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Abstract. An important step in the solution of a matrix nearness problem that arises in certain machine learning3

applications is finding the zero of f(α) = z
T exp(log X + αzz

T )z − b. The matrix valued exponential and logarithm4

in f(α) arises from the use of the von Neumann matrix divergence tr(X log X − X log Y − X + Y ) to measure the5

nearness between the positive definite matrices X and Y . A key step of an iterative algorithm used to solve the6

underlying matrix nearness problem requires the zero of f(α) to be repeatedly computed. In this paper we propose7

zero-finding algorithms that gain their advantage by exploiting the special structure of the objective function. We8

show how to efficiently compute the derivative of f , thereby allowing the use of Newton-type methods. In numerical9

experiments we establish the advantage of our algorithms.10

Key words. matrix exponential, zero-finder, Newton’s method, matrix nearness, von Neumann divergence11

AMS subject classifications. 46N10, 49M15, 65F6012

1. Introduction. In certain machine learning applications, for instance as in [15, 18, 19], a13

matrix nearness problem depends on finding the zero of the function14

f(α) = zT elog X+αzz
T

z − b (1.1)

where the n×n symmetric positive definite matrix X, vector z and the scalar b > 0 are given param-15

eters; the exponentiation and logarithm used are matrix functions. The zero-finding computation16

arises during the construction of a positive definite matrix that satisfies linear constraints while17

minimizing a distance measure called the von Neumann matrix divergence [19]. In these machine18

learning applications, the constraints are extracted from observations, and the constructed positive19

definite matrix is used to carry out data analysis tasks such as clustering, classification or nearest20

neighbor search [9,16]. In another application, one aims to find the nearest correlation matrix (pos-21

itive semidefinite matrix with diagonal elements equal to one) to a given initial matrix. In [13], the22

nearness is measured using the Frobenius norm; however, other measures, such as the von Neumann23

matrix divergence, are also feasible [10].24

The underlying matrix nearness problem can be solved by Bregman’s iterative algorithm which25

consists of matrix updates that depend on finding the zero of f(α). In this paper, we present an26

efficient zero-finding algorithm that exploits the structure of the function. If the cost of evaluating27

the derivative is similar to the cost of evaluating the function itself, inverse quadratic interpolation28

(which needs no derivative computations) is expected to be faster than Newton’s method, see [17]29

and [23][p. 55]. In our problem, the evaluation of f ′(α), once f(α) has been computed, costs less30

than the computation of f(α) alone and therefore the cost of the derivative computations is offset31

by the faster convergence of Newton’s method.32

The lack of commutativity of matrix multiplication makes the derivative computation non-33

trivial. Our algorithm operates on the eigendecomposition of the matrix and arranges the compu-34

tations of f(α) and f ′(α) efficiently. We also take advantage of the not widely used improvement35

to Newton’s method described in [17]. In numerical experiments we compare our algorithm to36

zero-finders which do not need computation of the derivative.37

2. Background and Motivation.38

2.1. Matrix Divergence. To measure the nearness between two matrices, we will use a Breg-39

man matrix divergence: Dφ(X,Y ) = φ(X) − φ(Y ) − tr((∇φ(Y ))T (X − Y )), where φ is a strictly40

convex, real-valued, differentiable function defined on symmetric matrices, and tr denotes the ma-41

trix trace. This matrix divergence is a generalization of the Bregman vector divergence, see [5] for42
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details. Examples include φ(X) = ‖X‖2
F , which leads to the well-known squared Frobenius norm43

‖X − Y ‖2
F . In this paper, we use a less well-known divergence. If the positive definite matrix X44

has eigenvalues λ1, ..., λn, then let φ(X) =
∑

i(λi log λi − λi) = tr(X log X −X), where log X is the45

matrix logarithm. The resulting Bregman divergence is46

DvN (X,Y ) = tr(X log X − X log Y − X + Y ), (2.1)

which generalizes many properties of squared loss and relative entropy, and we call it the von Neu-47

mann divergence. It is also known as quantum relative entropy and is used in quantum information48

theory [22]. See [10] for further details.49

2.2. Bregman’s Algorithm. We briefly describe the machine learning problem mentioned in50

the introduction. Given a positive definite matrix X, we attempt to solve the following for X:51

minimize DvN (X,X)

subject to tr(XAi) ≤ bi, i ∈ {1, . . . , c}, and X ≻ 0. (2.2)

The matrices denoted by Ai and the values bi describe the c linear constraints, where any of the52

inequalities may occur with equalities instead. Assuming that the feasible set is non-empty, (2.2) is53

a convex optimization problem with a unique optimum and may be solved by the iterative method54

of Bregman projections1 [5, 8]. The idea is to enforce one constraint at a time, while maintaining55

dual feasibility [19]; see [8] for a proof of convergence. The single constraint problem leads to the56

following system of equations to be solved for α:57

∇φ(X) = ∇φ(X) + αA, (2.3)

tr(XA) = b.

We have dropped the constraint index i for simplicity. Since ∇φ(X) = log X, the second equation58

in (2.3) can be written as tr(elog X+αAA) − b = 0. In many applications the constraint matrix has59

rank one [9,16,18], A = zzT , which leads to the zero-finding problem (1.1) by noting the well known60

tr(XY ) = tr(Y X) identity.61

2.3. Derivative of the Matrix Exponential. The formula for the derivative of the matrix62

exponential is not as simple as that for the exponential function defined on the reals. The difficulty63

stems from the non-commutativity of matrix multiplication. We start with some basic properties of64

the matrix derivative and then review the formula for the derivative of the matrix exponential.65

We consider smooth matrix functions of one variable denoted by M(x) : R → R
n×n; these can66

also be thought of as R → R functions arranged in an n × n matrix. The derivative matrix M ′(x)67

is formed by taking the derivatives of the matrix elements. Our first observation is about the trace68

of the derivative. By definition:69

tr(M(x))′ = tr(M ′(x)). (2.4)

We turn to multiplication next. The lack of commutativity does not yet indicate any difficulties:70

(M(x)N(x))′ = M ′(x)N(x) + M(x)N ′(x). (2.5)

We are seeking tr
(
eM(α)A

)′
as the function f(α) defined in (1.1) is of this form with M(α) =71

log X + αzzT and A = zzT . But in order to demonstrate the issues caused by non-commutativity72

we take a short diversion by looking at the slightly simpler example of tr(eM )′. From here on, when73

there is no chance of confusion, we may omit the variable from our formulae.74

1The name recalls the minimization property of orthogonal projections in Euclidean geometry.
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We can express the matrix derivative of the kth power as follows: (Mk)′ =
∑k−1

i=0 M iM ′Mk−1−i.75

Note that the summation cannot be collapsed when M and M ′ do not commute. However, if we76

take the trace on both sides then the summation can be collapsed since tr(AB) = tr(BA) and77

tr(
∑

i Ai) =
∑

i tr(Ai) (the latter also holds for infinite sums when one of the sides converges):78

tr
(
Mk

)′
= k tr

(
Mk−1M ′

)
. (2.6)

By (2.6) and the power series expansion of the exponential function tr(eM )′ we get:79

tr
(
eM

)′
= tr

(
∞∑

k=0

Mk

k!

)′

=

∞∑

k=0

tr
(
Mk

)′

k!
=

∞∑

k=1

tr
(
Mk−1M ′

)

(k − 1)!
= tr

(
eMM ′

)
.

The above argument does not imply that the derivative of eM equals to eMM ′ and it also does80

not readily extend to tr
(
eM(α)A

)′
. In order to tackle this latter expression, we apply (2.4) and (2.5)81

to get tr(eM(α)A)′ = tr((eM(α))′A) and then we use the formula for (eM )′ from [24][p. 15, Theorem82

5]:83

(eM )′ = eMh(adM )M ′, (2.7)

where the commutator operator adA : R
n×n → R

n×n satisfies adA B = AB − BA, and84

h(t) =

{
1−e−t

t , t 6= 0
1 t = 0.

(2.8)

The analytical function h can be extended to act on linear operators (transformations) via its Taylor85

series and by the Jordan canonical form; for a detailed treatment we refer the reader to [14][Chapter86

1, Definition 1.2]2. The extension applied to the operator adM maps matrices to matrices and87

appears on the right hand side of (2.7) operating on M ′. The Taylor expansion of h(t) around 0 is:88

h(t) = 1 − t

2!
+

t2

3!
− t3

4!
+ . . . =

+∞∑

i=0

(−t)i

(i + 1)!
,

so one may write (2.7) in a more verbose way as:89

(eM )′ = eM
+∞∑

i=0

1

(i + 1)!
(− adM )iM ′.

3. Algorithms. We propose to solve f(α) = 0 using Newton’s method and the method de-90

scribed by Jarratt in [17]. The latter zero-finder uses a rational interpolating function of the form91

y =
x − a

bx2 + cx + d
(3.1)

fitted to the function and derivative values from two previous iterations. For completeness, we outline92

Jarratt’s method in Algorithm 1. When the cost of the interpolation itself is negligible, Jarrat’s93

method needs the same computational work as Newton’s method, but it yields faster convergence.94

Despite this fact, this zero-finder has not gained sufficient attention. The (asymptotic) efficiency95

index3 in the sense of Ostrowski [23][Chapter 3, Section 11] is
√

1 +
√

3 ≈ 1.653, if we assume96

2The space of linear transformations over an n-dimensional vector space can be identified with, and therefore
is equivalent to the space of n × n matrices denoted by Mn. A linear operator, like ad, that acts on Mn can be
represented by an n2 × n2 matrix, because the underlying linear space, Mn has dimension n2.

3A similar concept is the order of convergence per function evaluation.
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Algorithm 1: Zero-finding based on P. Jarratt’s method, see [17].

Input : Subroutines to evaluate f and f ′, initial guess α0.
Output: Sequence of approximation to the solution of f(α) = 0.

1 Compute f0 = f(α0), f ′
0 = f ′(α0).

2 α1 = α0 − f0/f ′
0. (Initial Newton step.)

3 for i = 2, 3, . . . do

4 Compute fi−1 = f(αi−1) and f ′
i−1 = f ′(αi−1).

5 Set αi = αi−1 −
(αi−1 − αi−2)fi−1[fi−2(fi−1 − fi−2) − (αi−1 − αi−2)fi−1f

′
i−2]

2fi−1fi−2(fi−1 − fi−2) − (αi−1 − αi−2)(f2
i−1f

′
i−2 + f2

i−2f
′
i−1)

.

6 end

that the computational cost to evaluate f(α) and f ′(α) are the same. The efficiency index for97

Newton’s method under the same assumption is only
√

2 ≈ 1.414. In comparison, inverse quadratic98

interpolation, which is the workhorse of Brent’s method [6] requires no derivative computations and99

has asymptotic efficiency index of 1.839. Newton’s and Jarratt’s method can perform better when100

the derivative computation costs less than the function evaluation and this is often the case when the101

objective function is built from exp, sin, cos, see also [17]. In such circumstances, the efficiency index102

for Newton’s and Jarratt’s methods may approach the order of convergence, 2 and 1 +
√

3 ≈ 2.732103

respectively.104

We show how to efficiently carry out and arrange the computations of f(α) and f ′(α) in Sec-105

tion 3.1. An additional improvement exploiting the shape of the objective function is discussed in106

Section 3.2. We end this section by a lemma that establishes that f is strictly monotone, which107

implies that f(α) = 0 has a unique solution. The proof is very similar to Lemma 7 of [1]; the fact108

that zzT has rank one allows some simplifications. We also establish convexity.109

Lemma 3.1. If M is symmetric and z 6= 0 then f(α) + b = zT eM+αzz
T

z is strictly monotone110

increasing and strictly convex.111

Proof. First, we note that it is sufficient to show that the first and second derivatives are positive112

at any given α0. Consider the function f(α) = f(α+α0), a shift by α0. Since f(α) = zT eM+αzz
T

z−b113

where M = M + α0zzT is also a symmetric matrix, we can conclude that it is sufficient to prove114

that the first and second derivatives are positive at α = 0.115

Second, we show that we can assume that M is positive definite. Otherwise, pick a β that is116

large enough so that M̂ = M + βI is positive definite. Since eM+αzz
T

= e−βe
cM+αzz

T

, we conclude117

that the sign of the derivatives is the same for M̂ and M .118

In order to establish the claim in the case of a positive definite M and α = 0, we inspect the119

coefficients in the power series expansion of zT eM+αzz
T

z around zero. We note that f is analytical,120

which can be seen by bounding the terms of the expansion. According to the power series expansion121

of exp we have:122

zT eM+αzz
T

z = zT
∞∑

k=0

(M + αzzT )k

k!
z =

∞∑

k=0

zT Mkz

k!
+ α

∞∑

k=1

1

k!

k−1∑

i=0

zT M izzT Mk−1−iz

+ α2
∞∑

k=2

1

k!

∑

i+j≤k−2

zT M izzT M jzzT Mk−2−i−jz + . . .

For a positive definite M and integer i we have zT M iz > 0, implying that the coefficient of αl
123

is positive for all l ≥ 0.124

3.1. Evaluation of f and its derivative. We now show that f(α) can be computed at a125

cost of 2n2 + O(n) floating point operations (flops), in addition to the flops that are needed to126



ON A ZERO-FINDING PROBLEM INVOLVING THE MATRIX EXPONENTIAL 5

compute the eigendecomposition of a diagonal plus rank-one matrix. This eigendecomposition is127

expected to dominate the total cost of the function evaluation. In order to compute f ′(α) as well,128

we need 3n2 + O(n) additional flops. We note that n floating point exponentiations (which are129

significantly more costly than additions and multiplications) are also necessary to get f(α), however130

the computational cost is still dominated by the O(n2) additions/multiplications. No additional131

floating point exponentiations are needed to compute f ′(α).132

We assume that we maintain the eigendecomposition of each iterate of Bregman’s algorithm as133

is done in the machine learning application, see [19]. We do not count the initial cost of computing134

this eigendecomposition. In some applications the factors form the input to the whole procedure135

and the updated factors are the output. Even if the factors have to be produced, or the matrix136

assembled upon return, these steps need to be carried out only once and the cost is amortized over137

the iterative steps of Bregman’s algorithm.138

In the presence of the eigendecomposition X = V ΛV T , we can express f(α) as follows:139

f(α) = zT elog(V ΛV T )+αzz
T

z − b = zT V elog Λ+αV T
zz

T V V T z − b = vT elog Λ+αvv
T

v − b, (3.2)

where v = V T z. We begin the evaluation by solving a diagonal plus rank-one eigendecomposition140

log Λ + αvvT = UΘUT , Θ = diag(θ) (3.3)

which can be done in O(n2) time [12]. Next, we form u = UT v and get:141

f(α) = vT eUΘUT

v − b = vT UeΘUT v − b = uT eΘu − b = (u ◦ eθ)T u − b, (3.4)

where ◦ denotes the Hadamard product. We move on to the efficient computation of f ′(α). The142

expression in (3.2) can be written in the form tr(eM(α)A) with A = vvT and M(α) = log Λ+αvvT .143

According to (2.4), (2.5) and (2.7) the derivative at α equals:144

f ′(α) = tr
(
(eM(α))′A

)
= tr

(
elog Λ+αvv

T ·
(
h

(
adlog Λ+αvvT

)
vvT

)
· vvT

)
. (3.5)

In order to compute the expression h
(
adlog Λ+αvvT

)
vvT , we reduce the problem to the diagonal145

case and then use the spectral decomposition of the operator in question.146

Lemma 3.2. Let U ∈ R
n×n orthogonal and let Θ and B be arbitrary matrices. Then the147

following holds:148

adUΘUT B = U adΘ(UT BU)UT .

Proof. By the definition of the ad operator and UUT = I, the right hand side above may be149

rewritten as:150

U(ΘUT BU − UT BUΘ)UT = UΘUT B − BUΘUT = adUΘUT B.

An analytical function can be extended to the operator space using the Jordan canonical form [14]151

(Chapter 1, Definition 1.2). Lemma 3.3 below generalizes the above result to analytical functions of152

the operator adΘ:153

Lemma 3.3. Let U , Θ and B be as in Lemma 3.2 and let g be analytical. The following holds:154

g(adUΘUT )B = Ug(adΘ)(UT BU)UT .

Proof. Since g is analytical, it is sufficient to show that for any nonnegative integer k:155

adk
UΘUT B = U adk

Θ(UT BU)UT .
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For k = 0 the statement is immediate and we proceed by induction on k. Assume that the statement156

holds for k ≥ 1, then apply Lemma 3.2 and the definition of ad to finish the proof:157

adk
UΘUT B = adUΘUT (adk−1

UΘUT B) = adUΘUT (U adk−1
Θ (UT BU)UT )

= U adΘ(UT U adk−1
Θ (UT BU)UT U)UT = U adk

Θ(UT BU)UT .

Our next step is to calculate g(adΘ) using the spectral theorem. By the definition of the adjoint,158

one can easily show that if X is symmetric, then adX is self-adjoint, and so in our case we can159

use the eigendecomposition of adΘ to calculate g(adΘ). The following argument mimics Lemma 8160

of [24, Chapter 1], which gives the eigenvectors of adX ; here we only need to deal with diagonal161

matrices. The definition of ad and the elementary calculation162

adΘ eie
T
j = Θeie

T
j − eie

T
j Θ = (θi − θj)eie

T
j (3.6)

shows that the eigenvectors of adΘ are the n2 matrices of the form eie
T
j with eigenvalues θi − θj163

respectively, where Θ = diag(θ).164

Lemma 3.4. Let Θ = diag(θ) be diagonal, and g analytical. For any B we have:165

g(adΘ)B =
∑

i,j

g(θi − θj)(e
T
i Bej)eie

T
j . (3.7)

166

Proof. Repeated application of (3.6) establishes that for any nonnegative integer k:167

adk
Θ B = adk

Θ

∑

ij

(eT
i Bej)eie

T
j =

∑

ij

(θi − θj)
k(eT

i Bej)eie
T
j .

The proof is completed by appealing to the analytical property of g.
Note that the right hand side of (3.7) can be expressed as the Hadamard product of B and the
matrix which has its (i, j) element equal to g(θi − θj). According to Lemma 3.3 and equation (3.3),
we have for any analytical g,

g
(
adlog Λ+αvvT

)
vvT = g(adUΘUT )vvT = Ug(adΘ)(UT vvT U)UT .

Recall from Section 3.1 that we introduced u = UT v and that Θ = diag(θ). Now we define matrix168

H to have (i, j) element equal to h(θi − θj), where h is as in (2.8) and so finally from (3.5) and169

Lemma 3.4 we have:170

f ′(α) = vT eUΘUT

U(H ◦ uuT )UT v = vT UeΘUT U(H ◦ uuT )u = (u ◦ eθ)T (H ◦ uuT )u. (3.8)

An alternative derivation for f ′(α) based on the Daleckii–Krein theorem is also possible, see [3][p.171

60, p.154].172

Note that the computation of the eigenvalues and the vector u is also part of the computations173

needed to evaluate f at α, see (3.4). Therefore no additional eigendecompositions are necessary174

to compute the derivative. The direct computation of elements of the matrix H would require n2
175

floating point exponentiations. Fortunately, we do not need to compute H explicitly, but instead we176

may expand the right hand side of (3.8) to get:177

f ′(α) =

n∑

i,j=1

u2
i u

2
je

θih(θi − θj) = 2
∑

1≤i<j≤n

θi 6=θj

u2
i u

2
j

eθi − eθj

θi − θj
+ 2

∑

1≤i<j≤n

θi=θj

u2
i u

2
je

θi +

n∑

i=1

u4
i e

θi . (3.9)

The above form exploits symmetry and allows the reuse of the eθi terms available from the compu-178

tation of f(α). We need 2.5n2 floating point additions, subtractions and multiplications and 0.5n2
179
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Algorithm 2: Computations needed to evaluate f and f ′.

Input : Matrix X with its V ΛV T eigendecomposition; vector z; scalar α.

Output: f(α), f ′(α), see (1.1).
∗
± / exp

1 v = V T z 2n2

2 Factor log Λ + αvvT = U diag(θ)UT ℓn2

3 u = UT v 2n2

4 x = u ◦ eθ n n

5 f(α) = xT u − b 2n

6 f ′(α) = xT (H ◦ uuT )u see (3.8), (3.9) 2.5n2 0.5n2

floating point divisions. The cost of floating point divisions on modern architectures is between 2.5180

to 3 times that of floating point addition. It is important to note that exponentiation is a much more181

expensive operation; its cost is about ten times that of a division. We summarize the computational182

steps required to compute f(α) and f ′(α) in Algorithm 2.183

The repeated computation of f(α) takes (2+ℓ)n2 +O(n) floating point operations (flops) where184

ℓn2 + O(n) flops are needed for the eigendecomposition of a diagonal plus rank-one matrix4. Note185

that only steps 2 to 6 in Algorithm 2 have to be done repeatedly while finding the zero, so we did not186

include the matrix-vector multiplication in step 1 in the flop count for computing f(α). When we are187

computing f ′(α), we are reusing intermediate results from the computation of f(α) and therefore we188

need only about 2.5n2 additional floating point additions/multiplications and 0.5n2 divisions. We189

expect the total computational cost to be dominated by the eigendecomposition.190

The above discussion of the operation counts did not consider the issue of numerical accuracy.191

The difference quotient term of (eθi −eθj )/(θi−θj) in (3.9) may suffer from catastrophic cancellation192

when θi and θj are not well separated. Our solution is to use an alternate formula when x = (θi−θj)/2193

is sufficiently small:194

eθi − eθj

θi − θj
= eθi/2eθj/2 sinh(x)

x
= eθi/2eθj/2

(
1 +

x2

3!
+

x4

5!
+

x6

7!
+ R(x)

)
.

As indicated by the above equation we approximate sinhx using its Taylor expansion, which con-195

verges rapidly for small x. The native floating point instruction computing sinh produces accurate196

results, but if it were used for all (θi, θj) pairs, then we would pay a substantial performance penalty5.197

When |x| ≥ 0.1, we use the original form that appears in (3.9), otherwise we use the above Taylor198

approximation. Elementary calculations using the Lagrange form of the remainder reveal that |R(x)|199

is less than the machine epsilon when |x| < 0.1. Our implementation uses six floating point multipli-200

cations and three additions and no divisions6 which should be compared to the two subtractions and201

a division in the original difference quotient formula. We observed no adverse effect on performance.202

3.2. Logarithmic prescaling. All the zero-finding algorithms discussed use interpolation to203

fit simple functions to find the next approximation. Newton’s method as well as the secant method204

use straight lines, the inverse quadratic interpolation method uses the inverse of a quadratic function,205

as its name suggests, and Jarrat’s method uses a function of the form given by (3.1).206

When the graph of the objective function has a known specific shape, it may be advantageous,207

or even necessary, to fit a different function. We note that convexity of f , established in Lemma 3.1,208

implies convergence for the secant method, regardless of initial guesses. However, in floating point209

arithmetic, the presence of overflow, underflow and rounding error may result in lack of convergence.210

Figure 3.1 depicts the situation where the secant method does not make progress: the function value211

4We observed the value of ℓ to typically fall between 25 and 50.
5We found that the computation of sinh using a floating point instruction is 35 times longer than a multiplication.
6Constant divisions are turned into multiplications.
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Fig. 3.1. Overflow and underflow resulting in α2 = α4 (no progress) for the secant method.
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f(α) = zT elog X+αzz

T

z

α

f(α)
α1 α2 = α4

at α3 is so large (not shown on the figure) that the computation of α4 suffers from underflow,212

resulting in α4 = α2. This issue affects the other three zero-finding algorithms as well.213

A similar problem occurs during the solution of the secular equation used to compute the eigen-214

decomposition of a rank-one update to a diagonal matrix. The solution there is to fit a rational215

function which has the same asymptotes as the objective function [7, 20]. In our case, better con-216

vergence can be attained by fitting parameterized exponential functions. Doing so helps with the217

overflow/underflow problem depicted in Figure 3.1 and speeds up convergence.218

We implement this idea of fitting a nonlinear function using a slightly different approach than219

what is found in [7, 20]. The main advantage of our solution is that we do not need to derive the220

(parameterized) fitting function, making it is easier to apply when a function such as (3.1) is used for221

interpolation. We apply a transformation to the function f(α) that yields a transformed function,222

g(α), and we use the zero-finders on g(α) in their original form. Our transformation applies a223

logarithmic prescaling; we introduce:224

g(α) = log(f(α) + b) − log b (3.10)

and observe that g is monotone and has the same zero as f . For the Newton-type methods we also225

need the derivative: g′(α) = f ′(α)/(f(α)+ b). Note that the additional computations are negligible.226

4. Experimental results. We compare Newton’s method and Jarrat’s method, both of which227

employ the use of derivatives, to the secant method and inverse quadratic interpolation which are228

zero-finding algorithms that do not require calculation of the derivative.229

We implemented the algorithms in C++ as matlab [21] and octave [11] compatible mex files230

which call the Fortran dlaed4 function from lapack [2] for the diagonal plus rank-one eigende-231

compositions. We implemented the correction for accurate eigenvectors according to [12], and also232

implemented deflation in C++; we utilized fast linear algebra routines from blas [4]. In all algo-233

rithm versions we accepted an approximation as the zero when the function value was not larger234
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Table 4.1

Running times and number of (rank-one update to a diagonal matrix) eigendecompositions executed by the
various algorithms when solving the protein data classification problem using 1000 constraints. The middle column
indicates the relative performance when compared to the secant method applied to f . Function g is defined by (3.10).

Protein data classification
Applied run-time ratio of run-time com- number of

to Method (sec) pared to secant on f eigendecomp.

f
secant 7.49 1.00 43,781
inv. quad. int. 6.82 0.91 39,733
Newton 5.63 0.75 30,148
Jarratt 4.73 0.63 24,994

g
secant 6.62 0.88 38,380
inv. quad. int. 6.20 0.83 35,941
Newton 4.86 0.65 25,557
Jarratt 4.49 0.60 23,523

then n ·eps for an n×n matrix. We tested the performance of the algorithms in three sets of experi-235

ments. We revisited the protein data experiment (gyrB) from [18,19]; we carried out a “synthetic”236

correlation matrix experiment motivated by [13]; and in the third experiment we find the zero of a237

slightly modified version of (1.1) as a result of the use of the so called “slack variables” in the hand238

written digits recognition (MNIST) experiment in [19].239

We compare running times and the number of eigendecompositions (the most expensive step)240

executed by the zero-finding methods. We used a computer with an Intel X3460 CPU running241

at 2.8GHz utilizing 8MB of cache. We ran the algorithms in single threaded mode (including the242

BLAS and LAPACK subroutines) with no other programs running.243

The first experiment reproduces a result from [18, 19], where the objective is to find a 52 × 52244

kernel matrix for protein data classification. The task is formulated as a matrix nearness problem245

using the von Neumann matrix divergence, DvN (X,Y ) = tr(X log X − X log Y − X + Y ), as the246

nearness measure. We extract 1000 linear inequality constraints from the training data and use247

Bregman’s iterative process starting from the identity matrix; for additional details we refer the248

reader to [18, 19]. Table 4.1 presents running times of the different zero-finders and the number of249

eigendecompositions needed. The methods using derivatives are seen to have better performance250

due to fewer eigendecompositions.251

In the second experiment the objective is to find the nearest correlation matrix X to a given252

positive definite starting matrix Y :253

minimize DvN (X,Y ), subject to Xii = 1, i ∈ {1, . . . , n}, X ≻ 0.

We generated Y to be a random symmetric matrix with eigenvalues uniformly distributed in (0, 1).254

The results in Table 4.2 are averaged from ten runs using 500×500 randomly generated matrices. We255

observe again that the use of the derivative improves performance when compared to non-derivative256

based zero-finding methods.257

In the third experiment we executed Bregman’s algorithm using the MNIST data set con-258

sisting of images of handwritten digits encoded as 164-dimensional vectors. For details on this259

experiment we refer the reader to [19]. The zero-finding problem is a slightly modified version260

of (1.1) due to the use of slack variables. Here, we only give a short summary. Instead of enforc-261

ing the constraints, we penalize deviation from the desired conditions using the relative entropy262

KL(x,y) =
∑

i(xi log(xi/yi)− xi + yi), the vector divergence from which the von Neumann matrix263

divergence is generalized:264

minimizeX,b DvN (X,Y ) + γKL(b, b0), subject to tr(XAi) ≤ eT
i b, i ∈ {1, . . . , c}, X ≻ 0.
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Table 4.2

Running times and number of (rank-one update to a diagonal matrix) eigendecompositions executed by the
various algorithms when solving the correlation matrix problem. The middle column indicates the relative performance
when comparing to the secant method applied to f . Function g is defined by (3.10).

Nearest correlation matrix
Applied run-time ratio of run-time com- number of

to Method (sec) pared to secant on f eigendecomp.

f
secant 201.3 1.00 9,255
inv. quad. int. 190.1 0.94 8,568
Newton 172.3 0.86 6,824
Jarratt 145.5 0.72 5,321

g
secant 182.0 0.90 8,082
inv. quad. int. 169.9 0.84 7,371
Newton 141.8 0.70 5,094
Jarratt 136.6 0.68 4,741

Table 4.3

Running times and number of (rank-one update to a diagonal matrix) eigendecompositions executed by the
algorithms when solving the MNIST handwritten digits recognition problem. The algorithms were applied to function
g as defined by (3.10).

MNIST handwritten digits recognition
run-time number of rank-one

Method (sec) eigendecompositions
secant 281.7 444,385
inv. quad. int. 274.7 432,411
Newton 175.0 241,637
Jarratt 175.0 241,641

The objective function measures the distance from the starting matrix Y as well as the amount by265

which the constraints are relaxed. The γ > 0 parameter controls how much “slack” we permit; in266

essence it is used to find the balance between over- and under-constraining the optimization problem.267

The resulting zero-finding problem is a slightly modified version of (1.1):268

zT elog X+αzz
T

z + eα/γ − b = 0.

The derivative computation and other discussions of Section 3 apply after minor modifications.269

In Table 4.3 we present the MNIST handwritten digits recognition experiment results for four270

zero-finding methods. We only show the versions using the logarithmic prescaling, because without271

that improvement the algorithms greatly suffer from the overflow/underflow problem discussed in272

Section 3.2, which would force the use of the bisection (or some other, but still inefficient) method273

for many iterations. Due to the modified objective function, for which the logarithmic prescaling274

works very well, the number of iterations executed by the zero-finders is quite low (never more275

than four for Newton and Jarrat’s method). The inverse quadratic interpolation provides its first276

approximation only in the fourth iteration and Jarratt’s method in the third. Simply put, the faster277

convergence has no time to set in for inverse quadratic interpolation and Jarrat’s method. As a278

result, the quadratic interpolation method yields only a slight benefit over the secant method and279

Jarratt’s method does not yield any improvement over Newton’s method. Newton’s method requires280

nearly half the number of eigendecompositions when compared to inverse quadratic interpolation,281

while the running time improvement is 36%.282

5. Conclusions. In this paper, we discussed a specific zero-finding problem that arises in283

certain machine learning applications. We have shown how to efficiently calculate the derivative of284
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the objective function which involves the matrix exponential; a task that is non-trivial due to the lack285

of commutativity of matrix multiplication. The efficient computation of the derivative and the reuse286

of computations from the function evaluation allowed us to apply Newton’s method and a relatively287

unknown zero-finder variant due to P. Jarratt. The presented experimental results confirmed our288

expectation of better performance when compared to zero-finding methods that do not employ the289

derivative.290
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