
Copyright

by

Arati Ashok Kaushik

2016

Zero-One Integer Linear Programming for Program

Synthesis

by

Arati Ashok Kaushik, B.Tech.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2016

Zero-One Integer Linear Programming for Program

Synthesis

APPROVED BY

SUPERVISING COMMITTEE:

Thomas Dillig, Supervisor

Isil Dillig

Zero-One Integer Linear Programming for Program

Synthesis

Arati Ashok Kaushik, M.S.

The University of Texas at Austin, 2016

Supervisor: Thomas Dillig

Program synthesis techniques generate code automatically for a given

specification, while code reuse techniques adapt existing code to suit the user’s

requirements. These methods can be used to help developers implement hard-

to-write functions which they find difficult to code by themselves. At the same

time, they can also be used to automatically synthesize uninteresting glue code,

thereby enabling programmers to concentrate on their own key goals. In this

thesis, we describe how 0-1 Integer Linear Programming (ILP) can be utilized

for program synthesis and code reuse, by discussing its employment in two

recent applications.

iv

Table of Contents

Abstract iv

List of Figures vii

Chapter 1. Introduction 1

1.1 Problem Context . 1

1.2 Thesis Statement . 4

1.3 Outline . 4

Chapter 2. Technical Background 5

2.1 SAT solvers . 5

2.2 Integer Linear Programming 6

Chapter 3. Formulation Details for Different Applications 8

3.1 SyPet . 8

3.1.1 Candidate Sketch Generation 10

3.1.2 Sketch Completion . 14

3.2 Hunter . 16

3.2.1 Interface Alignment . 17

Chapter 4. Related Work 20

4.1 0-1 ILP . 20

4.2 Program synthesis . 21

4.3 Code reuse . 22

4.4 Code completion . 22

Chapter 5. Conclusion 23

Bibliography 24

v

Vita 29

vi

List of Figures

3.1 Petri net for the average method 11

3.2 Matrix representation of constraint variables in Section 3.1.2 . 15

vii

Chapter 1

Introduction

1.1 Problem Context

In today’s programming culture of open-source software, source code is

often freely available online. A large proportion of code available on websites

like GitHub, Sourceforge, and Bitbucket come with open-source/free software

licenses. In fact, programmers are frequently evaluated by peers and prospec-

tive employers based on their publicly available projects, thereby providing

further incentive to share well-written and properly compilable open-source

code. This has also consequently allowed and even encouraged programmers

to modify and/or reuse existing code available online in their own applications.

At the same time, the API (application program interface) economy has also

seen a boom in recent years, making useful functions available for use by devel-

opers in several domains. More and more API libraries are being created and

released for general use, most libraries providing hundreds or even thousands

of functions.

In the general case, developers utilize publicly-available methods in

their own code for performing relatively small, specific tasks. However, while

both application code and API libraries are now ubiquitous, given the massive

1

availability of code online, just finding a method relevant to their purpose re-

quires manual inspection of classes, function signatures and their descriptions.

This task is both tedious and a huge time-sink, especially if the developer is

unfamiliar with the codebase. Moreover, it takes valuable time away from

the developer’s own code, which is of more interest and importance to them.

Programmers do not like to perform mundane tasks over and over again if it

can be helped. Automatically detecting the functions of interest from a set of

available methods, and using them to perform a specific computing task, can

lead to a huge improvement in the productivity of programmers, allowing them

to spend their time more efficiently on the larger problem at hand. Program

synthesis is a promising technique which can help programmers accomplish

this objective.

Programming languages have come a long way since the days of assembly-

level coding. Today’s programming languages are much more abstract and

human-readable, making programming easier and easier, even for the naive

user. Even present-day programming languages, however, work by providing

the user a fixed number of “building blocks” in the form of explicit instruc-

tions, which detail the steps that need to be performed by the computer to

fulfil the required task. In general, people find it more intuitive to describe

their intent, rather than detailing the steps required to accomplish it. In other

words, users find it more intuitive to give the what, and not the how. The

current programming model, however, forces users to describe how to perform

actions, and is not very conducive to allowing specifications of what it is that

2

users want to accomplish. Therefore, there is a growing interest in modern

programming language research in program synthesis with the aim of making

programming more intuitive to users.

Program synthesis refers to the automatic synthesis of program code.

The main components of a system that performs program synthesis can be

listed as follows:

• Specification

• Synthesizer

• Verifier

The user provides the system with a specification of the program that

they want to synthesize, which can be in one of several forms including log-

ical specifications, input-output examples, partial programs, or even natural

language comments. The synthesizer accepts the specification and generates

a candidate program. The verifier verifies the candidate program against the

user specifications. If all specifications are satisfied, the program is output to

the user as the final synthesized result. A particular form of program synthe-

sis, which is labeled “Counterexample-guided Inductive Synthesis” (CEGIS),

requires the synthesizer and verifier to work in tandem in a loop, with the

verifier providing feedback in the form of counterexamples to the synthesizer

if the provided candidate program fails to satisfy the required specifications.

This is the primary form of program synthesis that will be discussed hereon.

3

1.2 Thesis Statement

In this thesis, we describe how to use an existing linear optimization

technique, 0-1 Integer Linear Programming (0-1 ILP), to model constraints in

program synthesis effectively for even very large problems. 0-1 ILP was utilized

and implemented in two program synthesis techniques, one that synthesizes

loop-free programs by composing methods from large Java API libraries, and

another that reuses existing code from large code bases and adapts it to im-

plement the desired method. Both systems, SyPet and Hunter were group

projects developed with Yu Feng, Yuepeng Wang, and Dr. Ruben Martins,

and supervised by Dr. Isil Dillig.

1.3 Outline

The rest of this thesis is organized in the following manner. Chapter 2

discusses some relevant background on boolean satisfiability solvers and integer

linear programming. Chapter 3 discusses how 0-1 ILP has been incorporated

into two Java applications for program synthesis and code reuse. Chapter 4

discusses related work, and Chapter 5 concludes the thesis.

4

Chapter 2

Technical Background

2.1 SAT solvers

The boolean satisfiability problem, more commonly known as the SAT

problem, is the problem of finding whether a boolean formula is satisfiable

or not. In other words, it is the problem of determining if there exists an

assignment of values true or false to all variables in a boolean formula such

that the entire formula becomes equivalent to true. If such a assignment exists,

then the formula is said to be satisfiable, and the satisfying assignment is called

a model of the boolean formula.

The SAT problem is one of the first computational complexity problems

which was proven to be NP-complete. This means that all problems in the

NP class, including several graph reachability algorithms, can be reduced to

SAT. SAT solvers, or Boolean Satisfiability solvers, are systems which accept a

boolean formula and determine whether it is satisfiable or not. Moreover, if the

formula is found to be satisfiable, the solver returns a satisfying assignment,

or model, for the formula.

SAT solvers are frequently used in synthesis techniques, since most pro-

gram constraints can be encoded into boolean formulae with relative ease. One

5

such synthesis technique is Sketch [26], which takes a sketch, or a program

with holes with type restrictions, encodes these constraints into boolean for-

mulae, and uses a SAT solver to solve these constraints and fill the sketch. We

use a SAT solver in a similar fashion to generate candidate programs from a

petri net.

2.2 Integer Linear Programming

An Integer Linear Programming (ILP) problem is a mathematical op-

timization problem, with an objective function to be maximized/minimized,

and a set of constraints to be followed. Both the objective function and con-

straints are linear. Additionally, all variables are restricted to be integers. A

general representation of an ILP problem is as follows:

maximize/minimize: z = cTx

subject to: Ax ≤ b, x ≥ 0, and x ∈ Zn,

where c and b are vectors, x is an n-dimensional vector representing the

variables, and A is an integer matrix. Ax ≤ b forms the set of constraints that

need to be satisfied on the variables, and z represents the objective function

which needs to maximized/minimized.

ILP is an NP-hard problem. However, the kind of ILP problem which

we are interested in, which is 0-1 ILP, is NP-complete. In 0-1 ILP, the variables

are constrained to take values of either 0 or 1. SAT problems can be expressed

in 0-1 ILP, since the variables are binary. Other interesting problems which

6

can be formulated as 0-1 ILP problems are the Traveling Salesman and Vertex

Cover.

7

Chapter 3

Formulation Details for Different Applications

In this section, we will describe three ways in which the 0-1 ILP formu-

lation has been adapted for use in two program synthesis systems - SyPet [3]

and Hunter [32].

3.1 SyPet

Component-based synthesis is a form of program synthesis that auto-

matically generates programs (typically loop-free) by assembling them from

their constituent base components. SyPet is a system for type-directed

component-based synthesis from API libraries. It uses the types of compo-

nents as specifications instead of requiring a logical specification describing

the functionality of the constituent methods. SyPet takes a method signa-

ture, API library, and one or more test cases from the user, and generates

the desired method by composing a sequence of method invocations from the

provided API library.

Since this technique involves composing method calls to synthesize a

required function, the crux of the problem lies in deciding which methods to

compose, and how to combine them to generate the specific functionality, while

8

respecting the types of the language. A natural way to view this problem is

to represent the components in the form of a graph. There are several graph

representations which could be suitable for this function. The representation

employed in SyPet is called a Petri net N.

SyPet’s architecture consists of the following three modules:

1. Petri net construction

2. Candidate sketch generation

3. Sketch completion

A Petri net N is a directed graph with two node types, places and

transitions (represented by circles and solid bars respectively in the graph).

Each place can contain tokens in it, which are considered resources representing

availability of elements of that place. Each transition consumes a given number

of tokens from one or more places, and produces tokens of another place.

Consumptions are represented as edges to a transition, and productions by

edges from a transition, while the number of tokens of a place P consumed or

produced by a transition T is denoted by the edge weight of the edge between

P and T (incoming to and outgoing from T , respectively). SyPet uses Petri

nets by modeling places as types and transitions as methods of a given API

library. A sample Petri net of this model is shown in Figure 3.1.

On a high level, the Petri net is first constructed from the target method

signature and the components of the provided API. Once constructed, we per-

form a lazy graph-reachability problem by translating it to a 0-1 ILP problem

9

for the purpose of finding a feasible path. This path describes a possible

sequence of method calls satisfying the signature requirements of the target

function, which is then translated to a partial program or sketch, with place-

holders for function arguments. The generated sketch is then instantiated by

performing another 0-1 ILP run to find an assignment of variables to the place-

holders, also called holes. The completed program is then tested against the

user-provided tests, and if any tests fail, the process is repeated after taking

action to block the same assignment from being produced again.

For the purposes of this thesis, we will focus on sketch generation and

completion, since these are the two steps that employ 0-1 ILP for their imple-

mentation. Interested readers are referred to the paper [3] for more details on

SyPet.

3.1.1 Candidate Sketch Generation

As briefly described in Section 3.1, the constructed Petri net N has

places representing variable types, and transitions representing methods. An

incoming edge from type τ of weight k to a transition T means that function

T has k arguments of type τ . An outgoing edge from transition T to type

τ means that function T returns the type τ . For example, in Figure 3.1, the

method average takes two arguments of type double and one argument of type

int, and returns a double. Since Petri nets consider places as resources to be

consumed or produced by transitions, we can think of the average method as

consuming two double types and an int type to produce another double

10

Figure 3.1: Petri net for the average method

If the user provides a signature of a function f(τ1, τ2, . . . τn)→ τ , pos-

sible solutions to f can be determined by performing reachability analysis

from τ1, τ2, . . . τn to τ . Since multiple such feasible paths can exist, SyPet

performs a lazy reachability analysis using 0-1 ILP by assigning costs to tran-

sitions. Therefore, each run of the reachability analysis algorithm returns a

candidate path of the lowest cost. Each feasible path represents a sequence of

method invocations, which can then easily be converted into a sketch.

To reduce the search space further, N is reduced to a normal directed

graph called the Induced graph α(N), which has nodes for each type. Further-

more, α(N) introduces an edge between two types τ1 and τ2 only if there exits

a transition T in N with an incoming edge from τ1 and an outgoing edge to

τ2. For a function f(τ1, τ2, . . . τn)→ τ , paths in N are considered only if in the

corresponding path in α(N), τ1, τ2, . . . τnareallbackwards − reachablefromτ .

This is a sound assumption to make, since we want to utilize all input param-

eter types. The induced graph for the average method in Figure 3.1 is shown

11

below.

To represent the reachability analysis as a 0-1 ILP problem, we need

to represent the objective function and constraints on N as described in Sec-

tion 2.2. The constraints are encoded to a formula φ, representing the graph

reachability problem from τ1, τ2, . . . τn to τ , computed for increasing path

lengths. The objective function is

z := min(Σicixi),

where ci represents the cost of transition Ti. xi is a binary variable that equals

1 if transition Ti is included in the path under consideration, and 0 if it is not.

Therefore, the objective function for a feasible path is merely the sum of the

costs of all components used in the path.

To obtain the cost values, distance metrics are first used to determine

the similarity between the desired function and the component Ti. The func-

tion name is given particular importance, and the entire javadoc is used to find

the similarity between the provided signature and the library function. This

similarity measure (between 0 and 1) is then negatively scaled and rounded to

the nearest integer to obtain ci.

12

Once we obtain a satisfying assignment σ to the 0-1 ILP problem de-

scribing a feasible path p, we can easily translate it to a program sketch S.

A sketch here is a sequence of method calls with unknown arguments. The

following is an example of a sketch for a non-trivial function rotate with

signature Area rotate(Area A, Point p, double angle) generated from the

java.awt.geom library (taken from the motivating example of the paper):

x = #1.getX();

y = #2.getY();

t = new AffineTransform();

#3.setToRotation(#4, #5, #6);

a = #7.createTransformedArea(#8);

return #9;

To generate a program sketch S from a candidate solution, we create a

new statement for each transition, namely its corresponding API method call.

We then pass unknown arguments (denoted as #i) to each component. These

placeholders for unknown arguments are called holes. This sketch construction

guarantees type-checking, and ensures that the program is well-formed. How-

ever, there may be multiple ways to instantiate the holes in S. For instance,

we must assign #1 and #2 to pt, but we can assign #4 to either angle, x, or y,

since the only requirement is that #4 is of type double.

Once we have S, we use the technique described in Section 3.1.2 to

complete the candidate sketch, and validate or invalidate it based on user-

provided test cases. The synthesis segment synthesizes the code from the

sketch and runs it on the provided test cases. If the tests pass, the program is

returned to the user as the solution. If they fail, we need to prevent the system

13

from returning the same run in future iterations. The simplest way to achieve

this is to add the negation of the final assignment to the constraint equation φ.

However, we can block more unsatisfactory runs by performing a partial-order

reduction on the current path p. This generates a stronger “blocking clause”,

which can then by conjoined with φ for use in all further iterations.

3.1.2 Sketch Completion

As described earlier, we can obtain a sketch corresponding to a sat-

isfying path p in N by creating new statements for transitions in the path.

Depending on the type of method that is being called, the corresponding state-

ment in the sketch can vary slightly.

• General case: T o out = #1.foo(#2, #3, #4, ..., #n)

• Virtual methods: T o out = #1.foo(#2, #3, #4, ..., #n+1)

• Static method/Constructor: T o out = foo(#1, #2, #3, #4, ..., #n)

Once we have the full sketch, our next task is to instantiate the holes

with program variables. We also need the program to have certain properties

to ensure that is is well-formed, namely:

1. It is well-typed

2. No variable is used before it is defined

3. All variables are used at least once

4. All holes are filled with exactly one variable

We encode these requirements as a propositional formula ψ, by intro-

ducing boolean variables of the form h#i
v . A value of 1 for h#i

v denotes that

14

Figure 3.2: Matrix representation of constraint variables in Section 3.1.2

hole #i in the sketch is instantiated with program variable v. We only intro-

duce h#i
v if variable v matches the type of hole #i (Property 1), and if v is a

function parameter or is defined in the code before hole #i (Property 2).

Additionally, the following formulae also have to hold to guarantee the

remaining two properties:

• ∀v∀#i∈Hv

∑
h#i
v ≥ 1 (Property 3), where Hv denotes holes with the

same type as v

• ∀#i∀v∈V i

∑
h#i
v = 1 (Property 4), where V i denotes variables with the

same type as hole #i

All constraints can be thought of as the cells of the matrix in Figure 3.2.

The cell corresponding to row hi and column vj represents variable h#i
vj

. The

15

sum of each row in this matrix must be exactly 1, and the sum of each column

must be at least 1.

Once we have the filled sketch, we can run the user-provided tests on it.

If any of the tests fail, we get a different completion for the sketch by getting

a model for ψ ∧ ¬σ in the next iteration.

3.2 Hunter

Hunter is a type-directed code reuse tool implemented as an Eclipse

plugin for Java programs. It takes a target method signature, a natural lan-

guage description of the intended use of the method, and JUnit test cases from

the user, and synthesizes the implementation for the function. On a high level,

this functionality is similar to SyPet. The key difference is that instead of

composing methods from an API library to synthesize the required function,

Hunter searches a large code base for methods which are the most similar

to the target method, and synthesizes a wrapper for this candidate method.

In fact, Hunter uses SyPet internally to synthesize the adaptor code.

Hunter has three main components in its workflow:

1. Code search

2. Interface alignment

3. Synthesis

The Code search component searches a large code base and retrieves

a ranked list of methods which are the most similar to the target method.

16

Similarity is measured by calculating similarity metrics between the provided

text for the target method (signature and description), and the methods avail-

able on the code base (Javadoc and function). The project containing the

highest-ranked method is then downloaded and added to the user’s current

Eclipse project workspace. Next, the interface alignment proceeds to find the

best alignment between the parameters of the candidate and target functions.

This is achieved by formulation to a 0-1 ILP problem and getting a model

of the alignment with the lowest conversion cost or adaptation cost. Once a

candidate alignment is retrieved by the system, the synthesis part translates

it to actual code, which is then verified by running the provided JUnit tests

on it. Upon success, the synthesized wrapper code is made available to the

user.

3.2.1 Interface Alignment

The interface alignment section of Hunter is provided the method

signature of the target method T , and also that of the highest-ranked candidate

method C from the code search section. Let T have the signature

(p1 : τ1, p2 : τ2, . . . pn : τn)→ p0 : τ0,

and C have the signature

(q1 : η1, q2 : η2, . . . qn : ηn)→ q0 : η0,

where pi : τi means that the ith parameter of T is of type τi, qj : ηj means that

the jth parameter of C is of type ηj, and the terms with subscript 0 for both

17

functions refer to the return values of the functions.

Let M be a mapping from the set of parameters P of T to the set of

parameters Q of C. We then require M to satisfy some conditions. First, all

parameters of the adaptor method T are to be used, as it is presumably the

the user’s intention to utilize all parameters provided in the target signature.

Furthermore, not all parameters of Q need to be used. In particular, one

of the benchmark problems Hunter was tested on, to synthesize a method

implementing the Bresenham line-drawing algorithm, had a candidate method

requiring x and y coordinates for both the initial and final points of the line,

whereas the target method required only the final point, the initial point being

the origin. The same can be true of functions which implement the desired

functionality of the target, but require spurious boolean status variables. We

allow mapping to such methods by assigning un-mapped parameters in Q one

of a predefined set of default values (0/1 for int, true/false for boolean, etc).

Finally, owing to the presence of custom types and objects in Java,

we allow M to be one-many (ex: p1 : Point → (q2 : double, q3 : double)) or

many-one (ex: (p2 : double, p3 : double) → q1 : Point). However, a many-

many mapping does not make sense in the context of interface alignment, and

is consequently not allowed. Intuitively, these conditions make sense in terms

of program behaviour. For example, let P = p1, p2, Q = q1, q2. Then, all the

possible mappings are shown below:

• One-one: x1→1, x1→2, x2→1, x2→2

• Many-one: x(1,2)→1, x(1,2)→2

18

• One-many: x1→(1,2), x2→(1,2)

Of these, only the ones whose types are compatible with each other are

considered. Also, if a parameter is not of a reference/custom type, it cannot

have a mapping to/from multiple parameters.

Let xpi represent the set of all mapping variables which contain map-

pings from pi, and xqj represent the set of all mapping variables which contain

a mapping to qj. Then the constraints on the variables are as below:

• ∀pi∈PΣx∈xpix = 1

• ∀qj∈QΣx∈xqjx ≤ 1

• If the types are incompatible (int to int[], etc), then the value of the

variable is 0.

The cost of a mapping depends on the type-compatibility of the pa-

rameters involved. First, distance between pairs of parameters is calculated,

after which they are combined in different manners depending on whether the

mapping is one-many or many-one. Finally, the objective function is obtained

by multiplying the cost for a mapping with the corresponding variable rep-

resenting the mapping, and performing a summation over all variables. This

was implemented using Sat4J for Java.

19

Chapter 4

Related Work

4.1 0-1 ILP

Constraint solving in programming is frequently employed in synthe-

sis techniques in the context of program verification. Essentially, constraints

on program variables are converted to logical pre- and post-conditions, and

once a candidate solution satisfying these constraints is constructed, solvers

are used as verification tools to either validate or refute them. Usually, con-

straints are encoded as boolean propositional formulas or quantified boolean

formulas (QBF), with universal and existantial quantifiers (∀ and ∃). To the

best of our knowledge, however, 0-1 ILP specifically has not been applied to

such techniques aside from SyPet [3] and Hunter [32], discussed in Sec-

tion 3. SyPet’s evaluation marked it as a scalable application, since it can

handle up to two orders of magnitude more components than most current

state-of-the-art synthesis tools, which can typically oonly handle up to 5-10

components. This allows users to utilize SyPet for synthesis from large APIs.

Also, unlike most synthesis tools, SyPet does not require a logical specifica-

tion from the user describing the target function, or from the API library

describing each component. Since Hunter uses SyPet internally, these ben-

efits are translated to Hunter as well. These findings demonstrate that the

20

ILP encoding for both systems when combined with the other modules, has a

positive influence on the systems.

Since this thesis is motivated by the applications of program synthesis

and code reuse, and is based on the internal implementation of the SyPet

and Hunter systems, we also discuss prior work relevant to both systems.

These fall under three broad categories - program synthesis, code reuse, and

code completion, each of which is discussed below.

4.2 Program synthesis

As mentioned in Section 3.1, component-based synthesis refers to the

synthesis of programs by assembling its constituent base components, like

procedures from a given library. In the domain of component-based synthe-

sis, the CodeHint tool [5], which also synthesizes Java code from APIs and

takes test cases from the user, is the most similar to SyPet. Several other

applications also utilize the component-based synthesis model across a wide

range of domains like string and data structure transformations [4, 21], pro-

gram deobfuscation [15], geometry constructions [8], and bit-vector algorithm

construction [7]. Program sketching techniques like Sketch [14, 26–29] re-

quire a partial program with holes from the user, and construct the completed

code. Programming-by-example approaches (PBE) [1, 4, 6, 11, 25], which gen-

erally target novice users, require input-output examples from the developer

as partial specifications.

21

4.3 Code reuse

Hunter is related to a long line of code search and reuse tools. Of

these, S6 [23], which also utilizes signatures, natural language descriptions and

input-output test cases from the user to find relevant code and adapt it, is the

tool most similar to Hunter. The Prospector tool [17] is also closely re-

lated to both SyPet and Hunter. Prospector synthesizes snippets of code

called jungloids by composing functions with single arguments, and non-void

return types. Other related tools can be broadly classified into type-directed

approaches like ParseWeb [30], graph-based approaches like Sourcerer [2]

and Portfolio [19], test-driven approaches like CodeGenie [16] and Code-

Conjurer [13], and textual approaches like CodeExchange [18].

4.4 Code completion

Both Hunter and SyPet are related to code completion techniques.

While similar to component-based synthesis, code completion tools require a

partial program from the user and provide a ranked list of completions, typ-

ically single-line. Several automated code completion tools [9, 10, 12, 17, 20,

22, 24, 31, 33] have arisen in recent years. Notable among these are Prospec-

tor [17], InSynth [10], and slang [22]. InSynth also uses theorem proving,

while slang is based on machine learning techniques.

22

Chapter 5

Conclusion

Through this thesis, we have accomplished two main objectives. We

first motivated the benefits of program synthesis and code reuse. They can

help users both implement hard-to-write procedures, and also increase their

productivity when utilized for the synthesis of mundane glue code, enabling

users to focus on their own code. Next, we explained how the existing tech-

nique of 0-1 Integer Linear Programming can be applied to both techniques,

by describing its utilization for two applications - SyPet and Hunter in

detail.

23

Bibliography

[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive

program synthesis. In CAV, pages 934–950. Springer-Verlag, 2013.

[2] Sushil Krishna Bajracharya, Joel Ossher, and Cristina Videira Lopes.

Sourcerer: An infrastructure for large-scale collection and analysis of

open-source code. Sci. Comput. Program., pages 241–259, 2014.

[3] Yu Feng, Yuepeng Wang, Ruben Martins, Arati Ashok Kaushik, and

Isil Dillig. Type-directed Component-based Synthesis using Petri Nets.

Technical Report TR-16-01, Department of Computer Science, UT-Austin,

2016.

[4] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data

structure transformations from input-output examples. In PLDI, pages

229–239. ACM, 2015.

[5] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and

Koushik Sen. Codehint: Dynamic and interactive synthesis of code snip-

pets. In ICSE, pages 653–663. ACM, 2014.

[6] Sumit Gulwani. Automating string processing in spreadsheets using

input-output examples. In POPL, pages 317–330. ACM, 2011.

24

[7] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-

san. Synthesis of loop-free programs. In PLDI, pages 62–73. ACM,

2011.

[8] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Synthe-

sizing geometry constructions. In PLDI, pages 50–61. ACM, 2011.

[9] Tihomir Gvero and Viktor Kuncak. Synthesizing Java expressions from

free-form queries. In OOPSLA, pages 416–432, 2015.

[10] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive synthesis

of code snippets. In CAV, pages 418–423, 2011.

[11] William R. Harris and Sumit Gulwani. Spreadsheet table transformations

from examples. In PLDI, pages 317–328. ACM, 2011.

[12] Reid Holmes and Gail C. Murphy. Using structural context to recom-

mend source code examples. In ICSE, pages 117–125. ACM, 2005.

[13] Oliver Hummel, Werner Janjic, and Colin Atkinson. Code conjurer:

Pulling reusable software out of thin air. IEEE Software, pages 45–52,

2008.

[14] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-

Lezama. Jsketch: Sketching for Java. In ESEC/FSE, pages 934–937.

ACM, 2015.

25

[15] Susmit Jha, Sumit Gulwani, Sanjit Seshia, and Ashish Tiwari. Oracle-

guided component-based program synthesis. In ICSE, pages 215–224.

IEEE, 2010.

[16] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, Joel Os-

sher, Paulo Cesar Masiero, and Cristina Videira Lopes. Applying test-

driven code search to the reuse of auxiliary functionality. In Proceedings

of the 2009 ACM Symposium on Applied Computing (SAC), Honolulu,

Hawaii, USA, March 9-12, 2009, pages 476–482, 2009.

[17] David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jungloid

mining: helping to navigate the API jungle. In PLDI, pages 48–61. ACM,

2005.

[18] Lee Martie, Thomas D. LaToza, and André van der Hoek. Codeexchange:

Supporting reformulation of internet-scale code queries in context (T). In

30th IEEE/ACM International Conference on Automated Software En-

gineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pages

24–35, 2015.

[19] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and

Chen Fu. Portfolio: finding relevant functions and their usage. In Pro-

ceedings of the 33rd International Conference on Software Engineering,

ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 111–

120, 2011.

26

[20] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman.

Type-directed completion of partial expressions. In PLDI, pages 275–

286. ACM, 2012.

[21] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost.

Test-driven synthesis. In PLDI, page 43. ACM, 2014.

[22] Veselin Raychev, Martin T. Vechev, and Eran Yahav. Code completion

with statistical language models. In PLDI, page 44. ACM, 2014.

[23] Steven P. Reiss. Semantics-based code search. In Proceedings of the

31st International Conference on Software Engineering, ICSE ’09, pages

243–253. ACM, 2009.

[24] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: Mining for sam-

ple code. In OOPSLA, pages 413–430. ACM, 2006.

[25] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations

from input-output examples. In CAV, pages 634–651. ACM, 2012.

[26] Armando Solar-Lezama. Program Synthesis By Sketching. PhD thesis,

EECS Department, University of California, Berkeley, 2008.

[27] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bod́ık,

Vijay A. Saraswat, and Sanjit A. Seshia. Sketching stencils. In PLDI,

pages 167–178. ACM, 2007.

27

[28] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bod́ık, and Kemal

Ebcioglu. Programming by sketching for bit-streaming programs. In

PLDI, pages 281–294. ACM, 2005.

[29] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,

and Vijay Saraswat. Combinatorial sketching for finite programs. In

ASPLOS, pages 404–415. ACM, 2006.

[30] Suresh Thummalapenta and Tao Xie. Parseweb: A programmer as-

sistant for reusing open source code on the web. In Proceedings of the

Twenty-second IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE ’07, pages 204–213. ACM, 2007.

[31] Suresh Thummalapenta and Tao Xie. Parseweb: A programmer assistant

for reusing open source code on the web. In ASE, pages 204–213. ACM,

2007.

[32] Yuepeng Wang, Yu Feng, Ruben Martins, Isil Dillig, and Steven P. Reiss.

Type-directed Code Reuse using Integer Linear Programming.

[33] Kuat Yessenov, Zhilei Xu, and Armando Solar-Lezama. Data-driven

synthesis for object-oriented frameworks. In OOPSLA, pages 65–82.

ACM, 2011.

28

Vita

Arati Ashok Kaushik was born in Chennai, Tamil Nadu, India. She

received the degree of Bachelor of Technology in Electronics and Communi-

cation Engineering from Amrita Vishwavidyapeetham University, Coimbatore

in 2012. She worked for 16 months at Cisco Systems Inc. Bangalore as a

Software Engineer, and joined the University of Texas at Austin in August,

2014.

Permanent address: The University of Texas at Austin
Austin, Texas 78712

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

29

