth when forming LDLT . Small relative

perturbations in the large elements of L and D result in large absolute perturbations. Thus

it appears unlikely that the eigenvalues of such an LDLT can be computed to absolute

accuracy. Our goal of computing the small eigenvalues of LDLT to high relative accuracy

seems to hold out even less hope. However, as the following example shows, we can be in a

peculiar but lucky situation.

Example 5.1.2 [Large Element Growth.] Consider the matrix

T1 =


1.00000001117587 .707106781186547

.707106781186547 .999999977648258 .707106781186546

.707106781186546 1.00000003352761 1.05367121277235 · 10−8

1.05367121277235 · 10−8 1.00000002235174


whose eigenvalues are approximately equal to those of T0 (see Example 5.1.1). To get

orthogonal approximations to the interior eigenvectors we can try the same trick as before.

However when we form T1 − I = L1D1L
T
1 , we get

diag(D1) =


1.117587089538574 · 10−8

−4.473924266666669 · 107

4.470348380358755 · 10−8

1.986821493746602 · 10−8

 , diag(L1,−1) =


6.327084877781628 · 107

−1.580506693551128 · 10−8

.2357022791274500

 .

There is appreciable element growth in forming the (2, 2) element of D1, and we may be

skeptical of using this factorization to get the desired results. But there is no harm in trying

to apply Steps 3 and 4 of Algorithm X to L1D1L
T
1 to compute the interior eigenvectors. By

doing so, we get

v̂2 =


.4999999981373546

2.634178061370114 · 10−9

−.4999999981373549

.7071067838207259

 , v̂3 =


−.5000000018626457

−1.317089024797209 · 10−8

.5000000018626453

.7071067785523688

 , (5.1.3)

and miraculously |v̂T
2 v̂3| < 3ε! The corresponding residual norms are also small! tu

115

The above example appears to be an anomaly. Due to the large entry D1(2, 2),

we should not even expect absolute accuracy in the computed eigenvalues and eigenvectors.

Note that in the above example we used L1D1L
T
1 to compute only v̂2 and v̂3. It turns

out that small componentwise perturbations in L1 and D1 result in small relative changes

in only the two small eigenvalues of L1D1L
T
1 , but large relative (and hence, absolute)

changes in the extreme eigenvalues. We get inaccurate answers if we attempt to compute

approximations to v1 and v4 using L1D1L
T
1 . These extreme eigenvectors must be computed

using a different representation, say the Cholesky decomposition of T1. We investigate

this seemingly surprising phenomenon in Section 5.2.1. More details on the two examples

discussed above may be found in Case Study C.

5.2 Relatively Robust Representations (RRRs)

In Algorithm X and the two examples of the previous section, triangular fac-

torizations of translates of T allow us to compute orthogonal eigenvectors whenever the

eigenvalues of these factorizations have large relative gaps. We now identify the crucial

property of these decompositions that enables such computation.

Informally, a relatively robust representation is a set of numbers that define a matrix

A such that small componentwise perturbations in these numbers result in a small relative

change in the eigenvalues, and the change in the eigenvectors is inversely proportional to

the relative gaps in the eigenvalues. For example, a unit lower bidiagonal L and a positive

diagonal matrix D are the triangular factors of the tridiagonal matrix LDLT , and form

a relatively robust representation as shown by the theory outlined in Section 4.3. In the

following, we denote the jth eigenvalue and eigenvector of A by λj and vj respectively,

while the corresponding perturbed eigenvalue and eigenvector are denoted by λj + δλj and

vj + δvj . More precisely,

Definition 5.2.1 A Relatively Robust Representation or RRR is a set of numbers {xi} that

define a matrix A such that if xi is perturbed to xi(1 + εi), then for j = 1, 2, . . . , n,

|δλj |
|λj |

= O

(∑
i

εi

)
,

| sin 6 (vj , vj + δvj)| = O

(∑
i εi

relgap(λj , {λk|k 6= j})

)
,

where relgap is the relative gap as defined in Section 4.3.

116

Typically, the RRRs we consider will be triangular factors L and D of the shifted

matrix T − µI. We will frequently refer to such a factorization as a representation of T

(based) at the shift µ. Also, for the sake of brevity, we will often refer to the underlying

matrix LDLT as the RRR (instead of the individual factors L and D). Sometimes a

representation may determine only a few but not all its eigenvalues to high relative accuracy.

For example, a representation may only determine the eigenvalues λj , λj+1, . . . , λk to high

relative accuracy. In such a case, we say that we have a partial RRR and denote it by

RRR(j, j + 1, . . . , k). In the next section, we will show that the representation of T0 at the

shift 1 is an RRR while that of T1 at 1 is a partial RRR(2, 3), where T0 and T1 are the

matrices of Examples 5.1.1 and 5.1.2 respectively.

5.2.1 Relative Condition Numbers

We now find a criterion to judge if the factors L and D form an RRR. Instead

of dealing with LDLT we switch to a Cholesky-like decomposition for the purpose of our

analysis,

LDLT = L̃ΩL̃T ,

where Ω = sign(D) is a matrix with ±1 entries and explicitly captures the “indefiniteness”

of the matrix, and L̃ is lower triangular. Note that Ω is the identity matrix when LDLT is

positive definite. We made a similar switch in Chapter 5 where we analyzed the perturbation

properties of the Cholesky factor while performing our computations with LDLT . The

relationship between these alternate representations is easy to see and is given by

L̃ = L |D|1/2.

By Theorem 4.4.1, both these representations are similar in terms of their behavior under

small relative perturbations.

Thus we consider the factorization

T = L̃ΩL̃T . (5.2.4)

As shown in Section 4.3, if we make small componentwise perturbations in L̃, the perturbed

bidiagonal may be represented as D1L̃D2 where D1 and D2 are diagonal matrices close to the

identity matrix. We are interested in answering the following question. Are the eigenvalues

of the perturbed matrix

T + δT = D1L̃D2ΩDT
2 L̃T DT

1

117

relatively close to the eigenvalues of L̃ΩL̃T and if so, when? Note that the answer is always

in the affirmative when Ω = I, irrespective of the individual entries in L̃.

By Eisenstat and Ipsen’s Theorem 2.1 in [49], the eigenvalues of DT
1 AD1 are small

relative perturbations of the eigenvalues of A if ‖D1‖ ≈ 1. By applying their result to our

case, we get

λj [L̃D2ΩDT
2 L̃T]

‖D1‖2
≤ λj [T + δT] ≤ λj [L̃D2ΩDT

2 L̃T] · ‖D1‖2, (5.2.5)

where λj [A] denotes the jth eigenvalue of A.

We now write D2 as I + ∆2 where ‖∆2‖ = O(ε). In proving the following result,

we use the fact that an eigenvalue of a matrix is a continuous function of its entries.

Theorem 5.2.1 Let λ = λj be a simple eigenvalue of L̃ΩL̃T with eigenvector v = vj. Let

λ + δλ be the corresponding eigenvector of L̃(I + ∆2)Ω(I + ∆T
2)L̃T . Then

δλ = vT L̃(∆2Ω + Ω∆T
2)L̃T v + O(‖∆2‖2 · ‖L̃T v‖2), (5.2.6)

or

|δλ|
|λ|

≤ |vT L̃L̃T v|
|vT L̃ΩL̃T v|

· 2‖∆2‖+ O

(
|vT L̃L̃T v|
|vT L̃ΩL̃T v|

· ‖∆2‖2
)

. (5.2.7)

Proof. By continuity of the eigenvalues, we can write(
L̃(I + ∆2)Ω(I + ∆T

2)L̃T
)

(v + δv) = (λ + δλ)(v + δv).

Expanding the terms, we get

(L̃∆2ΩL̃T + L̃Ω∆2L̃
T + L̃∆2Ω∆2L̃

T) · v + L̃ΩL̃T · δv+

(L̃∆2ΩL̃T + L̃Ω∆2L̃
T + L̃∆2Ω∆2L̃

T) · δv = λδv + δλ · v + δλ · δv.

Premultiplying both sides by vT ,

vT L̃∆2ΩL̃T v + vT L̃Ω∆2L̃
T v + λvT δv + O(‖LT v‖2 · ‖∆2‖2) = λvT δv + δλ,

and by canceling the common term on both sides, we obtain (5.2.6). Dividing both sides

by the eigenvalue λ and taking norms yields the result (5.2.7). tu
We call the ratio of the Rayleigh Quotients given in (5.2.7) as the relative condition

number of λj , and denote it by κrel, i.e.,

κrel(λj) =
|vT

j L̃L̃T vj |
|vT

j L̃ΩL̃T vj |
. (5.2.8)

118

By combining (5.2.5) and (5.2.7) and using the above notation, we get

{1− 2 ‖I −D2‖ · κrel(λj [T])} λj [T]
‖D1‖2

≤ λj [T + δT]

≤ λj [T] ‖D1‖2 {1 + 2 ‖I −D2‖ · κrel(λj [T])} , (5.2.9)

which is correct to first-order terms.

We draw the reader’s attention to the following facts :

1. Unlike the case of Ω = I where all eigenvalues are relatively robust (see Section 4.3),

here a condition number measures the relative robustness of an eigenvalue.

2. The relative condition number κrel is different for each eigenvalue. Thus some eigen-

values may be determined to high relative accuracy whereas others may not be. See

Example 5.2.2 for such an example.

3. A uniform bound for κrel is ‖L̃‖ · ‖L̃−1‖, and this bound holds for all eigenvalues

(see (5.2.13) below). However this bound can be a severe over-estimate as is shown

by the examples given later in Section 5.2.2.

4. Note that we did not constrain L̃ to a bidiagonal form in deriving (5.2.9). However,

relative perturbations in the individual entries of a dense matrix L̃ cannot be ex-

pressed as D1L̃D2. There is only a restricted class of matrices whose componentwise

perturbations can be written in the form D1L̃D2. Matrices that belong to this class

are completely characterized by the sparsity pattern of their non-zeros and have been

called the set of biacyclic matrices, a term coined by Demmel and Gragg in [33]. Be-

sides bidiagonal matrices, the twisted factors introduced in Section 3.1 and triangular

factors of arrowhead matrices (see [73, p.175]) belong to this class of matrices. Thus

the theory developed in this section is applicable not only to a bidiagonal matrix but

also to any biacyclic matrix.

By defining the vector

fj
def=

L̃T vj√
|λj |

, (5.2.10)

the relative condition number defined in (5.2.8) may be simply written as a norm,

κrel(λj) = fT
j fj = ‖fj‖2. (5.2.11)

119

Note that the following relationships hold,

L̃T vj = fj

√
|λj |, L̃Ωfj = vjsign(λj)

√
|λj |,

and fT
j Ωfj = sign(λj), vT

j vj = 1,

and so we call fj , the jth right Ω-singular vector of L̃. Since L̃ΩL̃T vj = λjvj , and by (5.2.10),

fj may alternately be expressed as

fj = sign(λj)
√
|λj | · ΩL̃−1vj . (5.2.12)

(5.2.10) and (5.2.12) suggest a bound for fT
j fj ,

κrel(λj) = fT
j fj ≤ cond(L̃) = ‖L̃‖ · ‖L̃−1‖, ∀j. (5.2.13)

However the above bound is rather pessimistic since we want to compute the small eigen-

values of L̃ΩL̃T to high relative accuracy when the matrix is nearly singular, i.e., L̃ is

ill-conditioned.

In [116], Parlett also arrived at such condition numbers for a bidiagonal L̃ but by

using calculus.

Theorem 5.2.2 (Parlett [116, Thm. 2]) Let L̃ be a bidiagonal matrix as in (4.3.3), with

ak 6= 0, bk 6= 0 and let Ω = diag(ω1, . . . , ωn) with ωk = ±1. Let (λ,v) denote a particular

eigenpair of L̃ΩL̃T and let f be as defined in (5.2.10). Then by writing λ = sign(λ)θ2, since

λ 6= 0,

(a)
∂θ

∂ak
· ak

θ
=

k∑
i=1

v(i)2 − sign(λ)
k−1∑
j=1

ωjf(j)2 = sign(λ)
n∑

m=k

ωmf(m)2 −
n∑

l=k+1

v(l)2,

(b)
∂θ

∂bk
· bk

θ
= sign(λ)

k∑
i=1

ωip(i)2 −
k∑

j=1

v(j)2 =
n∑

m=k+1

v(m)2 − sign(λ)
n∑

l=k+1

ωlp(l)2.

For more work of a similar flavor, see [34].

5.2.2 Examples

We now examine relative condition numbers of some factorizations

T − µI = L̃ΩL̃T ,

where T is tridiagonal and L̃ is lower bidiagonal. In particular, we show that

120

i. The representation of T0 at 1 is an RRR, where T0 is as given in Example 5.1.1.

ii. The representation of T1 at 1 is a partial RRR, where T1 is the matrix of Example 5.1.2.

iii. A representation of T − µI at an arbitrary shift µ may not determine any eigenvalue

to high relative accuracy.

Example 5.2.1 [An RRR (All Eigenvalues are Relatively Well-Conditioned).]

Consider the L0D0L
T
0 decomposition where D0 and L0 are as in Example 5.1.1. The corre-

sponding Cholesky-like decomposition

L̃0ΩL̃T
0 = L0D0L

T
0

has

diag(L̃0) =


.6928203187797266

.3891773192193351

5.544821298610673 · 10−4

1.409546469637835 · 10−4

 , diag(L̃0,−1) =


−.7494442574516461

.9435080382529064

4.983500289685748 · 10−5

 ,

while diag(Ω) = (−1, 1, 1, 1). The eigenvalues of L̃0ΩL̃T
0 are approximately

λ1 = −1, λ2 = 1.49 · 10−8, λ3 = 2.98 · 10−8, λ4 = 1,

and

cond(L̃) = ‖L̃‖ · ‖L̃−1‖ = 9.46 · 103.

We find the Ω-right singular vectors fj to be

f1 =


1.01

−.144

7.5 · 10−5

−5.3 · 10−13

 , f2 =


8.8 · 10−5

−3.1 · 10−4

.577

−.816

 , f3 =


1.2 · 10−4

−4.4 · 10−4

.816

.577

 , and f4 =


−.144

1.01

5.2 · 10−4

3.7 · 10−12

 .

and by (5.2.11), the individual relative condition numbers are

κrel(λ1) = 1.042, κrel(λ2) = 1.000, κrel(λ3) = 1.000, κrel(λ4) = 1.042.

All the relative condition numbers are close to 1 and explain our success in computing

orthogonal eigenvectors as exhibited in Example 5.1.1. tu

121

In the above example, we found the bidiagonal factorization of a nearly singular

tridiagonal to be an RRR. In our numerical experience, the above situation appears to be

typical. However, sometimes the factorization may determine only a few eigenvalues to high

relative accuracy. Somewhat surprisingly, eigenvalues that are small in magnitude may be

determined to high relative accuracy but not the large ones!

Example 5.2.2 [Partial RRR (Only Small Eigenvalues are Well-Conditioned).]

Consider the factors L1 and D1 given in Example 5.1.2. The corresponding Cholesky-like

decomposition

L̃1Ω1L̃
T
1 = L1D1L

T
1

has

diag(L̃1) =


1.05715987472128 · 10−4

6.68874025674659 · 103

2.11431974944257 · 10−4

1.40954648562579 · 10−4

 , diag(L̃1,−1) =


6.68874025674659 · 103

−1.05715987472128 · 10−4

4.98349983747794 · 10−5

 ,

and diag(Ω1) = (1,−1, 1, 1). The eigenvalues of L̃1Ω1L̃
T
1 are approximately

λ1 = −1, λ2 = 1.49 · 10−8, λ3 = 2.98 · 10−8, λ4 = 1,

and

cond(L̃1) = ‖L̃1‖ · ‖L̃−1
1 ‖ = 1.37 · 108.

The Ω-right singular vectors for the two small eigenvalues are

f2 =


.577

.577

−.577

.816

 , and f3 =


.816

.816

−.816

−.577

 ,

and the corresponding relative condition numbers are

κrel(λ2) = 1.666, κrel(λ3) = 2.333.

Thus the two eigenvalues that are small in magnitude are relatively well conditioned but

for the extreme eigenvalues we have

f1 =


−4.7 · 103

−4.7 · 103

1.1 · 10−4

−7.4 · 10−13

 , and f4 =


4.7 · 103

4.7 · 103

1.1 · 10−4

7.4 · 10−13

 ,

122

and

κrel(λ1) = 4.5 · 107, κrel(λ4) = 4.5 · 107!

tu

There are also factorizations where none of the eigenvalues is determined to high

relative accuracy.

Example 5.2.3 [No Eigenvalue is Relatively Well-Conditioned.] Let the matrix T0

be as in Example 5.1.1, and consider

T0 − 1.075297677018139I = L̃ΩL̃T .

We have intentionally chosen the above shift to be very close to an eigenvalue of the leading

2× 2 submatrix of T0. Consequently, there is a large element growth in this factorization,

diag(L̃) =


.7451829782893468

2.018543658277998 · 10−7

1.819093322471722 · 106

.2744041812115826

 , diag(L̃,−1) =


−.6967821655658823

1.819093322471946× 106

−1.519032487587594× 10−14

 ,

with diag(Ω) = (−1, 1,−1,−1). The approximate eigenvalues of L̃ΩL̃T are,

λ1 = −1.0753, λ2 = −.0752976, λ3 = −.0752954, λ4 = .92473,

and

cond(L̃) = ‖L̃‖ · ‖L̃−1‖ = 2.46 · 1013,

where this large condition number is primarily due to the large norm of L̃. The relative

condition numbers are found to be

κrel(λ1) = 1.1 · 1011, κrel(λ2) = 6.4 · 1012, κrel(λ3) = 6.8 · 107, κrel(λ4) = 6.5 · 1012,

and indicate that none of the eigenvalues is determined to high relative accuracy. Note that

none of the eigenvalues is small and the lack of relative accuracy implies an absence of any

absolute accuracy! tu

Other examples of RRRs may be found in Section 6 of [116]. In order to see how

the relative robustness of LDLT representations of T0 − µI varies with µ, see Figures C.1,

C.3 and C.3 in Case Study C.

123

5.2.3 Factorizations of Nearly Singular Tridiagonals

The purpose of taking multiple representations is to differentiate between the in-

dividual eigenvalues in a cluster. It is crucial that the “refined” eigenvalues of the represen-

tation based near the cluster have modest relative condition numbers, which were defined

in (5.2.8). In this section we indicate why most triangular factorizations of nearly singular

tridiagonals are relatively robust, at least for the small eigenvalues.

Since we do not have a complete theory as yet to explain all our numerical exper-

iments, we shall present some conjectures in this section and give some insight into why

they might be true.

In Section 5.1, we speculated on a possible correlation between the element growth

when forming

T − µI = L̃ΩL̃T ,

and the relative robustness of the triangular factorization. In all our numerical experience,

we have always found L̃ and Ω to be relatively robust whenever there is no element growth.

Thus we believe the following conjecture.

Conjecture 1 If
| (L̃L̃T)ii |
| (L̃ΩL̃T)ii |

= O(1), for 1 ≤ i ≤ n, (5.2.14)

then L̃ and Ω form a relatively robust representation (RRR), where an RRR is as defined

in Section 5.2.

Note that
|(L̃L̃T)ii|
|(L̃ΩL̃T)ii|

=
|eT

i L̃L̃T ei|
|eT

i L̃ΩL̃T ei|
,

whereas

κrel(λj) =
|vT

j L̃L̃T vj |
|vT

j L̃ΩL̃T vj |
.

The quantity on the left hand side of (5.2.14) is a measure of the element growth in form-

ing L̃ΩL̃T . The above conjecture speculates that κrel(λj) is O(1) for all λj whenever (5.2.14)

is satisfied.

Note: All the conjectures presented here should be taken “in spirit only”, and not as precise

mathematical conjectures. For example, the condition (5.2.14) might not be exactly correct,

but a measure of element growth should be O(1) to guarantee an RRR.

124

Even if we get a large element growth, the eigenvalues of interest may still be

determined to high relative accuracy. We saw one such occurrence in Example 5.1.2. Again,

extensive numerical testing leads us to believe the following.

Conjecture 2 Suppose that L̃ΩL̃T is “nearly” singular. Then the eigenvalue of L̃ΩL̃T that

is smallest in magnitude is always determined to high relative accuracy with respect to small

relative changes in entries of L̃.

We consider an extreme example in support of the above conjecture. Suppose L̃ΩL̃T

is a singular matrix. Since

det(L̃ΩL̃T) = ±det(L̃2),

singularity of L̃ΩL̃T implies that a diagonal element of L̃ must be zero. Relative changes

in the individual entries of such an L̃ keep the matrix singular no matter how large the

non-zero elements of L̃ are (since a relative perturbation of a zero entry keeps it zero).

Thus we may expect that when L̃ΩL̃T is close to singularity, its smallest eigenvalue will not

change appreciably due to small componentwise changes in L̃.

Note that in the above conjecture, we have not specified how close L̃ΩL̃T should

be to a singular matrix. We believe that the exact condition will be a natural outcome of

a proof of the conjecture, if true.

Although, Conjecture 2 is interesting in its own right, it is insufficient for our

purposes. We want all locally small eigenvalues, and not just the smallest, to be determined

to high relative accuracy. An example sheds some light on the possible scenarios.

Example 5.2.4 [2nd Smallest Eigenvalue should be Relatively Well-Conditioned.]

Consider Wilkinson’s matrix [136, p.308],

W+
21 =



10 1 0

1 9 1

1 8 .

. . .

. 8 1

1 9 1

0 1 10


, (5.2.15)

125

which has pairs of eigenvalues that are close to varying degrees. For example, the eigenvalues

λ̂14 = 7.003951798616376,

λ̂15 = 7.003952209528675,

agree in 6 leading digits. We might try and form either

W+
21 − λ̂14I = L1D1L

T
1 , (5.2.16)

or

W+
21 − λ̂15I = L2D2L

T
2 (5.2.17)

in order to compute orthogonal approximations to v14 and v15. We encounter a large element

growth when forming (5.2.16) but not in (5.2.17). Consistent with Conjectures 1 and 2,

we find L2D2L
T
2 to be an RRR whereas L1D1L

T
1 only determines its smallest eigenvalue to

high relative accuracy. In particular,

κrel(λ14[L1D1L
T
1]) = 2.246, κrel(λ15[L1D1L

T
1]) = 7.59× 108,

while

κrel(λ14[L2D2L
T
2]) = 1.0, κrel(λ15[L2D2L

T
2]) = 1.0.

Thus L1D1L
T
1 is inadequate for our purposes whereas L2D2L

T
2 enables us to compute v̂14

and v̂15 that are numerically orthogonal. tu

Finally, as in the above example, we believe we can always find a partial RRR

based at one of the eigenvalues in the cluster.

Conjecture 3 Suppose T is a tridiagonal matrix and λ̂j , λ̂j+1, . . . , λ̂j+m−1 are approxima-

tions to m “close” eigenvalues of T , that agree in almost all their digits. Then at least one

of the factorizations

T − λ̂sI = LsDsL
T
s , j ≤ s < j + m,

is a partial RRR(j, j+1, . . . , j+m−1), i.e., LsDsL
T
s determines its locally small eigenvalues

to high relative accuracy.

The relative robustness of factorizations of nearly singular tridiagonals is consistent

with our earlier Conjecture 1. This is because we do not get any element growth in the

generic case when forming

T − λ̂I = LDLT ,

126

where λ̂ is close to an eigenvalue of T .

Conjecture 3 is exactly what we need to achieve our goal of computing orthog-

onal eigenvectors. Furthermore, it would be even more efficient if we could easily find the

particular λ̂s in Conjecture 3 that leads to a relatively robust representation.

We leave it for future studies to provide further numerical evidence and theory to

prove or disprove the validity of the conjectures made in this section. From now on, we will

assume that Conjecture 3 is true so that we can find the desired RRRs.

5.2.4 Other RRRs

Until now, we have only considered computing a triangular decomposition, LDLT

or L̃ΩL̃T , as an RRR. However, we could also consider the twisted factorizations introduced

in Section 3.1 as RRRs. Indeed, since the set of n possible twisted factorizations

T − µI = N (k)∆N (k)T
, 1 ≤ k ≤ n,

includes the LDLT decomposition, it may be easier to form such RRRs. Besides, it is

conceivable that a twisted factorization may be qualitatively better than a triangular de-

composition in terms of its relative perturbation properties. We believe that all conjectures

of the previous section also hold for twisted factorizations, and not only for triangular

factorizations.

5.3 Orthogonality using Multiple Representations

The examples of the previous section indicate that eigenvectors computed using a

single RRR turn out to be numerically orthogonal. If relative gaps are small, we form an

RRR near the cluster to get locally small eigenvalues that have large relative gaps. Some-

times, as in Example 5.1.2, we can only obtain a partial RRR the use of which guarantees

orthogonality of a limited set of eigenvector approximations. In such a case, the remaining

eigenvectors need to be computed using a different RRR. In this section, we explain why the

approximations computed from one RRR are numerically orthogonal to the approximations

computed using another RRR. An added benefit of the representation trees that we will

introduce for our exposition is that they summarize the computations involved and help us

in identifying computationally efficient strategies.

127

5.3.1 Representation Trees

In Section 4.5, we provided a detailed proof of orthogonality of the eigenvectors

computed by Algorithm X using the LDLT decomposition of a positive definite tridiagonal

matrix when the eigenvalues have large relative gaps. This proof can easily be generalized

to the case when any fixed RRR is used for the computation. Similarly we can furnish

a detailed proof of orthogonality when different RRRs are used for computing different

eigenvectors. However, to avoid being drowned in detail, we choose an alternate approach.

We now introduce representation trees that informally indicate why vectors computed using

one RRR are orthogonal to those computed from another RRR. A formal treatment and

greater level of detail as in Corollary 4.5.4 can also be reproduced by mimicking its proof.

We remind the reader of our indexing convention for eigenvalues, by which

λ1 ≤ λ2 ≤ · · · ≤ λn.

A representation tree consists of nodes that are denoted by (R, I) where R stands

for an RRR and I is a subset of the index set {1, 2, . . . , n}. Informally, each node denotes

an RRR that is used enroute to computing eigenvectors of the eigenvalues λi[R] indexed

by I, i.e., i ∈ I (note that we have used R in two ways — to denote the RRR and also for

the underlying matrix defined by the RRR). A parent node (Rp, Ip) can have m children

(Rj , Ij), 1 ≤ j ≤ m, such that

∪jIj = Ip.

Any pair of the child nodes (R1, I1), (R2, I2) must satisfy

I1 ⊆ Ip, I2 ⊆ Ip, I1 ∩ I2 = φ, (5.3.18)

and relgap2(λi[Rp], λj [Rp]) ≥ 1/n, ∀i ∈ I1, j ∈ I2, i 6= j, (5.3.19)

where relgap2 is as defined in Section 4.3. Nodes that have no children will be called leaf

nodes while all other nodes are called intermediate nodes. The index set associated with any

leaf node must be a singleton. Each edge connecting a parent node to a child node will be

labeled by a real number µ. Informally, an edge denotes the action of forming an RRR by

applying a shift of µ to the matrix denoted by the parent RRR. Additionally, the shifts used

to form the leaf representations must be very accurate approximations to the appropriate

eigenvalues of the leaf’s parent RRR. The condition on the relative gaps given by (5.3.19)

ensures that different RRRs are formed in order to compute eigenvectors when relative gaps

128

are smaller than 1/n. Note that we choose 1/n as the cut-off point for relative gaps since

this translates into an acceptable bound of O(nε) for the dot products, see Corollary 4.5.4

for details. The above conditions should become clearer when we examine some example

representation trees.

In all the representation trees we consider in this thesis, the RRRs associated with

intermediate nodes will be bidiagonal factors of either the given tridiagonal T or its translate.

Each RRR must determine to high relative accuracy all the eigenvalues associated with its

index set. However, the representations associated with leaf nodes are, in general, twisted

factorizations. As we saw in Section 4.5, relative robustness of these twisted factorizations is

not necessary for the orthogonality of the computed eigenvectors. However, we have always

found such a twisted factorization to determine its smallest eigenvalue to high relative

accuracy, see Conjecture 2 and Section 5.2.4. Recall that the eigenvector approximations are

formed by multiplying elements of these twisted factorizations, see Step (4d) of Algorithm X.

A representation tree denotes the particular computations involved in computing

orthogonal eigenvectors. Since we are concerned about forming representations that are

relatively robust, it is crucial that we use the differential transformations of Section 4.4.1

when forming

LpDpL
T
p − µI = L1D1L

T
1 ,

so that we can relate the computed decomposition to a small componentwise perturbation

of Lp and Dp.

Example 5.3.1 [A Representation Tree.] The RRR tree in Figure 5.1 summarizes a

computation of the eigenvectors of the matrix T0 presented in Example 5.1.1. Figure 5.1,

where ovals denote intermediate representations while rectangles stand for leaf nodes, re-

flects the following information. The initial decomposition

T0 = LpDpL
T
p

has eigenvalues

λ1 ≈ ε, λ2 ≈ 1 +
√

ε, λ3 ≈ 1 + 2
√

ε, λ4 ≈ 2.

The extreme eigenvectors are computed using the twisted factorizations

LpDpL
T
p − λ̂1I = N

(1)
1 ∆1N

(1)T

1 , LpDpL
T
p − λ̂4I = N

(3)
4 ∆4N

(3)T

4 ,

129

�

�

�

�
({Lp, Dp}, {1, 2, 3, 4})

(
{N (1)

1 ,∆1}, {1}
) �

�

�

�
({L0, D0}, {2, 3})

(
{N (3)

4 ,∆4}, {4}
)

(
{N (4)

2 ,∆2}, {2}
) (

{N (4)
3 ,∆3}, {3}

)

�
�

�
�

�
�

�
�

��

Q
Q

Q
Q

Q
Q

Q
Q

QQ

J
J

J
J

J
J
J

ε 1 2

√
ε 2

√
ε

Figure 5.1: Representation Tree — Forming an extra RRR based at 1

where |λ̂i − λi| = O(ε|λi|) and the superscript r in N
(r)
i denotes the twist position. The

intermediate representation

LpDpL
T
p − I = L0D0L

T
0

is needed since relgap2(λ2, λ3) = O(
√

ε) < 1/
√

n. The two smallest eigenvalues of L0D0L
T
0

are computed to be

δλ̂2 ≈
√

ε, and δλ̂3 ≈
√

2ε.

The corresponding eigenvectors may now be computed as

L0D0L
T
0 − δλ̂2I = N

(4)
2 ∆2N

(4)T

2 , L0D0L
T
0 − δλ̂3I = N

(4)
3 ∆3N

(4)T

3 .

As we mentioned earlier, all the factorizations in the representation tree should be formed

by the differential transformations of Section 4.4.1. tu

Example 5.3.2 [A Better Representation Tree.] From Example 5.2.1, we know that

the L0D0L
T
0 decomposition of T0−I determines all its eigenvalues to high relative accuracy.

Thus the scheme given by the representation tree of Figure 5.2 can alternatively be used

to compute orthogonal eigenvectors. The bulk of the work lies in computing the relevant

subset of eigenvalues of the intermediate RRRs. Thus the representation tree of Figure 5.2

yields a more efficient computation scheme than Figure 5.1. tu

130

�

�

�

�
({L0, D0}, {1, 2, 3, 4})

(
{N (1)

1 ,∆1}, {1}
) (

{N (4)
2 ,∆2}, {2}

) (
{N (4)

3 ,∆3}, {3}
) (

{N (3)
4 ,∆4}, {4}

)

��
����

���
���

���

J
J

J
J

J
J

JJ

HHH
HHH

HHH
HHHH

HH

−1
√

ε 2
√

ε 1

Figure 5.2: Representation Tree — Only using the RRR based at 1

Example 5.3.3 [Only One Representation Tree is Possible.] Orthogonal eigenvec-

tors of the matrix T1 given in Example 5.1.2 may be computed as shown by the represen-

tation tree of Figure 5.3. By Example 5.2.2, L1D1L
T
1 is only a partial RRR, and cannot be

used to compute the extreme eigenvectors. Figure C.3 in Case Study C shows that there

is no representation based near 1 that is relatively robust for all its eigenvalues and hence,

there is no representation tree for T1 that looks like Figure 5.2. tu

We now indicate why the computed eigenvectors are numerically orthogonal when

the particular computation scheme is described by a representation tree. We re-emphasize

the following facts that are important for showing orthogonality.

i. Each intermediate node is a partial RRR for the eigenvalues associated with its index

set.

ii. Each node, or representation, is formed by the differential transformations given in

Section 4.4.1.

iii. The approximation used to form a leaf representation agrees in almost all its digits

with the relevant eigenvalue of its parent node (as given by the index of the leaf node).

iv. The eigenvector approximation is formed solely by multiplications of elements of the

twisted factorizations that are represented by the leaf nodes.

v. Whenever the relative gap between eigenvalues of a representation is smaller than

1/n, a new representation that is relatively robust for its locally small eigenvalues is

formed.

131

�

�

�

�
({Lp, Dp}, {1, 2, 3, 4})

(
{N (2)

1 ,∆1}, {1}
) �

�

�

�
({L1, D1}, {2, 3})

(
{N (2)

4 ,∆4}, {4}
)

(
{N (4)

2 ,∆2}, {2}
) (

{N (4)
3 ,∆3}, {3}

)

�
�

�
�

�
�

�
�

��

Q
Q

Q
Q

Q
Q

Q
Q

QQ

J
J

J
J

J
J
J

ε 1 2

√
ε 2

√
ε

Figure 5.3: Representation Tree — An extra RRR based at 1 is essential

The first four facts outlined above can be used, as in Section 4.5, to prove the

orthogonality of eigenvector approximations computed from leaf representations that have

a common parent. Note that the above statement is analogous to saying that the vectors

computed when Steps 3 and 4 of Algorithm X are applied to an RRR can be shown to be

orthogonal. Recall that in Section 4.5, orthogonality is proved by relating each computed

vector to an exact eigenvector of the matrix defined by the parent RRR.

Representation trees come in handy in seeing why the computed vectors are or-

thogonal when more than one intermediate RRR is used. Let us consider Figure 5.1. The

computed vectors v̂2 and v̂3 are orthogonal for the reasons given in the above paragraph.

But why is v̂2 orthogonal to v̂1? Note that v̂1 is computed using

LpDpL
T
p − λ̂1I = N

(1)
1 ∆1N

(1)T

1 ,

while v̂2 is computed from

L0D0L
T
0 − δλ̂2I = N

(4)
2 ∆2N

(4)T

2 .

However,

• both LpDpL
T
p and L0D0L

T
0 are RRRs;

132

• L0D0L
T
0 is a translate of LpDpL

T
p and is computed by the differential dstqds transfor-

mation of Section 4.4.1, and the roundoff error analysis given in Theorem 4.4.2 shows

that an exact relation exists between small componentwise perturbations of Lp, Dp

and L0, D0;

• the relative gap between λ1 and λ2 is large.

The vector v̂1 can directly be shown to be close to the first eigenvector of LpDpL
T
p ,

while v̂2 can be similarly related to the second eigenvector of LpDpL
T
p but via L0D0L

T
0 . The

relative robustness of both these representations along with the above mentioned facts can

now be used to prove that v̂1 and v̂2 are orthogonal.

In general, any two eigenvectors computed from the twisted factorizations repre-

sented by the leaf nodes of a representation tree will be “good” approximations to distinct

eigenvectors of a common ancestor RRR. The properties satisfied by a representation tree

now imply that these computed vectors must be orthogonal. Note that the detailed bounds

on the dot products of the computed vectors can get rather messy and would involve the

number of intermediate representations employed in computing an eigenvector. On the

other hand, representation trees provide a visual tool that makes it easy to see why the

computed vectors are nearly orthogonal. Besides this use, representation trees also allow

us to clearly see which computations are more efficient.

5.4 Algorithm Y — orthogonality even when relative gaps

are small

We now present an algorithm that also handles small relative gaps but still per-

forms the computation in O(n2) time.

Algorithm Y [Computes orthogonal eigenvectors.]

1. Find µ ≤ ‖T‖ such that T + µI is positive (or negative) definite.

2. Compute T + µI = LpDpL
T
p .

3. Compute the eigenvalues, λ̂j , of LpDpL
T
p to high relative accuracy by the dqds algo-

rithm [56].

4. Set l← 1, m← n.

133

5. Group the computed eigenvalues λ̂l, . . . , λ̂m into the categories:

isolated. λ̂j is isolated if

min(relgap2(λ̂j , λ̂j+1), relgap2(λ̂j−1, λ̂j)) ≥ 1/n.

clustered. λ̂j , . . . , λ̂j+k−1 form a “cluster” of k eigenvalues if

relgap2(λ̂i, λ̂i+1) ≤ 1/n, j ≤ i < j + k − 1,

while relgap2(λ̂j−1, λ̂j) ≥ 1/n, and relgap2(λ̂j+k−1, λ̂j+k) ≥ 1/n.

6. For each isolated eigenvalue, λ̂ = λ̂j , l ≤ j ≤ m, do the following

(a) Compute LpDpL
T
p − λ̂I = L+D+LT

+ by the dstqds transform (Algorithm 4.4.3).

(b) Compute LpDpL
T
p − λ̂I = U−D−UT

− by the dqds transform (Algorithm 4.4.5).

(c) Compute γk as in the top formula of (4.4.26). Pick r such that |γr| = mink |γk|.

(d) Form the approximate eigenvector zj = z
(r)
j by solving N̂rD̂rN̂

T
r zj = γ̂rer (see

Theorem 3.2.2):

zj(r) = 1,

zj(i) = −L̂+(i) · zj(i + 1), i = r − 1, . . . , 1,

zj(l + 1) = −Û−(l) · zj(l), l = r, . . . , n− 1.

7. For each cluster λ̂j , . . . , λ̂j+k−1 do the following.

(a) Get a partial RRR(j, . . . , j + k − 1) by forming the dstqds transformation

LpDpL
T
p − λ̂sI = LsDsL

T
s ,

where j ≤ s ≤ j + k − 1.

(b) Compute the jth through (j + k − 1)th eigenvalues of LsDsL
T
s to high relative

accuracy and call them δλ̂j , . . . , δλ̂j+k−1.

(c) Set l ← j, m ← i + k − 1, λ̂i ← δλ̂i for j ≤ i ≤ j + k − 1, Lp ← Ls, Dp ← Ds,

and go to Step 5.

tu
The previous section indicates why the vectors computed by Algorithm Y are

numerically orthogonal. We now present detailed numerical results comparing a computer

implementation of Algorithm Y with existing software routines.

134

Chapter 6

A Computer Implementation

In this chapter, we give detailed timing and accuracy results of a computer imple-

mentation of Algorithm Y, whose pseudocode was given in Section 5.4. The only uncertainty

in implementing this algorithm is in its Step (7a), where we need to choose a shift µ near

a cluster in order to form the relatively robust representation

LpDpL
T
p − µI = LDLT . (6.0.1)

We briefly discuss our strategy in Section 6.1. Having found a suitable representation, we

need to find its locally small eigenvalues to high relative accuracy in Step (7b) of Algo-

rithm Y. In Section 6.2, we give an efficient scheme to find these small eigenvalues to the

desired accuracy. Note that the earlier steps of Algorithm Y have been discussed in great

detail in Chapter 4.

Finally, in Section 6.4, we give detailed timing and accuracy results comparing our

computer implementation of Algorithm Y with existing LAPACK and EISPACK software.

Our test-bed contains a variety of tridiagonal matrices, some from quantum chemistry

applications, that highlight the sensitivity of earlier algorithms to different distributions of

eigenvalues. The test matrices are discussed in Section 6.4.1.

We find that our implementation of Algorithm Y is uniformly faster than earlier

implementations of inverse iteration, while still being accurate. This speed is by virtue

of the O(n2) running time of Algorithm Y as opposed to the earlier algorithms that take

O(n3) time in general. We want to stress that the results presented in the chapter are

preliminary — we can envisage more algorithmic enhancements and a better use of the

memory hierachy and architectural design (such as multiple functional units in the CPU)

135

of modern computers to further speed up our computer implementation. Some of these

enhancements are briefly discussed in Section 6.5, and we hope to incorporate such code

improvements in the near future.

6.1 Forming an RRR

Two questions, that need to be resolved to get a computer implementation of

Step (7a) of Algorithm Y, were raised in Sections 5.2.1 and 5.2.3:

1. What shift µ near a cluster should we choose so that the LDLT decomposition

of (6.0.1) is an RRR?

2. Given LDLT , how can we cheaply decide if it is an RRR?

As we saw earlier in Example 5.2.3, not every µ in (6.0.1) leads to an RRR. We

do not have any a priori way of knowing whether an arbitrary choice of µ would lead to

a desired RRR. Indeed, as Example 5.2.4 suggests, there may not be any alternative other

than actually forming LDLT at a judicious choice of µ and then, a posteriori, checking

whether this decomposition forms an RRR. Since we want an efficient procedure for the

latter purpose, we cannot afford to evaluate the relative condition numbers of Section 5.2.1.

Thus, answers to the two questions posed above are crucial to a correct implementation.

We made several conjectures in Section 5.2.3 that attempt to answer these ques-

tions. In our computer implementation, we have made the following decisions which reflect

our belief in these conjectures.

1. After identifying a cluster of eigenvalues λ̂j , λ̂j+1, . . . , λ̂j+k−1, we restrict our search

for an RRR to a factorization based at one of these λ̂’s, i.e., to

LpDpL
T
p − λ̂sI = LsDsL

T
s , j ≤ s ≤ j + k − 1. (6.1.2)

This is the strategy given in Step (7a) of Algorithm Y and is consistent with Conjec-

ture 3.

2. When trying to form the desired RRR in (6.1.2), we try µ = λ̂s in the order s =

j, j + 1, . . . , j + k− 1. If we find the element growth, as defined in (5.1.2), at some λ̂s

to be less than an acceptable tolerance, say 200, then we immediately accept LsDsL
T
s

as the desired RRR. By this strategy, we are often able to form an RRR in the first

136

attempt, i.e., based at the leftmost eigenvalue µ = λ̂j . This saves us the extra work

of forming all possible k factorizations of (6.1.2). Note that this approach reflects our

belief in Conjecture 1.

3. If all the above choices of µ lead to element growths bigger than 200, as in Exam-

ple 5.2.2 (see also Case Study C), we choose the LsDsL
T
s decomposition that leads to

the least element growth as our partial RRR.

We want to emphasize that even though we cannot prove the correctness of the

above decisions as yet, our computer implementation gives accurate answers on all our tests.

We have tested our implementation on tridiagonal matrices that are quite varied in their

eigenvalue distributions. See Section 6.4.1 for details.

6.2 Computing the Locally Small Eigenvalues

Until now, we have not discussed ways of efficiently computing the eigenvalues of

a relatively robust representation. All eigenvalues of the LDLT decomposition of a positive

definite matrix may be efficiently found by the dqds algorithm, and this is the method

employed in Step 3 of Algorithm Y. In its present form, the dqds algorithm finds the

eigenvalues in sequential order, from the smallest to the largest, and always operates on a

positive definite matrix. See [56] for more details. The main difficulty in trying to employ

the dqds algorithm to find the locally small eigenvalues of an RRR is that in most cases,

the RRR will be the factorization of an indefinite matrix. It is not known, as yet, if the

dqds algorithm can be adapted to an indefinite case and hence we need to find an alternate

method.

One means of finding the locally small eigenvalues is the bisection algorithm, using

any of the differential transformations given in Section 4.4.1 as the inner loop. However,

since bisection is a rather slow method, it could become the dominant part of the computa-

tion. So we use a faster scheme which is a slight variant of the Rayleigh Quotient Iteration

(RQI). A traditional RQI method starts with some (well-chosen) vector q0 and progresses by

computing Rayleigh Quotients to get increasingly better approximations to an eigenvalue.

Algorithm 6.2.1 [Traditional RQI.]

1. Choose a vector q0 (‖q0‖ = 1), and a scalar θ0. Set i← 0.

137

2. Solve (T − θiI)xi+1 = qi for xi+1.

3. Set qi+1 ← xi+1/‖xi+1‖, θi+1 ← qT
i+1Tqi+1, i← i + 1, and repeat Step 2. tu

As shown in Corollary 3.2.1, a twisted factorization allows us to cheaply compute

the Rayleigh Quotient of the vector z where

(T − θI)z = γrer, z(r) = 1, (6.2.3)

and γr is an element of the twisted factorization at twist position r. It is immediately seen

from (6.2.3) that
zT (T − θI)z

zT z
=

γr

zT z
.

As discussed earlier, it is possible to choose r so that γr is proportional to the distance

of θ from an eigenvalue of T . The index r where |γr| = mink |γk| is one such choice, see

Section 3.1 for more details. Thus we get the following iteration scheme.

Algorithm 6.2.2 [RQI-Like (Computes an eigenvalue of LsDsL
T
s).]

1. Choose a scalar θ0. Set i← 0.

2. Choose an index r as follows :

(a) Compute LsDsL
T
s −θiI = L+D+LT

+ by the dstqds transform (Algorithm 4.4.3).

(b) Compute LsDsL
T
s − θiI = U−D−UT

− by the dqds transform (Algorithm 4.4.5).

(c) Compute γk as in the top formula of (4.4.26). Pick r such that |γr| = mink |γk|.

3. Solve (LsDsL
T
s − θiI)zi = γrer as follows

zi(r) = 1,

zi(p) = −L+(p) · zi(p + 1), p = r − 1, . . . , 1,

zi(q + 1) = −U−(q) · zi(q), q = r, . . . , n− 1.

4. Set θi = γr/‖zi‖2, i← i + 1. Repeat Step 2. tu

In the above RQI-like scheme, we obtain the Rayleigh Quotient as a by-product of

computing the vector zi. One iteration of the above algorithm is only 2-3 times as expensive

as one bisection step, but convergence is at least quadratic. Note that Step 3 given above

138

differs from traditional RQI in its choice of er as the right hand side of the linear system to

be solved.

As outlined in Step (7a) of Algorithm Y (see Section 5.4), the representation

LsDsL
T
s is a translate of the original matrix LpDpL

T
p , i.e.,

LpDpL
T
p − µI = LsDsL

T
s . (6.2.4)

If λ is an eigenvalue of LpDpL
T
p , λ−µ is the corresponding eigenvalue of LsDsL

T
s if

the relation (6.2.4) holds exactly. However, we only know an approximate eigenvalue λ̂, and

roundoff errors are inevitable in forming Ls and Ds. But, even though λ̂−µ is not an exact

eigenvalue of the computed LsDsL
T
s , it does give us a very good starting approximation.

As a result, θ0 can be initialized to λ̂ − µ in Step 1 of our RQI-like scheme. Of course, as

emphasized in Chapter 5, we need to compute each small eigenvalue of LsDsL
T
s to high

relative accuracy. Since we compute both forward and backward pivots, D+ and D−, we

can include the safeguards of bisection in our iteration.

6.3 An Enhancement using Submatrices

In this section, we briefly mention a novel idea that facilitates the computation

of orthogonal “eigenvectors” of eigenvalues that are very close to each other but are well-

separated from the rest of the spectrum.

Eigenvalues of a tridiagonal matrix can be equal only if an off-diagonal element

is zero. In such a case, the tridiagonal matrix is a direct sum of smaller tridiagonals,

and orthogonal eigenvectors are trivially obtained from the eigenvectors of these disjoint

submatrices by padding them with zeros. However, as Wilkinson observed, eigenvalues can

be arbitrarily close without any off-diagonal element being small [136]. It turns out that

even in such a case, a good orthogonal basis of the invariant subspace can be computed by

using suitable, possibly overlapping, submatrices. Thus we can use the following scheme:

Algorithm 6.3.1 [Computes orthogonal “eigenvectors” for tight clusters using

submatrices.]

1. For each of the “close” eigenvalues λj , . . . , λk (that are well-separated from the rest

of the spectrum), do the following:

(a) “Find” a submatrix T p:q with an isolated eigenvalue λ which is “close” to the

cluster of eigenvalues.

139

(b) Compute the eigenvector of λ, i.e., solve (T p:q − λI)s = 0 for s.

(c) Output the vector v as an eigenvector, where vp:q = s and the rest of v is padded

with zeroes. tu

For some of the theory underlying this scheme, the reader is referred to Parlett [111,

115]. Clearly, besides the existence of suitable submatrices, the crucial question is: how do

we choose the submatrices in Step (1a) of the above scheme. The computation of the

eigenvector of an isolated eigenvalue in Step (1b) is easily done by using the methods

discussed earlier.

We now have a more robust way of picking the appropriate submatrices than the

approaches outlined in [111, 115]. We have included this enhancement in our implemen-

tation of Algorithm Y and found it to work accurately in practice. Note that the above

algorithm is an alternate way of computing orthogonal eigenvectors without doing any ex-

plicit orthogonalization. The smaller the submatrix sizes in Step (1b) above, the less is the

work required to produce orthogonal eigenvectors.

It is beyond the scope of this thesis to discuss the above approach in greater detail.

The theory that justifies this scheme is quite involved and intricate, and a cursory treatment

would not do it justice. We hope to present more details in the near future [43].

6.4 Numerical Results

In this section, we present a numerical comparison between Algorithm Y and four

other software routines for solving the symmetric tridiagonal eigenproblem that are included

in the EISPACK [128] and LAPACK [1] libraries. These are

1. LAPACK INVIT : The LAPACK implementation of bisection and inverse iteration [88,

84, 87] (subroutines DSTEBZ and DSTEIN);

2. EISPACK INVIT : The EISPACK implementation of inverse iteration after finding

the eigenvalues by bisection [118] (subroutine DSTEBZ from LAPACK followed by

TINVIT from EISPACK);

3. LAPACK D&C : The LAPACK implementation of the divide and conquer method

that uses a rank-one tear to subdivide the problem [71, 124] (subroutine DSTEDC);

140

4. LAPACK QR : The LAPACK implementation of the QR algorithm that uses Wilkin-

son’s shifts to compute both eigenvalues and eigenvectors [69] (subroutine DSTEQR).

6.4.1 Test Matrices

We have chosen many different types of tridiagonals as our test matrices. They

differ mainly in their eigenvalue distributions which highlight the sensitivity of the above

algorithms as discussed in Chapter 2. Some of our example tridiagonals come from quantum

chemistry applications. The first eleven among the following types of tridiagonal matrices

are obtained by Householder reduction of random dense symmetric matrices that have the

given eigenvalue distributions (see [36] for more on the generation of such matrices). The

matrix sizes for our tests range from 125-2000.

1) Uniform Distribution (ε apart). n − 1 eigenvalues uniformly distributed from ε to

(n− 1)ε, and the nth eigenvalue at 1, i.e.,

λi = i · ε, i = 1, 2, . . . , n− 1, and λn = 1.

These matrices are identical to the Type 1 matrices of Section 4.6.

2) Uniform Distribution (
√

ε apart). One eigenvalue at ε, n− 2 eigenvalues uniformly

distributed from 1 +
√

ε to 1 + (n− 2)
√

ε, and the last eigenvalue at 2, i.e.,

λ1 = ε, λi = 1 + (i− 1) ·
√

ε, i = 2, . . . , n− 1, and λn = 2.

These are also identical to the Type 2 matrices of Section 4.6.

3) Uniform Distribution (ε to 1). The eigenvalues are equi-spaced between ε and 1,

i.e.,

λi = ε + (i− 1) ∗ τ, i = 1, 2, . . . , n

where τ = (1− ε)/(n− 1).

4) Uniform Distribution (ε to 1 with random signs). Identical to the above type of

matrices except that a random ± sign is attached to the eigenvalues.

5) Geometric Distribution (ε to 1). The eigenvalues are geometrically arranged be-

tween ε and 1, i.e.,

λi = ε(n−i)/(n−1), i = 1, 2, . . . , n.

141

6) Geometric Distribution (ε to 1 with random signs). Identical to the above type

except that a random ± sign is attached to the eigenvalues.

7) Random. The eigenvalues come from a random, normal (0, 1) distribution.

8) Clustered at 1. λ1 = ε, and λ2 ≈ λ3 ≈ · · · ≈ λn ≈ 1.

9) Clustered at ±1. Identical to the above type except that a random ± sign is attached

to the eigenvalues.

10) Clustered at ε. λ1 ≈ λ2 ≈ · · · ≈ λn−1 ≈ ε, and λn = 1.

11) Clustered at ±ε. Identical to the above type of matrices except that a random ±
sign is attached to the eigenvalues.

12) (1,2,1) Matrix. These are the Toeplitz tridiagonal matrices with 2’s on the diagonals

and 1’s as the off-diagonal elements. An n×n version of such a matrix has eigenvalues

4 sin2[kπ/2(n + 1)], and for the values of n under consideration, these eigenvalues are

not too close.

Matrices of types 3 through 11 above are LAPACK test matrices and are used to

check the accuracy of all LAPACK software for the symmetric tridiagonal eigenproblem. In

addition, the following symmetric tridiagonal matrices arise in certain quantum chemistry

computations. For more details on these problems, the reader is referred to [10, 55].

13) Biphenyl. This positive definite matrix with n = 966 occurs in the modeling of

biphenyl using Møller-Plesset theory. Most of its eigenvalues are quite small com-

pared to the norm. See Figure 6.1 for a plot of its eigenvalue distribution.

14) SiOSi6. Density functional theory methods for determining bulk properties for the

molecule SiOSi6 lead to this positive definite matrix with n = 1687. Most of the

eigenvalues are quite close to their neighbors and there is no obvious subdivision of

the spectrum into separate clusters. Figure 6.2 gives this distribution.

15) Zeolite ZSM-5. This 2053×2053 matrix occurs in the application of the self-consistent

field(SCF) Hartree-Fock method for solving a non-linear Schrödinger problem. See

Figure 6.3 for the spectrum.

142

Figure 6.1: Eigenvalue distribution for Biphenyl

Figure 6.2: Eigenvalue distribution for SiOSi6

Figure 6.3: Eigenvalue distribution for Zeolite ZSM-5

143

6.4.2 Timing and Accuracy Results

Tables 6.1 and 6.2 give a comparison of the times taken by the different algorithms

to find all the eigenvalues and eigenvectors of symmetric tridiagonal matrices of the type

discussed above. All the numerical experiments presented in this section were conducted

on an IBM RS/6000-590 processor that has a peak rating of 266 MFlops. Fortran BLAS,

instead of those from the machine optimized ESSL library [82], were used in this preliminary

testing1. We hope to include the ESSL BLAS in our future comparisons. The rest of the

tables, Table 6.3 through 6.6, indicate the accuracy of the methods tested.

Our Algorithm Y may be thought of as an alternate way of doing inverse iteration.

Thus LAPACK INVIT and EISPACK INVIT are the two earlier methods that most closely

resemble Algorithm Y. Tables 6.1 and 6.2 show that Algorithm Y is always faster than both

these existing implementations. The difference in speed varies according to the eigenvalue

distribution — on matrices of order 2000, Algorithm Y is over 3500 times faster than

LAPACK INVIT when the eigenvalues are clustered around ε while it is 4 times faster

when the eigenvalues are well-separated. These different speedups highlight the sensitivity

of the various algorithms to the eigenvalue distribution. When eigenvalues are clustered,

EISPACK and LAPACK inverse iteration need O(n3) time, as is clear from Tables 6.1

and 6.2. On the other hand, they take O(n2) time when eigenvalues are isolated, see the

results for matrices of type 4 and type 7 in Table 6.1. We also draw the reader’s attention to

the varying behavior on matrices with uniformly distributed eigenvalues (from ε to 1), and

the (1, 2, 1) matrix. For small n, we see an O(n2) behavior but for larger n, both EISPACK

and LAPACK inverse iteration take O(n3) time. This discrepancy is due to the clustering

criterion which is independent of n — more specifically, reorthogonalization is done when

eigenvalues differ by less than 10−3‖T‖. See Section 2.8.1 for more details. EISPACK’s

implementation is always faster than LAPACK’s but is generally, less accurate. In fact, the

latter was designed to improve the accuracy of EISPACK [87].

Algorithm Y is much less sensitive to the arrangement of eigenvalues — on matrices

of order 2000, the time taken by it ranges from about 30 seconds to about 60 seconds in

most cases. The two notable exceptions are the matrices where almost all eigenvalues are

clustered around ε or ±ε. It turns out that the eigenvectors of such matrices can be very

sparse — in fact, an identity matrix is a good approximation to an eigenvector matrix. By
1all code was compiled with the command line f77 -u -O, where the -O compiler option is identical to

the -O2 level of optimization

144

Time Taken (in seconds)
Matrix Matrix LAPACK EISPACK LAPACK LAPACK Algorithm
Type Size INVIT INVIT D&C QR Y

125 0.72 0.53 0.02 0.17 0.14
Uniform 250 3.52 2.27 0.10 1.23 0.52

Distribution 500 19.78 11.12 0.42 8.92 1.96
(ε apart) 1000 123.91 60.24 2.13 68.06 8.91

2000 858.01 369.68 13.18 534.88 31.87
125 0.55 0.35 0.14 0.16 0.40

Uniform 250 2.87 1.63 0.69 1.16 1.54
Distribution 500 17.76 8.76 4.09 7.33 5.94
(
√

ε apart) 1000 114.32 50.94 26.34 63.35 23.17
2000 825.91 332.95 178.74 453.93 92.26
125 0.53 0.46 0.16 0.18 0.14

Uniform 250 2.06 1.81 0.74 1.21 0.56
Distribution 500 8.08 7.08 4.27 8.61 1.96

(ε to 1) 1000 124.65 27.55 26.85 68.32 8.04
2000 858.55 370.35 182.64 535.94 31.91

Uniform 125 0.54 0.47 0.15 0.18 0.14
Distribution 250 2.11 1.85 0.73 1.19 0.54
(ε to 1 with 500 8.20 7.18 4.25 8.35 1.97

random signs) 1000 32.05 27.81 26.85 61.58 8.17
2000 127.53 109.39 183.26 468.01 32.30
125 0.69 0.54 0.05 0.14 0.13

Geometric 250 3.29 2.29 0.25 1.03 0.48
Distribution 500 17.72 10.59 1.22 7.66 1.86

(ε to 1) 1000 108.90 55.60 6.70 58.98 7.25
2000 759.77 335.68 41.50 442.96 28.73

Geometric 125 0.66 0.50 0.05 0.15 0.72
Distribution 250 3.29 2.29 0.24 0.96 2.97
(ε to 1 with 500 17.44 10.37 1.17 5.96 12.79

random signs) 1000 104.68 53.95 6.37 37.34 53.39
2000 711.83 313.82 38.18 247.43 191.82
125 0.53 0.47 0.14 0.18 0.21
250 2.07 1.83 0.61 1.21 0.99

Random 500 8.20 7.18 3.54 8.20 5.43
1000 32.18 27.81 21.87 60.75 13.38
2000 132.16 109.83 147.50 459.67 61.92

Table 6.1: Timing Results

145

Time Taken (in seconds)
Matrix Matrix LAPACK EISPACK LAPACK LAPACK Algorithm
Type Size INVIT INVIT D&C QR Y

125 0.69 0.47 0.02 0.14 0.01
Clustered 250 3.34 2.10 0.04 0.98 0.001

at ε 500 18.87 10.19 0.13 7.22 0.04
1000 120.34 56.56 0.42 56.65 0.09
2000 843.89 353.89 1.42 432.27 0.23
125 0.68 0.49 0.02 0.14 0.01

Clustered 250 3.36 2.21 0.03 1.03 0.02
at ±ε 500 18.98 0.11 7.26 4.0 0.03

1000 120.89 57.09 0.350 54.68 0.09
2000 846.84 356.07 1.18 416.25 0.25
125 0.30 0.19 0.01 0.07 0.04

Clustered 250 3.54 2.72 0.04 0.46 0.15
at 1 500 13.56 12.66 0.14 3.96 0.68

1000 100.04 101.29 0.39 27.64 3.77
2000 767.49 952.61 1.75 223.66 17.05
125 0.23 0.14 0.01 0.09 0.06

Clustered 250 1.27 0.74 0.03 0.60 0.17
at ±1 500 7.76 4.83 0.12 4.24 0.70

1000 54.03 36.17 0.350 29.98 2.44
2000 398.60 313.47 1.23 225.42 17.17
125 0.51 0.46 0.15 0.18 0.14

(1,2,1) 250 1.82 0.70 0.45 1.18 0.57
Matrix 500 8.21 7.13 2.69 8.47 2.33

1000 40.16 29.30 18.15 64.31 7.89
2000 857.84 194.14 129.05 491.40 32.87

Biphenyl 966 107.72 53.26 19.58 44.25 10.26
SiOSi6 966 360.21 172.86 97.49 248.07 41.61

Zeolite ZSM-5 2053 281.02 161.28 145.65 376.65 106.25

Table 6.2: Timing Results

146

Maximum Residual Norm
Matrix Matrix LAPACK EISPACK LAPACK LAPACK Algorithm
Type Size INVIT INVIT D&C QR Y

125 0.005 0.377 0.630 0.004 0.013
Uniform 250 0.002 0.601 0.627 0.002 0.002

Distribution 500 0.0001 0.043 0.425 0.0003 0.0001
(ε apart) 1000 0.0005 0.728 0.299 0.0005 0.0005

2000 0.00002 0.153 0.276 0.00003 0.002
125 0.035 1.83 0.057 0.224 0.130

Uniform 250 0.024 2.60 0.040 0.200 0.197
Distribution 500 0.030 7.62 0.073 0.358 0.015
(
√

ε apart) 1000 0.012 5.94 0.255 0.181 0.146
2000 0.001 11.15 0.012 0.197 0.089
125 0.056 3.31 0.117 0.365 0.029

Uniform 250 0.039 6.19 0.098 0.375 0.023
Distribution 500 0.023 5.33 0.139 0.610 0.025

(ε to 1) 1000 0.023 10.92 0.070 0.410 0.012
2000 0.017 7.19 0.133 0.334 0.008

Uniform 125 0.029 1.96 0.234 0.624 0.046
Distribution 250 0.034 4.77 0.145 0.586 0.036
(ε to 1 with 500 0.023 5.33 0.139 0.610 0.025

random signs) 1000 0.019 9.71 0.134 0.589 0.018
2000 0.012 11.74 0.135 0.569 0.012
125 0.008 0.483 0.119 0.048 0.008

Geometric 250 0.005 0.882 0.084 0.034 0.006
Distribution 500 0.003 1.11 0.098 0.038 0.004

(ε to 1) 1000 0.003 1.55 0.063 0.040 0.003
2000 0.002 1.90 0.057 0.040 0.002

Geometric 125 0.006 0.391 0.081 0.041 0.127
Distribution 250 0.003 0.420 0.065 0.045 0.213
(ε to 1 with 500 0.003 0.902 0.051 0.048 0.153

random signs) 1000 0.003 1.91 0.041 0.061 0.417
2000 0.002 2.07 0.029 0.055 0.430
125 0.016 0.993 0.083 0.373 0.154
250 0.011 1.75 0.087 0.256 0.149

Random 500 0.007 1.79 0.079 0.354 0.403
1000 0.011 1.75 0.087 0.256 0.168
2000 0.005 4.15 0.092 0.383 0.392

Table 6.3: Maximum Residual Norms ≡ maxi ‖T v̂i − λ̂iv̂i‖/nε‖T‖

147

Maximum Residual Norm
Matrix Matrix LAPACK EISPACK LAPACK LAPACK Algorithm
Type Size INVIT INVIT D&C QR Y

125 0.004 0.429 0.011 0.004 0.006
Clustered 250 0.0005 0.041 0.002 0.004 0.001

at ε 500 0.0002 0.115 0.002 0.001 0.002
1000 0.000007 0.125 0.001 0.0005 0.0006
2000 0.0003 0.400 0.0003 0.00004 0.0003
125 0.004 0.739 0.014 0.006 0.007

Clustered 250 0.004 0.854 0.007 0.002 0.002
at ±ε 500 0.00003 0.079 0.004 0.001 0.0003

1000 0.0005 0.395 0.002 0.0005 0.0008
2000 0.000002 0.109 0.001 0.0002 0.0008
125 1.31 1.23 0.156 0.245 0.251

Clustered 250 1.45 1.14 0.190 0.269 0.168
at 1 500 1.46 1.37 0.096 0.308 0.146

1000 1.52 1.35 0.067 0.346 0.107
2000 1.62 1.45 0.036 0.340 0.091
125 0.704 9.53 0.224 0.399 0.190

Clustered 250 0.712 4.55 0.138 0.611 0.109
at ±1 500 0.664 17.78 0.074 0.565 0.103

1000 0.604 22.10 0.048 0.563 0.083
2000 0.625 33.95 0.034 0.549 0.076
125 0.047 4.54 0.164 0.431 0.100

(1,2,1) 250 0.034 8.31 0.130 0.411 0.314
Matrix 500 0.031 21.32 0.109 0.400 0.459

1000 0.035 57.72 0.105 0.484 0.116
2000 0.029 181.37 0.102 0.618 0.227

Biphenyl 966 0.0009 0.708 0.010 0.004 0.0009
SiOSi6 966 0.004 179.87 0.021 0.054 0.020

Zeolite ZSM-5 2053 0.004 16.98 0.0145 0.097 0.150

Table 6.4: Maximum Residual Norms ≡ maxi ‖T v̂i − λ̂iv̂i‖/nε‖T‖

148

Maximum Dot Product
Matrix Matrix LAPACK EISPACK LAPACK LAPACK Algorithm
Type Size INVIT INVIT D&C QR Y

125 0.056 0.272 0.096 0.204 0.067
Uniform 250 0.046 0.220 0.032 0.108 0.120

Distribution 500 0.024 0.216 0.018 0.068 0.085
(ε apart) 1000 0.023 0.257 0.017 0.045 0.084

2000 0.017 0.260 0.010 0.032 0.073
125 0.056 0.200 0.064 0.136 0.091

Uniform 250 0.044 0.196 0.060 0.108 0.108
Distribution 500 0.030 0.234 0.036 0.074 0.084
(
√

ε apart) 1000 0.022 0.217 0.047 0.059 0.159
2000 0.014 0.230 0.044 0.028 0.091
125 0.048 6.20 0.080 0.184 0.107

Uniform 250 0.049 25.48 0.056 0.106 0.062
Distribution 500 0.046 12.60 0.058 0.081 0.107

(ε to 1) 1000 0.020 61.44 0.048 0.062 0.118
2000 0.015 0.242 0.046 0.047 0.170

Uniform 125 0.119 3.93 0.096 0.104 0.070
Distribution 250 0.106 8.23 0.052 0.076 0.114
(ε to 1 with 500 0.132 12.67 0.044 0.105 0.132

random signs) 1000 0.028 17.67 0.047 0.060 0.140
2000 0.028 17.23 0.046 0.025 0.228
125 0.052 0.432 0.096 0.164 0.060

Geometric 250 0.066 0.308 0.054 0.104 0.050
Distribution 500 0.036 0.528 0.036 0.102 0.032

(ε to 1) 1000 0.024 0.360 0.018 0.058 0.025
2000 0.017 0.330 0.014 0.052 0.020

Geometric 125 0.056 0.192 0.088 0.192 1.77
Distribution 250 0.036 0.248 0.054 0.144 0.731
(ε to 1 with 500 0.035 0.246 0.042 0.140 0.337

random signs) 1000 0.022 0.244 0.022 0.066 0.330
2000 0.016 0.575 0.020 0.053 127499.0
125 0.105 6.03 0.096 0.184 0.839
250 0.095 13.63 0.050 0.112 0.337

Random 500 0.042 10.36 0.050 0.062 0.254
1000 0.044 26.16 0.031 0.112 0.415
2000 0.031 7.30 0.042 0.039 0.610

Table 6.5: Maximum Dot Products ≡ maxi6=j |v̂T
i v̂j |/nε

149

Maximum Dot Product
Matrix Matrix LAPACK EISPACK LAPACK LAPACK Algorithm
Type Size INVIT INVIT D&C QR Y

125 0.052 0.829 0.056 0.160 0.008
Clustered 250 0.044 0.605 0.032 0.144 0.004

at ε 500 0.034 0.226 0.020 0.088 0.002
1000 0.022 0.626 0.008 0.067 0.0007
2000 0.021 2.78 0.005 0.048 0.0005
125 0.048 0.705 0.064 0.152 0.014

Clustered 250 0.032 0.455 0.044 0.120 0.008
at ±ε 500 0.029 0.194 0.022 0.092 0.003

1000 0.032 14.94 0.024 0.082 0.168
2000 0.015 0.157 0.004 0.043 0.0005
125 0.048 1.26 0.044 0.064 0.008

Clustered 250 0.036 2.96 0.020 0.062 0.0008
at 1 500 0.023 0.738 0.012 0.052 0.003

1000 0.019 3.80 0.006 0.032 0.001
2000 0.015 17720798.0 0.003 0.034 0.0002
125 0.052 3.44 0.048 0.116 0.020

Clustered 250 0.032 14.94 0.024 0.082 0.020
at ±1 500 0.022 625.94 0.016 0.068 0.027

1000 0.015 296.76 0.007 0.045 0.018
2000 0.016 63357.9 0.004 0.048 0.007
125 0.101 63.24 0.084 0.112 0.623

(1,2,1) 250 0.064 20.03 0.028 0.068 0.284
Matrix 500 0.036 15.52 0.030 0.044 0.308

1000 0.072 5.02 0.032 0.035 0.759
2000 0.084 1.13 0.027 0.044 0.662

Biphenyl 966 0.018 0.162 0.030 0.073 0.859
SiOSi6 966 0.012 70.86 0.033 0.070 0.698

Zeolite ZSM-5 2053 0.010 1.41 0.045 0.049 0.382

Table 6.6: Maximum Dot Products ≡ maxi6=j |v̂T
i v̂j |/nε

150

invoking the ideas of Section 6.3, submatrices of very small size are needed by our new

algorithm to compute orthogonal eigenvectors. As a result, Algorithm Y takes as little

as 0.25 seconds to find all the eigenpairs of such a matrix of size 2000, while traditional

LAPACK inverse iteration takes 840 seconds. All our timing results confirm Algorithm Y to

be an O(n2) method. The new technique of finding the eigenvector of an isolated eigenvalue

by using twisted factorizations (see Chapter 3 for details) implies that our new algorithm is

faster even in cases that are favorable for EISPACK and LAPACK’s inverse iteration, i.e.,

matrices of type 4 and type 7.

We mentioned the uncertainty in implementing certain steps of Algorithm Y at

the beginning of this chapter. The reason is the lack of a complete theory behind multiple

representations. This uncertainty has led to some redundancy and less than satisfactory fixes

(such as a tolerance on the acceptable element growth) in our preliminary code which will

hopefully be eliminated in the near future. In addition, whenever we form a relatively robust

representation we need to recompute the locally small eigenvalues to high relative accuracy.

Thus, even though it is still an O(n2) process, our code slows down somewhat when it needs

to form many representations. Due to these reasons, the matrix with eigenvalues arranged

in geometric order from ε to 1 (with random signs) is the hardest one for Algorithm Y,

as evinced by the time needed and an occasionally larger than acceptable deviation from

orthogonality. In contrast, Algorithm Y performs very well on a similar type of matrix

where the eigenvalues are geometrically distributed from ε to 1 (without any random signs

attached to them). The upcoming Section 6.5 lists some possible algorithmic improvements

that should remove this discrepancy in performance on these similar types of matrices.

Tables 6.3-6.6 show that the residual norms and orthogonality of the eigenpairs computed

by our current implementation of Algorithm Y are generally, very good.

The divide and conquer method is the fastest among all the earlier algorithms and

on examples where eigenvalues are close, it outperforms our preliminary implementation of

Algorithm Y. This success is due to the deflation process, where an eigenpair of a submatrix

is found to be an acceptable eigenpair of the full matrix. However, in cases where the

eigenvalues are well-separated, the divide and conquer algorithm takes O(n3) time and is

slower than Algorithm Y. One major drawback of LAPACK D&C is its extra workspace

requirement of more than 2n2 double precision words, which can be prohibitively excessive.

In fact, in the recent past, some people have turned to LAPACK INVIT instead of divide

and conquer to solve their large problems solely for this reason [6, 53, 52]. Of course,

151

workspace of only about 5-10 n double precision words is required by Algorithm Y, and

EISPACK and LAPACK INVIT.

The QR method is seen to uniformly take O(n3) time and is less sensitive to

the eigenvalue distribution. It is quite competitive with the other methods on matrices of

small size. Both the QR method and the divide and conquer algorithm produce accurate

eigenpairs, as seen from Tables 6.3, 6.4, 6.5 and 6.6.

We now discuss performance of the various algorithms on matrices that arise from

quantum chemistry applications. Table 6.2 shows that our Algorithm Y is the fastest

method for these matrices. In the results discussed above, the matrices were characterized

by their eigenvalue distributions. In Figures 6.1, 6.2 and 6.3, we did give the eigenvalues of

the three matrices under consideration. However, the quantities of interest are the absolute

and relative gaps between the eigenvalues. The left halves of Figures 6.4, 6.5 and 6.6 plot

the logarithms of absolute gaps, i.e.,

log10

(
absgap(i)
‖T‖

)
= log10

(
min(λi+1 − λi, λi − λi−1)

‖T‖

)
, (6.4.5)

while the right halves plot the relative gaps on a logarithmic scale, i.e.,

log10 (relgap(i)) = log10

(
min(λi+1 − λi, λi − λi−1)

|λi|

)
. (6.4.6)

Recall that in (6.4.5) and (6.4.6), the eigenvalues are arranged in ascending order.

From Figure 6.4, we see that almost all the absolute gaps for the biphenyl matrix

are less than 10−3‖T‖ and consequently, both LAPACK and EISPACK INVIT spend O(n3)

time on this matrix of order 966. Most of the eigenvalues, however, agree in less than 3

leading digits and as a result, Algorithm Y is about 10 times faster than LAPACK INVIT.

This translates to a 3-fold increase in speed of the total dense symmetric eigenproblem.

Similar behavior is observed in the SiOSi6 matrix. We see a different distribution in the

Zeolite example where the relative gaps are similar to the absolute gaps. Despite the need

to form many representations, we observe that Algorithm Y is still faster than the earlier

methods.

We have also implemented a parallel variant of Algorithm Y in collaboration with

computational chemists at Pacific Northwest National Laboratories (PNNL). This will re-

place the earlier tridiagonal eigensolver based on inverse iteration that was part of the

PeIGS version 2.0 library [52]. Our new method is more easily parallelized, and coupled

with its lower operation count, offers an even bigger computational advantage on a parallel

152

Figure 6.4: Absolute and Relative Eigenvalue Gaps for Biphenyl

Figure 6.5: Absolute and Relative Eigenvalue Gaps for SiOSi6

computer. For example, on the biphenly matrix our new parallel implementation is 100

times faster on a 128 processor IBM SP2 machine. More performance results are given

in [39].

6.5 Future Enhancements to Algorithm Y

We now list various ways in which our current implementation of Algorithm Y

may be improved.

Multiple Representations. We would like to complete the relative perturbation theory

for factorizations of indefinite matrices. Some preliminary results and conjectures

were presented in Chapter 5. We plan to investigate using twisted factorizations as

relatively robust representations. We believe that completing this theory will lead to

153

Figure 6.6: Absolute and Relative Eigenvalue Gaps for Zeolite ZSM-5

a more elegant and efficient implementation.

Choice of Base Representation. In both Algorithms X and Y, the first step is to form a

base representation by translating the matrix and making it positive definite. We do so

because of the well known relative perturbation properties of the resulting bidiagonal

Cholesky factor. However, we could instead form a relatively robust factorization of

an indefinite matrix. As seen from the RRR trees in Figures 5.1 and 5.2, a judicious

choice of the base representation may save us from forming multiple representations

and hence, result in greater speed. For example, by forming a base representation near

zero, we may be able to substantially reduce the amount of time spent by Algorithm Y

on matrices with eigenvalues that are geometrically distributed from ε to 1 (with

random signs). In the near future, we hope to incorporate a measure of “goodness”

with each shift at which we can form a relatively robust representation, and start with

the “best” possible base representation.

Exploiting sparse eigenvectors. As seen in Figure 4.6, a majority of the entries in an

eigenvector may be negligible (this figure actually plots an eigenvector of the biphenyl

matrix). We can make our implementation more efficient by setting these negligible

entries to zero, in an a priori manner. In fact, the submatrix ideas of Section 6.3 do

produce sparse eigenvectors for clusters, and can greatly reduce the amount of work

needed as seen in the previous section. Even isolated eigenvalues can have sparse

eigenvectors, and we intend to exploit this sparsity and also push the submatrix ideas

further to get a more efficient code. We believe that by doing so, we can get an

154

algorithm that is uniformly faster than the divide & conquer method.

Exploiting Level-2 BLAS-like operations. Different eigenvectors are computed inde-

pendently of each other by Algorithm Y. By computing multiple eigenvectors at the

same time, we would be able to vectorize the arithmetic operations, and exploit mul-

tiple functional units in modern computer architectures such as the IBM RS/6000

processor. Such a strategy has been adopted to speed up the LAPACK implementa-

tion of bisection on some computer architectures [107, 1]. We say that such a strategy

leads to a level-2 BLAS-like operation since it involves a quadratic amount of data

and a quadratic amount of work [67].

We hope to resolve the above mentioned algorithmic enhancements in the near fu-

ture. These should result in Algorithm Z, and be included in future releases of LAPACK [1]

and and ScaLAPACK [22].

Finally, we remind the reader that the timing and accuracy results presented in

this chapter must be considered to be transitory. Future improvements could lead to further

increase in speed of our new O(n2) algorithm. All the earlier algorithms to which we compare

our new methods have been researched for more than 15 years, and we ask the kind reader

for some patience as we try to produce an algorithm that is provably correct in floating

point arithmetic while simultaneously being (i) O(n2) and (ii) embarrassingly parallel.

155

Chapter 7

Conclusions

In this thesis, we have shown how to compute numerically orthogonal approxi-

mations to eigenvectors without resorting to any reorthogonalization technique such as the

Gram-Schmidt process. Consequently, our new algorithm can compute orthogonal eigen-

vectors in O(n2) time. The individual eigenvectors are computed independently of each

other which is well-suited for parallel computation. Moreover, our algorithm can deliver

any subset of the eigenvalues and eigenvectors at a cost of O(n) operations per eigenpair.

We now discuss some of the guiding principles behind the advances mentioned

above. We feel that these principles are general in the sense that they could be applied to

other numerical procedures. In the following, we list these principles and show how we have

applied them to get a faster O(n2) solution to the tridiagonal eigenproblem.

Do not try to compute a quantity that is not well-determined. When eigenvalues

are close, individual eigenvectors are extremely sensitive to small changes in the ma-

trix entries. On the other hand, the invariant subspace corresponding to these close

eigenvalues is well-determined and any orthogonal basis of this subspace will suffice

as approximate eigenvectors. Earlier EISPACK and LAPACK software attempt to

compute such a (non-unique) basis by explicit orthogonalization and hence, can take

O(n3) time. However, as explained in Chapter 5, we have been able to find alter-

nate representations of the initial matrix so that the refined eigenvalues are no longer

“close” and the corresponding eigenvectors are now well-determined. These new rep-

resentations allow us to identify a robust orthogonal basis of the desired subspace and

hence, compute it cheaply. Another major advance in our methods comes by recog-

nizing that the bidiagonal factors of a tridiagonal determine the desired quantities

156

much “better” than its diagonal and off-diagonal entries.

Exploiting transformations for which the solution is invariant. Eigenvalues of a ma-

trix A are invariant under the similarity transformations S−1AS, and change in a sim-

ple way under affine transformations of the form αA+β, α 6= 0. Several methods such

as the QR, LR and qd algorithms take advantage of such transformations. Eigenvec-

tors of A are easily seen to be invariant under any affine transformation. We exploit

this property to great advantage by obtaining various representations of the given

problem, each of which is “better” suited for computing a subset of the spectrum.

Finding “good” representations. We need to make sure that the above transformations

do not affect the accuracy of the desired quantities. Thus to produce eigenpairs that

have small residual norms, as specified in (1.1.1), we need to avoid large element

growths in forming the intermediate factorizations

T − µI = LDLT . (7.0.1)

See Chapter 5 for details.

High Accuracy in key computations can lead to speed. The main reason for form-

ing multiple representations, as in (7.0.1), is to avoid Gram-Schmidt like methods in

computing orthogonal approximations to the eigenvectors. Our faster O(n2) scheme

becomes possible only because the intermediate representations determine their small

eigenvalues to high relative accuracy. We can then compute these small eigenvalues

to full relative accuracy and use these highly accurate eigenvalues to compute eigen-

vectors. The resulting eigenvectors we compute are “faithful” and orthogonal as a

consequence. In numerical methods, there is generally believed to be a trade-off be-

tween speed and accuracy, i.e., higher accuracy can be achieved only at the expense

of computing time. However, we have demonstrated that high accuracy in the right

places can actually speed up the computation.

7.1 Future Work

In Section 6.5, we mentioned further enhancements to Algorithm Y which we

intend to incorporate in the near future. Here we see how some of our ideas may be applied

to other problems in numerical linear algebra.

157

Perfect Shifts. In Section 3.5.1 we showed how to effectively use the perfect shift strategy

in a QR-like algorithm. This new scheme enables us to use “ultimate” or “perfect”

shifts as envisaged by Parlett in [112]. It also solves the problem of immediately

deflating a known eigenpair from a symmetric matrix by deleting one of its rows and

columns. We intend to substantiate these claims with numerical experiments in the

near future [40].

Non-symmetric Eigenproblem. Since Algorithm Y does not invoke any Gram-Schmidt

like process, it does not explicitly try to compute eigenvectors that are orthogonal.

Orthogonality is a result of the matrix being symmetric. We believe that many of

our ideas can be applied to the non-symmetric eigenproblem in order to obtain the

“best-conditioned” eigenvectors.

Lanczos Algorithm. The method proposed by Lanczos in 1952 [97], after many modi-

fications to account for roundoff [125, 112, 126], has become the champion among

algorithms to find some of the extreme eigenvalues of a sparse symmetric matrix. It

proceeds by incrementally forming, one row and column at a time, a tridiagonal ma-

trix that is similar to the sparse matrix. We would like to investigate if there are any

benefits in using the LDLT decomposition of this tridiagonal or its translates. The

sparsity of the eigenvectors of the tridiagonal, see Figure 4.6 for an example, may also

be exploited in reducing the amount of work in the selective orthogonalization phase.

See [125] for details on the latter phase.

Rank-Revealing Factorizations. The twisted factorizations introduced in Section 3.1

enable us to accurately compute a null vector of a nearly singular tridiagonal matrix.

The particular twisted factorization used is successful because it transparently reveals

the near singularity of the tridiagonal. As discussed in Section 3.6, twisted factoriza-

tions can also be formed for denser matrices. A nice property is that they tend to

preserve the sparsity pattern of the matrix. Coupled with their rank-revealing prop-

erties, twisted factorizations may become an invaluable computational tool in banded

(sparse) matrix computations.

158

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide (second

edition). SIAM, Philadelphia, 1995. 324 pages.

[2] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985

edition, 1985.

[3] P. Arbenz, K. Gates, and Ch. Sprenger. A parallel implementation of the symmetric tridiagonal

QR algorithm. In Frontier’s 92. McLean, 1992.

[4] S. O. Asplund. Finite boundary value problems solved by Green’s matrix. Math. Scand.,

7:49–56, 1959.

[5] I. Babuska. Numerical stability in problems of linear algebra. SIAM J. Num. Anal., 9:53–77,

1972.

[6] Z. Bai, 1996. private communication.

[7] V. Bargmann, D. Montgomery, and J. von Neumann. Solution of linear systems of high order.

Report prepared for Navy Bureau of Ordnance, 1946. Reprinted in [131, pp. 421–477].

[8] J. Barlow, 1996. private communication.

[9] J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant

matrices. SIAM J. Num. Anal., 27(3):762–791, June 1990.

[10] D. Bernholdt and R. Harrison. Orbital invariant second order many-body perturbation on

parallel computers: An approach for large molecules. J. Chem. Physics., 1995.

[11] H. J. Bernstein and M. Goldstein. Parallel implementation of bisection for the calculation of

eigenvalues of a tridiagonal symmetric matrices. Computing, 37:85–91, 1986.

[12] Christian H. Bischof and Charles F. Van Loan. The WY representation for products of House-

holder matrices. SIAM J. Sci. Stat. Comput., 8(1):s2–s13, 1987.

[13] R. P. Brent. Algorithms for minimization without derivatives. Prentice-Hall, 1973.

159

[14] B. Bukhberger and G.A. Emel’yanenko. Methods of inverting tridiagonal matrices. USSR

Computat. Math. and Math. Phy., 13:10–20, 1973.

[15] J. Bunch, P. Nielsen, and D. Sorensen. Rank-one modification of the symmetric eigenproblem.

Num. Math., 31:31–48, 1978.

[16] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for particle

simulations. SIAM J. Sci. Stat. Comput., 9(4):669–686, July 1988.

[17] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the benefits of mixed data and task

parallelism. In Symposium on Parallel Algorithms and Architectures (SPAA), Santa Barbara,

California, july 1995.

[18] T. Chan. Rank revealing QR factorizations. Lin. Alg. Appl., 88/89:67–82, 1987.

[19] T. F. Chan. On the existence and computation of LU-factorizations with small pivots. Math.

Comp., 42:535–547, 1984.

[20] S. Chandrasekaran. When is a Linear System Ill-Conditioned? PhD thesis, Departement of

Computer Science, Yale University, New Haven, CT, 1994.

[21] Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong, Michael B. Monagan,

and Stephen M. Watt. Maple V Library Reference Manual. Springer-Verlag, Berlin, 1991.

[22] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, Ostrouchov, S., A. Petitet, K. Stanley, D. Walker,

and R. C. Whaley. ScaLAPACK, a portable linear algebra library for distributed memory

computers-design issues and performance. Computer Physics Communications, 97(1-2):1–15,

1996.

[23] M. Chu. A simple application of the homotopy method to symmetric eigenvalue problems.

Lin. Alg. Appl, 59:85–90, 1984.

[24] M. Chu. A note on the homotopy method for linear algebraic eigenvalue problems. Lin. Alg.

Appl, 105:225–236, 1988.

[25] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.

Numer. Math., 36:177–195, 1981.

[26] C. Davis and W. Kahan. Some new bounds on perturbation of subspaces. Bulletin of the

American Mathematical Society, 77(4):863–868, July 1969.

[27] C. Davis and W. Kahan. The rotation of eigenvectors by a perturbation III. SIAM J. Num.

Anal., 7:248–263, 1970.

[28] D. Day. The differential qd algorithm for the tridiagonal eigenvalue problem. 1997. in prepa-

ration.

160

[29] P. Deift, J. Demmel, L.-C. Li, and C. Tomei. The bidiagonal singular values decomposition

and Hamiltonian mechanics. SIAM J. Num. Anal., 28(5):1463–1516, October 1991. (LAPACK

Working Note #11).

[30] L. S. DeJong. Towards a formal definition of numerical stability. Numer. Math., 28:211–220,

1977.

[31] T. J. Dekker. Finding a zero by means of successive linear interpolation. In B. Dejon and

P. Henrici, editors, Constructive aspects of the fundamanetal theorem of algebra. New York:

Wiley-Interscience, 1969.

[32] J. Demmel. The inherent inaccuracy of implicit tridiagonal QR. Technical Report Report 963,

IMA, University of Minnesota, April 1992.

[33] J. Demmel and W. Gragg. On computing accurate singular values and eigenvalues of acyclic

matrices. Lin. Alg. Appl., 185:203–218, 1993.

[34] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač. Computing the

singular value decomposition with high relative accuracy. Computer Science Dept. Technical

Report CS-97-348, University of Tennessee, Knoxville, February 1997. (LAPACK Working

Note #119, available electronically on netlib).

[35] J. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM J. Sci.

Stat. Comput., 11(5):873–912, September 1990.

[36] J. Demmel and A. McKenney. A test matrix generation suite. Computer science dept. technical

report, Courant Institute, New York, NY, July 1989. (LAPACK Working Note #9).

[37] J. Demmel and K. Veselić. Jacobi’s method is more accurate than QR. SIAM J. Mat. Anal.

Appl., 13(4):1204–1246, 1992. (also LAPACK Working Note #15).

[38] J. W. Demmel. personal communication, 1996.

[39] I. Dhillon, G. Fann, and B. Parlett. Application of a new algorithm for the symmetric eigen-

problem to computational quantum chemistry. In Proceedings of the Eighth SIAM Conference

on Parallel Processing for Scientific Computing, Minneapolis, MN, March 1997. SIAM.

[40] I. S. Dhillon. Perfect shifts and twisted factorizations. 1997. In preparation.

[41] I. S. Dhillon. Current inverse iteration software can fail. BIT, 38(4):685–704, December 1998.

[42] I. S. Dhillon. Reliable computation of the condition number of a tridiagonal matrix in O(n)

time. SIAM J. Matrix Anal. Appl., 19(3):776–796, July 1998.

[43] I. S. Dhillon and B.N. Parlett. Orthogonal eigenvectors without Gram-Schmidt. 1997. in

preparation.

161

[44] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK User’s Guide. SIAM,

Philadelphia, PA, 1979.

[45] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of Level 3 Basic Linear Algebra

Subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[46] J. Dongarra and D. Sorensen. A fully parallel algorithm for the symmetric eigenproblem.

SIAM J. Sci. Stat. Comput., 8(2):139–154, March 1987.

[47] J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable dense linear algebra libraries.

In Scalable High-Performance Computing Conference. IEEE Computer Society Press, April

1992.

[48] J. DuCroz, December 1994. private communication.

[49] S. Eisenstat and I. Ipsen. Relative perturbation techniques for singular value problems. SIAM

J. Numer. Anal., 32(6), 1995.

[50] S. C. Eisenstat and I. C. F. Ipsen. Relative perturbation bounds for eigenspaces and singular

vector subspaces. In J. G. Lewis, editor, Proceedings of the Fifth SIAM Conference on Applied

Linear Algebra, pages 62–65. SIAM, 1994.

[51] S.C. Eisenstat and I.C.F. Ipsen. Relative perturbation results for eigenvalues and eigenvectors

of diagonalisable matrices. Technical Report CRSC-TR96-6, Center for Research in Scientific

Computation, Department of Mathematics, North Carolina State University, 1996. (14 pages).

[52] D. Elwood, G. Fann, and D. Littlefield. PeIGS User’s Manual. Pacific Northwest National

Laboratory, Richland, WA, 1993.

[53] G.I. Fann, 1996. private communication.

[54] G.I. Fann and R. J. Littlefield. Parallel inverse iteration with re-orthogonalization. In R. Sin-

covec et. al., editor, Proceedings of the Sixth SIAM Conference on Parallel Processing for

Scientific Computing, volume 1, pages 409–413. SIAM, 1993.

[55] G.I. Fann, R. J. Littlefield, and D.M. Elmwood. Performance of a fully parallel dense real

symmetric eigensolver in quantum chemistry appliacation. In Proceedings of the High Per-

formance Computing ’95, Simulation MultiConference. The Society of Computer Simulation,

San Diego, 1995.

[56] K. Fernando and B. Parlett. Accurate singular values and differential qd algorithms. Nu-

merische Mathematik, 67:191–229, 1994.

[57] K. V. Fernando. On computing an eigenvector of a tridiagonal matrix. Technical Report

TR4/95, Nag Ltd., Oxford, UK, 1995. submitted for publication to SIMAX.

162

[58] D. Fischer, G. H. Golub, O. Hald, C. Leiva, and O. Widlund. On Fourier Toeplitz methods

for separable elliptic problems. Math. Comp., 28:349–368, 1974.

[59] G. J. F. Francis. The QR transformation, parts I and II. Computer J., 4:265–271,332–345,

1961-62.

[60] K. E. Gates. Using inverse iteration to improve the divide and conquer algorithm. Technical

Report 159, ETH Department Informatik, May 1991.

[61] W. Givens. The characteristic value-vector problem. J. ACM, 4:298–307, 1957. also unpub-

lished report.

[62] Wallace J. Givens. Numerical computation of the characteristic values of a real symmetric

matrix. Technical Report ORNL-1574, Oak Ridge National Laboratory, Oak Ridge, TN, USA,

1954.

[63] S. K. Godunov, A. G. Antonov, O. P. Kiriljuk, and V. I. Kostin. Guaranted Accuracy in

Numerical Linear Algebra. Kluwer Academic Publishers, Dordrecht, Netherlands, 1993. A

revised translation of a Russian text first published in 1988 in Novosibirsk.

[64] S. K. Godunov, V. I. Kostin, and A. D. Mitchenko. Computation of an eigenvector of sym-

metric tridiagonal matrices. Siberian Math. J., 26:71–85, 1985.

[65] D. Goldberg. What every computer scientist should know about floating point arithmetic.

ACM Computing Surveys, 23(1), 1991.

[66] G. H. Golub, V. Klema, and G. W. Stewart. Rank degeneracy and least squares problems.

Technical Report STAN-CS-76-559, Computer Science Dept., Stanford Univ., 1976.

[67] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins University

Press, 3rd edition, 1996.

[68] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foun-

dation for Computer Science. Addison-Wesley, Reading, MA, USA, 1989.

[69] A. Greenbaum and J. Dongarra. Experiments with QL/QR methods for the symmetric tridi-

agonal eigenproblem. Computer Science Dept. Technical Report CS-89-92, University of Ten-

nessee, Knoxville, 1989. (LAPACK Working Note #17, available electronically on netlib).

[70] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys.,

73:325–348, 1987.

[71] M. Gu. Studies in numerical linear algebra. Ph.D. thesis, 1993.

[72] M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the rank-1 modification of the

symmetric eigenproblem. SIAM J. Mat. Anal. Appl., 15(4):1266–1276, October 1994. Yale

Tech report YALEU/DCS/RR-916, Sept 1992.

163

[73] M. Gu and S. C. Eisenstat. A divide-and-conquer algorithm for the symmetric tridiagonal

eigenproblem. SIAM J. Mat. Anal. Appl., 16(1):172–191, January 1995.

[74] F. G. Gustavson and A. Gupta. A new parallel algorithm for tridiagonal symmetric positive

definite systems of equations. unpublished report, 1996.

[75] B. Hendrickson, E. Jessup, and C. Smith. A parallel eigensolver for dense symmetric matrices.

Technical Report SAND96–0822, Sandia National Labs, Albuquerque, NM, March 1996.

[76] P. Henrici. The quotient-difference algorithm. Nat. Bur. Standards Appl. Math. Series, 19:23–

46, 1958.

[77] P. Henrici. Bounds for eigenvalues of certain tridiagonal matrices. SIAM J., 11:281–290, 1963.

[78] N. J. Higham. Efficient algorithms for computing the condition number of a tridiagonal matrix.

SIAM J. Sci. Stat. Comput., 7:150–165, 1986.

[79] Hoffman and B. N. Parlett. A new proof of global convergence for the tridiagonal QL algorithm.

SIAM J. Num. Anal., 15:929–937, 1978.

[80] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,

1985. Includes Ostrowski’s relative perturbation theory on pp 224-225.

[81] Alston S. Householder. Unitary triangularization of a nonsymmetric matrix. J. Assoc. Comput.

Mach., 5:339–342, 1958.

[82] IBM. Engineering and Scientific Subroutine Library, Guide and Reference, Release 3, Program

5668-863, 4 edition, 1988.

[83] I. Ikebe. On inverses of Hessenberg matrices. Linear Algebra and its Applications, 24:93–97,

1979.

[84] I. Ipsen and E. Jessup. Solving the symmetric tridiagonal eigenvalue problem on the hypercube.

SIAM J. Sci. Stat. Comput., 11(2):203–230, 1990.

[85] I. C. F. Ipsen. Computing an eigenvector with inverse iteration. SIAM Review, 39(2):254–291,

1997.

[86] C. G. F. Jacobi. Concerning an easy process for solving equations occurring in the theory of

secular disturbances. J. Reine Angnew. Math., 30:51–94, 1846.

[87] E. Jessup and I. Ipsen. Improving the accuracy of inverse iteration. SIAM J. Sci. Stat.

Comput., 13(2):550–572, 1992.

[88] E. R. Jessup. Parallel Solution of the Symmetric Tridiagonal Eigenproblem. PhD thesis, Yale

University, New Haven, CT, 1989.

164

[89] W. Kahan. Accurate eigenvalues of a symmetric tridiagonal matrix. Computer Science Dept.

Technical Report CS41, Stanford University, Stanford, CA, July 1966 (revised June 1968).

[90] W. Kahan. Notes on Laguerre’s iteration. University of California Computer Science Division

preprint, 1992.

[91] W. Kahan. Lecture notes on the status of IEEE standard 754 for binary floating point arith-

metic. http://HTTP.CS.Berkeley.EDU/ wkahan/ieee754status/ieee754.ps, 1995.

[92] W. Kahan, 1996. private communication.

[93] L. Kaufman. A parallel QR algorithm for the symmetric tridiagonal eigenvalue problem. J.

of Parallel and Distributed Computing, 23(3):429–434, December 1994.

[94] D. Kershaw. Inequalities on elements of the inverse of a certain tridiagonal matrix.

Math. Comp., 24:155–158, 1970.

[95] V. N. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem.

Zh. Vych. Mat., 1:555–570, 1961.

[96] D. Kuck and A. Sameh. A parallel QR algorithm for symmetric tridiagonal matrices. IEEE

Trans. Computers, C-26(2), 1977.

[97] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Natl.

Bur. Stand, 49:33–53, 1952.

[98] J. Le and B. Parlett. Forward instability of tridiagonal QR. SIAM J. Mat. Anal. Appl.,

14(1):279–316, January 1993.

[99] K. Li and T.-Y. Li. An algorithm for symmetric tridiagonal eigenproblems — divide and

conquer with homotopy continuation. SIAM J. Sci. Comp., 14(3), May 1993.

[100] R.-C. Li. Relative perturbation theory: (I) eigenvalue and singular value variations. Technical

Report UCB//CSD-94-855, Computer Science Division, Department of EECS, University of

California at Berkeley, 1994. (revised January 1996).

[101] R.-C. Li. Relative perturbation theory: (II) eigenspace and singular subspace variations.

Technical Rep University of California at Berkeley UCB//CSD-94-856, Computer Science

Division, Department of EECS, University of California at Berkeley, 1994. (revised January

1996 and April 1996).

[102] R.-C. Li. Solving secular equations stably and efficiently. Computer Science Dept. Technical

Report CS-94-260, University of Tennessee, Knoxville, November 1994. (LAPACK Working

Note #89).

[103] T.-Y. Li and N. H. Rhee. Homotopy algorithm for symmetric eigenvalue problems. Num.

Math., 55:265–280, 1989.

165

[104] T. Y. Li and Z. Zeng. The Laguerre iteration in solving the symmetric tridiagonal eigenprob-

lem, revisited. SIAM J. Sci. Stat. Comput., 15(5):1145–1173, September 1994.

[105] T.-Y. Li, H. Zhang, and X. H. Sun. Parallel homotopy algorithm for symmetric tridiagonal

eigenvalue problems. SIAM J. Sci. Stat. Comput., 12:464–485, 1991.

[106] S.-S. Lo, B. Phillipe, and A. Sameh. A multiprocessor algorithm for the symmetric eigenprob-

lem. SIAM J. Sci. Stat. Comput., 8(2):155–165, March 1987.

[107] A. McKenney, 1997. private communication.

[108] G. Meurant. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices.

SIAM J. Mat. Anal. Appl., 13(3):707–728, July 1992.

[109] J. M. Ortega and H. F. Kaiser. The LLT and QR Methods for Symmetric Tridiagonal Matrices.

Numer. Math., 5:211–225, 1963.

[110] B. Parlett. Acta Numerica, chapter The new qd algorithms, pages 459–491. Cambridge

University Press, 1995.

[111] B. Parlett. The construction of orthogonal eigenvectors for tight clusters by use of submatrices.

Center for Pure and Applied Mathematics PAM-664, University of California, Berkeley, CA,

January 1996. submitted to SIMAX.

[112] B. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, second edition,

1997.

[113] B. N. Parlett. Laguerre’s Method Applied to the Matrix Eigenvalue Problem. Math. Comp.,

18:464–485, 1964.

[114] B. N. Parlett. The rewards for maintaining semi-orthogonality among Lanczos vectors. Journal

of Numerical Linear Algebra with Applications, 1(2):243–267, 1992.

[115] B. N. Parlett. Invariant subspaces for tightly clustered eigenvalues of tridiagonals. BIT,

36(3):542–562, 1996.

[116] B. N. Parlett. Spectral sensitivity of products of bidiagonals. Lin. Alg. Appl., 1996. submitted

for inclusion in the proceedings of the 6th ILAS conference held in Chemnitz, Germany in

August 1996.

[117] B. N. Parlett and I. S. Dhillon. Fernando’s solution to Wilkinson’s problem: An application

of double factorization. Lin. Alg. Appl., 267:247–279, 1997.

[118] G. Peters and J.H. Wilkinson. The calculation of specified eigenvectors by inverse itera-

tion, contribution II/18, volume II of Handbook of Automatic Computation, pages 418–439.

Springer-Verlag, New York, Heidelberg, Berlin, 1971.

166

[119] G. Peters and J.H. Wilkinson. Inverse iteration, ill-conditioned equations and Newton’s

method. SIAM Review, 21:339–360, 1979.

[120] D. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Kornerup and

D. Matula, editors, Proceedings of the 10th Symposium on Computer Arithmetic, pages 132–

145, Grenoble, France, June 26-28 1991. IEEE Computer Society Press.

[121] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Z. Angew. Math. Phys., 5:223–251,

1954.

[122] H. Rutishauser. Vorlesungen über numerische Mathematik. Birkhäuser, Basel, 1976.

[123] H. Rutishauser. Lectures on Numerical Mathematics. Birkhäuser, Boston, 1990.

[124] J. Rutter. A serial implementation of Cuppen’s divide and conquer algorithm for the symmetric

eigenvalue problem. Mathematics dept. master’s thesis, University of California, 1994.

[125] D. Scott. Analysis of the Symmetric Lanczos Algorithm. PhD thesis, University of California,

Berkeley, California, 1978.

[126] H. Simon. The Lanczos algorithm with partial reorthogonalization. Math. Comp., 42(165):115–

142, January 1984.

[127] H. Simon. Bisection is not optimal on vector processors. SIAM J. Sci. Stat. Comput.,

10(1):205–209, January 1989.

[128] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.

Moler. Matrix Eigensystem Routines – EISPACK Guide, volume 6 of Lecture Notes in Com-

puter Science. Springer-Verlag, Berlin, 1976.

[129] G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.

[130] W. G. Strang. Implicit difference methods for initial boundary value problems. J. Math. Anal.

Appl., 16:188–198, 1966.

[131] A. H. Taub, editor. John von Neumann Collected Works, volume V, Design of Computers,

Theory of Automata and Numerical Analysis. Pergamon, Oxford, 1963.

[132] R. van de Geijn. Deferred shifting schemes for parallel QR methods. SIAM J. Mat. Anal.

Appl., 14(1):180–194, 1993.

[133] H. A. van der Vorst. Analysis of a parallel solution method for tridiagonal linear systems.

Parallel Computing, 5:303–311, 1987.

[134] J. H. Wilkinson. The calculation of the eigenvectors of codiagonal matrices. Computer J.,

1:90–96, 1958.

167

[135] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, Englewood Cliffs,

1963.

[136] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

[137] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-

Wesley, Reading, MA, USA, second edition, 1991.

[138] Y. Yang. Backward error analysis for dqds. PhD thesis, University of California, Berkeley,

California, 1994.

168

Case Studies

The following case studies present examples that illustrate several important as-

pects of finding eigenvectors of a symmetric tridiagonal matrix. Much of the upcoming

material appears in the main text of this thesis. However, we feel that these examples

offer great insight to the problem under scrutiny, and so we have chosen to present them

in greater detail now. The raw numbers given in the examples may also reveal more than

what we have been able to extract! We have tried to make these case studies independent

of the main text so the reader should be able to follow them without having to read the

whole thesis. Of course, for more theoretical details the reader should read the main text.

All the analytical expressions in the examples to follow were obtained by using the

symbol manipulators, Maple [21] and Mathematica [137].

169

Case Study A

The need for accurate eigenvalues

This example demonstrates the need for high accuracy in the computed eigenval-

ues in order for inverse iteration to succeed. We will show how LAPACK and EISPACK

implementations fail in the absence of such accuracy. Let

T =


1

√
ε 0

√
ε 7ε/4 ε/4

0 ε/4 3ε/4

 (A.0.1)

where ε� 1 and is of the order of the machine precision. The eigenvalues of T are :

λ1 = ε/2 + O(ε2),

λ2 = ε + O(ε2),

λ3 = 1 + ε + O(ε2).

Let v1, v2, v3 denote the corresponding eigenvectors with || · ||2 = 1.

v1 =


−
√

ε/2 + O(ε3/2)
1√
2
(1 + ε

4) + O(ε2)
1√
2
(−1 + 3ε

4) + O(ε2)

 , v2 =


−
√

ε/2 + O(ε3/2)
1√
2
(1− 5ε

4) + O(ε2)
1√
2
(1 + 3ε

4) + O(ε2)

 , v3 =


1− ε/2 + O(ε3)
√

ε + O(ε3/2)

ε3/2/4 + O(ε5/2)

 .

Typically eigenvalues of a symmetric tridiagonal can be computed only to a guar-

anteed accuracy of O(ε||T ||). The eigenvalues of T as computed by MATLAB’s eig function,

that uses the QR algorithm, are

λ̂1 = ε,

λ̂2 = ε,

λ̂3 = 1 + ε.

170

The first eigenvector may be computed as

y1 = (T − λ̂1I)−1b1

where b1 = ξ1v1 + ξ2v2 + ξ3v3, ξ2
1 + ξ2

2 + ξ2
3 = 1, and ξ2 6= 0.

In exact arithmetic,

y1 =
ξ1

λ1 − λ̂1

v1 +
ξ2

λ2 − λ̂1

v2 +
ξ3

λ3 − λ̂1

v3

=
ξ2

λ2 − λ̂1

(
v2 +

ξ1

ξ2

λ2 − λ̂1

λ1 − λ̂1

v1 +
ξ3

ξ2

λ2 − λ̂1

λ3 − λ̂1

v3

)

=
1

O(ε2)

(
v2 + O(ε)v1 + O(ε2)v3

)
provided (ξ1/ξ2) and (ξ3/ξ2) are O(1). Due to the inevitable roundoff errors in finite preci-

sion, the best we can hope to compute is

ŷ1 =
1

O(ε2)
(v2 + O(ε)v1 + O(ε)v3) .

This vector is normalized to remove the 1/O(ε2) factor and give v̂1. The second eigenvector

may be computed as

y2 = (T − λ̂2I)−1b2.

Since λ̂2 = λ̂1, the computed value of y2 is almost parallel to v̂1 (assuming that b2 has a

non-negligible component in the direction of v2), i.e.,

ŷ2 =
1

O(ε2)
(v2 + O(ε)v1 + O(ε)v3) .

Since λ̂1 and λ̂2 are coincident, typical implementations of inverse iteration orthogonalize

the vectors v̂1 and ŷ2 by the modified Gram-Schmidt(MGS) method in an attempt to reveal

the second eigenvector :

z = ŷ2 − (ŷT
2 v̂1)v̂1

=
1
ε2

(O(ε)v1 + O(ε)v2 + O(ε)v3)

v̂2 = z/||z||.

As we see above, the resulting vector v̂2 is far from being orthogonal to v̂1. A second step of

MGS as recommended in [112, pgs.105–109] does not remedy the situation. Although the

second step may remove the unwanted component of v̂1 from v̂2, the undesirable component

171

of v3 will remain (remember that λ2 and λ3 are well separated and most implementations

will never explicitly orthogonalize v̂2 and v̂3). Some implementations may repeat the above

process of inverse iteration followed by one or two steps of MGS in order to compute the

second eigenvector. However the same sort of computations as described above are repeated

and iterating does not satisfactorily solve the problem.

We now exhibit the above behavior by giving a numerical example. Set ε to

the machine precision (≈ 2.2 × 10−16 in IEEE double precision arithmetic) in the matrix

of (A.0.1).

The EISPACK implementation Tinvit does a step of inverse iteration followed by

MGS and repeats this until convergence. See figure 2.3 and [118] for more details. Given

the computed eigenvalues as λ̂1 = ε, λ̂2 = ε(1 + ε) and λ̂3 = 1 + ε, Tinvit computes the

first eigenvector as :

v̂1 =


−1.05 · 10−08

0.707

0.707


Note that here we chose λ̂2 to be a floating point number just bigger than λ̂1 to prevent Tin-

vit from perturbing λ̂2 by ε||T ||. The computation of the second eigenvector is summarized

in the following table :

Step 1
Before MGS After MGS
−1.05 · 10−8 8.34 · 10−9

Iterate (y) 0.707 −0.738
0.707 0.674

yT v̂1 1.000 0.0452
yT v̂3 5.8 · 10−25 2.7 · 10−9

Tinvit accepts the above iterate as having converged and hence the eigenvectors

output are such that v̂T
2 v̂1 = 0.0452 and v̂T

2 v̂3 = 2.7 ·10−9! Due to the unwanted component

of v̂3, the residual norm ||(T − λ̂2I)v̂2|| = 2.7 · 10−9. All the other residual norms are

O(ε||T ||).
The LAPACK implementation Dstein performs two additional iterations after

detecting convergence(see figure 2.4 and [87]). As in Tinvit, the first eigenvector is com-

puted accurately by Dstein. The iterations for the computation of the second eigenvector

172

are summarized in the following table.

Step 1 2 3
Before MGS After MGS Before MGS After MGS Before MGS After MGS
1.05 · 10−8 1.04 · 10−8 1.05 · 10−8 1.05 · 10−8 1.05 · 10−8 1.05 · 10−8

Iterate −0.707 −0.697 −0.707 −0.7069 −0.707 −0.707108
(y) −0.707 0.716 −0.707 0.7073 −0.707 0.707105
|yT v̂1| 1.000 0.0014 1.000 3.0 · 10−4 1.000 1.9 · 10−6

|yT v̂3| 3.9 · 10−24 4.1 · 10−11 5.8 · 10−25 2.9 · 10−12 2.2 · 10−24 1.1 · 10−13

Thus the eigenvectors output by Dstein are such that

v̂T
2 v̂1 = 1.9 · 10−6,

v̂T
2 v̂3 = 1.1 · 10−13 and ||(T − λ̂2I)v̂2|| = 1.1 · 10−13.

Some implementations such as the PeIGS software library [52, 54] perform two

steps of the MGS process after every inverse iteration step. To exhibit that this may also

not be satisfactory, we modified Tinvit to perform two MGS steps. The following tabulates

the iteration in computing the second eigenvector.

Step 1
Before MGS After 1st MGS After 2nd MGS
1.05 · 10−8 8.34 · 10−9 −7.9 · 10−9

Iterate (y) 0.707 −0.738 −0.70710678118
0.707 0.674 0.70710678118

yT v̂1 1.000 0.0452 6.6 · 10−16

yT v̂3 5.8 · 10−25 2.7 · 10−9 2.7 · 10−9

Hence even though the vectors v̂1 and v̂2 are numerically orthogonal, v̂2 contains an un-

wanted component of v̂3. As a result ||(T − λ̂2)v̂2|| = 2.7 · 10−9.

Note that the above problems occur because the eigenvalues are not accurate

enough. Current inverse iteration implementations do not detect such inaccuracies.

Eigenvalues of the matrix in (A.0.1) may be computed to high relative accuracy

by the bisection algorithm. If such eigenvalues are input to Tinvit or Dstein, the com-

puted eigenvectors are found to be numerically orthogonal. In fact, even if no explicit

orthogonalization is done inside Tinvit and Dstein, the eigenvectors output turn out to

be numerically orthogonal. We will investigate this phenomenon in Case Study B.

173

Case Study B

Bidiagonals are Better

The purpose of this case study is to show that a tridiagonal matrix is “better”

represented by a product of bidiagonal matrices for the task of computing eigenvalues and

eigenvectors.

When any numerical algorithm is implemented on a computer, roundoff error needs

to be accounted for, and it is good practice to show that calculations are not destroyed by

the limited precision of the arithmetic operations. Wilkinson made popular the art of

backward error analysis, whereby the computed solution is shown (if possible) to be the

exact solution corresponding to data that is slightly different from the input data [135].

When combined with knowledge about the sensitivity of the solution to small changes in

the data, this approach enables us to prove the accuracy of various numerical procedures.

A real, symmetric tridiagonal matrix T is traditionally represented by its n di-

agonal and n − 1 off-diagonal elements. Some highly accurate algorithms for finding the

eigenvalues of T , such as bisection, can be shown to find an exact eigenpair of T +δT , where

the perturbation δT is a small relative perturbation in only the off-diagonals of T . In this

Case Study, by examining the effect of such perturbations on the spectrum of T , we show

that for our purposes it is better to represent a tridiagonal matrix by its bidiagonal factors.

First, we examine the matrix we encountered in Case Study A earlier, and observe

that it does have the perturbation properties we desire. However not all tridiagonals share

this property and we will illustrate this with another matrix.

174

Consider the matrix T1 and a small perturbation :

T1 =


1

√
ε 0

√
ε 7ε/4 ε/4

0 ε/4 3ε/4

 , T1 + δT1 =


1

√
ε(1 + ε) 0

√
ε(1 + ε) 7ε/4 ε(1 + ε)/4

0 ε(1 + ε)/4 3ε/4

 (B.0.1)

where ε is of the order of the machine precision. The eigenvalues of T1 are

λ1 = ε/2− ε2/4 + O(ε3), λ2 = ε− ε2/2 + O(ε3), λ3 = 1 + ε + O(ε2),

and those of T1 + δT1 are

λ1 + δλ1 = ε/2− 3ε2/2 + O(ε3), λ2 + δλ2 = ε− 5ε2/4 + O(ε3), λ3 + δλ3 = 1 + ε + O(ε2).

The eigenvector matrix of T1 is

V =


−
√

ε/2 + O(ε3/2) −
√

ε/2 + O(ε3/2) 1− ε/2 + O(ε2)
1√
2
(1 + ε

4) + O(ε2) 1√
2
(1− 5ε

4) + O(ε2)
√

ε + O(ε3/2)
1√
2
(−1 + 3ε

4) + O(ε2) 1√
2
(1 + 3ε

4) + O(ε2) ε3/2/4 + O(ε5/2)

 ,

while the perturbed matrix T1 + δT1 has the eigenvectors

V + δV =


−
√

ε/2 + O(ε3/2) −
√

ε/2 + O(ε3/2) 1− ε/2 + O(ε2)
1√
2
(1 + 9ε

4) + O(ε2) 1√
2
(1− 13ε

4) + O(ε2)
√

ε + O(ε3/2)
1√
2
(−1 + 11ε

4) + O(ε2) 1√
2
(1 + 11ε

4) + O(ε2) ε3/2/4 + O(ε5/2)

 .

From the above expressions, it is easy to see that |δλj |/|λj | = O(ε) and |δVij |/|Vij | = O(ε)

for i, j = 1, 2, 3. Hence, the small relative perturbations in the off-diagonals of T1 cause small

relative changes in the eigenvalues and small relative changes in the eigenvector components.

The eigenvalues of such a matrix may be computed to high relative accuracy by the bisection

algorithm. It turns out that the high accuracy of these eigenvalues obviates the need to

orthogonalize in implementations of inverse iteration. Indeed, we modified the LAPACK

and EISPACK implementations of inverse iteration (Dstein and Tinvit respectively) by

turning off all orthogonalization, and found the computed eigenvectors to be numerically

orthogonal. Note that orthogonality is achieved despite the fact that λ1 and λ2 are quite

close together!

The theory developed in [37] does predict that the eigenvalues of matrix T1 given

in (B.0.1) are determined to high relative accuracy with respect to small relative perturba-

tions in the off-diagonal elements. However there are tridiagonals that behave differently.

175

To demonstrate this, we consider the tridiagonals :

T2 =


1−
√

ε ε1/4
√

1− 7ε/4 0

ε1/4
√

1− 7ε/4
√

ε + 7ε/4 ε/4

0 ε/4 3ε/4

 ,

T2 + δT2 =


1−
√

ε ε1/4
√

1− 7ε/4(1 + ε) 0

ε1/4
√

1− 7ε/4(1 + ε)
√

ε + 7ε/4 ε(1 + ε)/4

0 ε(1 + ε)/4 3ε/4

 .

The eigenvalues of T2 are

λ1 = ε/2 + ε3/2/8 + O(ε2), λ2 = ε− ε3/2/8 + O(ε2), λ3 = 1 + ε + O(ε2),

while those of the perturbed matrix T2 + δT2 are

λ1 + δλ1 = ε/2−7ε3/2/8+O(ε2), λ2 + δλ2 = ε−9ε3/2/8+O(ε2), λ3 + δλ3 = 1+ ε+O(ε2).

The eigenvectors of T2 are given by

V =


√

ε
2(1 +

√
ε

2) + O(ε5/4) −
√

ε
2(1 +

√
ε

2) + O(ε5/4) 1−
√

ε/2 + O(ε)

− 1√
2
(1−

√
ε

2) + O(ε) 1√
2
(1−

√
ε

2) + O(ε) ε1/4(1 +
√

ε
2) + O(ε5/4)

1√
2
(1− 3ε

4) + O(ε3/2) 1√
2
(1 + 3ε

4) + O(ε3/2) ε5/4

4 (1 +
√

ε
2) + O(ε9/4)

 ,

and the eigenvectors of T2 + δT2 are

V +δV =


√

ε
2(1 + 5

√
ε

2) + O(ε5/4) −
√

ε
2(1− 3

√
ε

2) + O(ε5/4) 1−
√

ε/2 + O(ε)

− 1√
2
(1 + 3

√
ε

2) + O(ε) 1√
2
(1− 5

√
ε

2) + O(ε) ε1/4(1 +
√

ε
2) + O(ε5/4)

1√
2
(1− 2

√
ε) + O(ε) 1√

2
(1 + 2

√
ε) + O(ε) ε5/4

4 (1 +
√

ε
2) + O(ε9/4)

 .

Note that from the above expressions, we see that

|δλj/λj | = O(
√

ε), and

|δVij/Vij | = O(
√

ε) for i = 1, 2, 3 and j = 1, 2.

Thus T2 does not determine its eigenvalues and eigenvector components to high

relative accuracy and consequently, it is unlikely that we would be able to compute nu-

merically orthogonal eigenvectors by inverse iteration without taking recourse to explicit

orthogonalization. To confirm this, we repeated the experiment of turning off all orthogonal-

ization in Dstein and Tinvit but found the computed “eigenvectors” to have dot products

as large as O(
√

ε).

176

However, there is a way out of this impasse. Since T2 is positive definite, we can

form its Cholesky decomposition,

T2 = LLT .

Due to the tridiagonal form of T2, the Cholesky factor L is bidiagonal. It is now known

that small relative changes to the entries of a bidiagonal matrix cause small relative changes

to its singular values, and small changes in the directions of the singular vectors if the

relative gaps between the singular values are large. Note that the eigenvalues of T2 are the

squares of the singular values of L while its eigenvectors are the left singular vectors of L.

This property of bidiagonal matrices gives us an impetus to produce algorithms where the

backward errors may be posed as small relative changes in L rather than in T . By doing

so we can eliminate the need for orthogonalization when finding eigenvectors of T2 since its

eigenvalues are relatively far apart. We have accomplished this task in Chapter 4.

The observant reader will notice that both T1 and T2 are positive definite and thus

admit Cholesky decomposition. What can we do if the tridiagonal is indefinite? In such

a case, we could turn to the LU decomposition of the tridiagonal. However, the relative

perturbation theory in the indefinite case has not been extensively studied and is not well

understood. We attempt to answer some questions in Chapter 5.

177

Case Study C

Multiple representations lead to

orthogonality

In Chapter 4, we showed how to compute orthogonal approximations to eigenvec-

tors of a positive definite tridiagonal when the eigenvalues are separated by large relative

gaps. For example, for the eigenvalues ε and 2ε, we are able to compute orthogonal eigen-

vectors without resorting to Gram-Schmidt (see Chapter 4 for more details).

However, eigenvalues 1 +
√

ε and 1 + 2
√

ε have a relative gap of O(
√

ε) and the

methods of Chapter 4 can only guarantee that the dot product of the approximate eigen-

vectors is O(
√

ε).

In this section, we present examples to demonstrate ways of obtaining orthogonal-

ity even when relative gaps appear to be tiny. Consider the matrix

T0 =


.520000005885958 .519230209355285

.519230209355285 .589792290767499 .36719192898916

.36719192898916 1.89020772569828 2.7632618547882 · 10−8

2.7632618547882 · 10−8 1.00000002235174


with eigenvalues

λ1 ≈ ε, λ2 ≈ 1 +
√

ε, λ3 ≈ 1 + 2
√

ε, λ4 ≈ 2.0, (C.0.1)

where ε ≈ 2.2× 10−16 (all our results are in IEEE double precision arithmetic).

Standard methods can compute approximate eigenvectors of λ1 and λ4 that are

orthogonal to working accuracy. Algorithm X of Section 4.4.3 computes the following

178

approximations to the interior eigenvectors

v̂2 =


.5000000027411224

.4622227318424748

−.1906571623774349

.7071067740172921

 , v̂3 =


−.5000000074616407

−.4622227505556183

.1906571293895208

.7071067673414712

 ,

but |v̂T
2 v̂3| = O(

√
ε). By standard perturbation theory, the subspace spanned by v2 and v3

is not very sensitive to small changes in T0 and thus, v̂2 and v̂3 are orthogonal to the

eigenvectors v1 and v4. However, the individual eigenvectors v2 and v3 are more sensitive

and the O(
√

ε) dot products are a consequence.

In spite of the above observation, we can ask ourselves if it is possible to obtain

orthogonal v̂2 and v̂3 without resorting to Gram-Schmidt. A natural approach is to try and

extend the ideas of Chapter 4 which enable us to compute orthogonal eigenvectors even

when eigenvalues are as close as ε and 2ε. We make two crucial observations

1. Eigenvectors are shift invariant, i.e.,

Eigenvectors of T ≡ Eigenvectors of T − µI, for all µ.

2. Relative gaps can be changed by shifting, i.e.,

relgap(λi, λi+1) 6= relgap(λi − µ, λi+1 − µ).

For example, the interior eigenvalues of T0 − I are
√

ε and 2
√

ε, and these shifted

eigenvalues now have a large relative gap! As we did for the positive definite case, we

can find bidiagonal factors of the indefinite matrix T0 − I. However, unlike the positive

definite case there is no guarantee that these bidiagonal factors will determine their small

eigenvalues to high relative accuracy.

A distinguishing feature of factoring a positive definite matrix is the absence of

any element growth. When we factor an indefinite matrix, the near singularity of principal

submatrices can cause large element growths. However, in many cases we will be able to

form the L, U factors of a tridiagonal matrix without any element growth.

When we proceed to find the decomposition

T0 − µI = L0D0L
T
0 , (C.0.2)

179

where µ = 1, we get the following elements on the diagonal of D0 and off-diagonal of L0.

diag(D0) =


−.4799999941140420

.1514589857947483

3.074504323352656 · 10−7

1.986821250068485 · 10−8

 , diag(L0,−1) =


−1.081729616088125

2.424365428451800

.08987666186707277

 .

We observe that there is no element growth in forming this decomposition. In particular,

Element Growth def= max
∣∣∣∣ D0(i, i)
T0(i, i)− µ

∣∣∣∣1/2

= 1. (C.0.3)

Note that the element growth always equals 1 when factoring a positive definite tridiagonal

(see Lemma 4.4.1).

We say that the decomposition C.0.2 is a new representation of T (based) at

µ = 1. We can now compute the interior eigenvalues of L0D0L
T
0 accurately by the bisection

algorithm using any of the differential qd-like transformations given in Section 4.4.1 as the

inner loop. These “refined” eigenvalues are

δλ̂2 = 1.4901161182018 · 10−8 ≈
√

ε, and δλ̂3 = 2.9802322498846 · 10−8 ≈ 2
√

ε.

The relative gap between δλ̂2 and δλ̂3 is large and so we can attempt to compute the

eigenvectors of L0D0L
T
0 corresponding to these eigenvalues. By employing methods similar

to those given in Chapter 4 (more specifically, Step (4d) of Algorithm X), we find

v̂2 =


.4999999955491866

.4622227251939223

−.1906571596350473

.7071067841882251

 , v̂3 =


.4999999997942006

.4622227434674882

−.1906571264658161

−.7071067781848689

 .

Miraculously the above vectors are orthogonal to working accuracy with |v̂T
2 v̂3| = 2ε! As

before, v̂2 and v̂3 are orthogonal to v1 and v4. On further reflection, we realize that the

success of the above approach is due to the relative robustness of the representation obtained

by (C.0.2). We say that a representation is relatively robust if it determines all its eigenvalues

to high relative accuracy with respect to small relative changes in the individual entries of

the representation.

As opposed to the case of bidiagonal Cholesky factors, there is no existing theory

to show that factors of an indefinite tridiagonal are relatively robust. Indeed bidiagonal

factors of an indefinite T −µI may be far from being relatively robust (see Example 5.2.3).

180

However, we suspect a strong correlation between the lack of element growth and relative

robustness. We now present some evidence in support of this conjecture.

In Section 5.2, we introduced relative condition numbers κrel(λj) for each eigen-

value λj of an LDLT representation, These condition numbers indicate the relative change

in an eigenvalue due to small relative perturbations in entries of L and D. We define

κrel(LDLT) def= max
j

κrel(λj), (C.0.4)

Note that if κ(LDLT) = O(1) then LDLT determines all its eigenvalues to high relative ac-

curacy. In some cases, an LDLT representation may determine only a few of its eigenvalues

to high relative accuracy.

In Figure C.1, we have plotted the element growths and the relative condition

numbers, as defined by (C.0.3)) and (C.0.4) (see also (5.2.8)) respectively, for representations

of T0 (based) at various shifts. The X-axis plots the shifts µ of (C.0.2), while the Y-axis

plots the element growths (represented by the green circles o) and relative condition numbers

(represented by the red pluses +) on a logarithmic scale. We have taken extra data points

near Ritz values (eigenvalues of proper leading submatrices), and eigenvalues of T0 since

we may fear large element growths close to these singularities. The eigenvalues of T0 are

indicated by the solid vertical lines, while the Ritz values are indicated by the dotted vertical

lines.

In Figure C.1, we see that whenever the element growth is O(1) the representa-

tion is relatively robust. In particular, relatively robust representations exist near all the

eigenvalues. Earlier, we observed no element growth at µ = 1. The enlarged picture in

Figure C.2 shows that there are many other relatively robust representations near λ2 and

λ3. However, there are large element growths near the mid-point of these eigenvalues. From

Figure C.1, we also observe that representations based or anchored near the Ritz values of

T0 are not relatively robust.

To see a slightly different behavior, we examine another matrix with identical

spectrum (as in (C.0.1)),

T1 =


1.00000001117587 .707106781186547

.707106781186547 .999999977648258 .707106781186546

.707106781186546 1.00000003352761 1.05367121277235 · 10−8

1.05367121277235 · 10−8 1.00000002235174

 .

Here also, in order to compute orthogonal approximations to v2 and v3 we can

181

Figure C.1: The strong correlation between element growth and relative robustness

Figure C.2: Blow up of earlier figure : X-axis ranges from 1 + 10−8 to 1 + 3.5× 10−8

182

Figure C.3: Relative condition numbers (in the figure to the right, X-axis ranges from
1 + 10−8 to 1 + 3.5× 10−8)

attempt to form the representation

T1 − I = L1D1L
T
1 . (C.0.5)

However,

diag(D1) =


1.117587089538574 · 10−8

−4.473924266666669 · 107

4.470348380358755 · 10−8

1.986821493746602 · 10−8

 , diag(L1,−1) =


6.327084877781628 · 107

−1.580506693551128 · 10−8

.2357022791274500

 ,

and since T1(2, 2) − 1 = −2.24 · 10−8, the element growth is ≈ 108! Due to this large

element growth, we may suspect that this representation is not relatively robust. Indeed,

κ(L1D1L
T
1) ≈ 4.5 · 107. To see if there are any good representations near 1, we again plot

the element growths and relative condition numbers on the Y-axis against the shifts on the

X-axis. Figure C.3 suggests that there are no good representations near λ2 and λ3 (the

reader should contrast this with Figures C.1 and C.2, especially the blow ups).

However, there is no cause for alarm. Remember that we are interested in getting

a “good” representation near λ2 and λ3 in order to compute the corresponding eigenvectors.

Figure C.3 indicates that there is no representation at these shifts that is relatively robust

for all eigenvalues. However, all we desire of this representation is that it determine its two

183

smallest eigenvalues to high relative accuracy. Indeed, we discover that despite the large

element growths, the relative condition numbers κrel(λ2) and κrel(λ3) for the representations

close to λ2 and λ3 are O(1), i.e., the representations near 1 do determine their two smallest

eigenvalues to high relative accuracy. Thus, just as before, we can compute v̂2 and v̂3 from

the representation based at 1, and get

v̂2 =


.4999999981373546

2.634178061370114 · 10−9

−.4999999981373549

.7071067838207259

 , v̂3 =


−.5000000018626457

−1.317089024797209 · 10−8

.5000000018626453

.7071067785523688

 , (C.0.6)

where |v̂T
2 v̂3| < 3ε!

We have observed numerical behavior similar to T0 and T1 in many larger matrices.

The more common case shows no element growth for shifts near the eigenvalues, whereas

large element growths, as in the case of T1, occur rarely. The study of relative condition

numbers of individual eigenvalues, especially the tiny ones, is pursued in Chapter 5.

