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Abstract. A minimum satisfying assignment of a formula is a minimum-
cost partial assignment of values to the variables in the formula that
guarantees the formula is true. Minimum satisfying assignments have
applications in software and hardware verification, electronic design au-
tomation, and diagnostic and abductive reasoning. While the problem
of computing minimum satisfying assignments has been widely studied
in propositional logic, there has been no work on computing minimum
satisfying assignments for richer theories. We present the first algorithm
for computing minimum satisfying assignments for satisfiability modulo
theories. Our algorithm can be used to compute minimum satisfying as-
signments in theories that admit quantifier elimination, such as linear
arithmetic over reals and integers, bitvectors, and difference logic. Since
these richer theories are commonly used in software verification, we be-
lieve our algorithm can be gainfully used in many verification approaches.

1 Introduction

A minimum satisfying assignment (MSA) o of a formula ¢, relative to a cost
function C' that maps variables to costs, is a partial variable assignment that
entails ¢ while minimizing C. For example, consider the following formula in
linear integer arithmetic:

p:rx+y+tw>0V e+y+z+w<h  (x)

and suppose that the cost function C assigns cost 1 to each variable in the
formula. A partial satisfying assignment to this formula is x = 1,y = 0,w = 0.
This partial assignment has cost 3, since it uses variables x, y, w, each with cost 1.
Another satisfying partial assignment to this formula is z = 0; this assignment
has cost 1 since it only uses variable z. Furthermore, z = 0 is a minimum
satisfying assignment of the formula since z = 0 = ¢ and no other satisfying
partial assignment assignment of ¢ has lower cost than the assignment z = 0.
Minimum satisfying assignments have important applications in software and
hardware verification, electronic design automation, and diagnostic and abduc-
tive reasoning [1-6]. For example, in software verification, minimum satisfying
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assignments are useful for classifying and diagnosing error reports [4], for finding
reduced counterexample traces in bounded model checking [1], and for minimiz-
ing the number of predicates required in predicate abstraction [3].

Some applications, such as [1] have used minimal rather than minimum sat-
isfying assignments (in the context of propositional logic). A minimal satisfying
assignment is one from which no variable can be removed while still guaranteeing
satisfaction of the formula. Minimal assignments have the advantage that they
can be computed greedily by simply removing variables as long as the formula is
implied by the remaining assignment. However, a minimal satisfying assignment
can be arbitrarily far from optimal, as the following example shows:

Ezample 1. Consider again the formula ¢ from (). The assignment z = —1,y =
—1,w = —1,2z = 5 is minimal, with cost 4. That is, removing the assignment to
any one variable allows the formula to be false. However, as observed above, the
minimum cost is 1.

In this paper, we consider the more difficult problem of computing true
minimum-cost assignments. This problem has been studied in propositional logic,
where it is commonly known as the minimum prime implicants problem [5, 6].
However, there has been no work on computing minimum satisfying assignments
in the context of satisfiability modulo theories (SMT).

In this paper, we present the first algorithm for computing minimum satisfy-
ing assignments for first-order formulas modulo a theory. The algorithm applies
to any theory for which full first-order logic, including quantifiers, is decidable.
This includes all theories that admit effective quantifier elimination, such as
linear arithmetic over reals, linear integer arithmetic, bitvectors, and difference
logic. Since these theories and their combinations are commonly used in software
verification, we believe an algorithm for computing minimum satisfying assign-
ments in these theories can be gainfully used in many verification approaches.

This paper makes the following key contributions:

— We define minimum satisfying assignments modulo a theory and discuss
some useful properties of minimum satisfying assignments.

— We present a branch-and-bound style algorithm for computing minimum
satisfying assignments of SMT formulas.

— We consider improvements over the basic branch-and-bound approach that
effectively prune parts of the search space.

— We show how to use and compute theory-satisfiable propositional implicants
to obtain a good variable order and initial cost bound.

— We describe how to obtain and use a special class of implicates of the original
formula to further prune the search space.

— We present an experimental evaluation of the performance of our algorithm.

2 Minimum Satisfying Assignments and Their Properties

To begin with, let us precisely define the notion of MSA for a formula in first-
order logic, modulo a theory. This definition is a bit subtle because, to speak of



an assignment of values to variables in first-order logic, we must specify a model
of the theory.

For a given theory T, we have a fixed signature S of predicate and function
constants of specified arity. The theory T is a set of first-order sentences over
signature S. A first-order model M is a pair (U,Z) where the set U is the
universe, and Z is the interpretation that gives a semantics to every symbol
in §. We assume a countable set of variables V, distinct from S. Given a model
M, a valuation o is a partial map from V to U. We write free(¢) for the set of
variables occurring free in formula ¢. If ¢ is a valuation in free(¢) — U, we write
M, o [= ¢ to indicate that formula ¢ is true, according to the usual semantics of
first-order logic, in model M, with ¢ giving the valuation of the free variables in
¢. We say M is model of theory T when every sentence of T is true in M.

Definition 1. (Satisfying assignment) Formula ¢ is satisfiable modulo T
when there exists a model M = (U,T) of T and an assignment o € free(¢p) — U
such that M,o |= ¢. We say the pair (M, o) is a satisfying assignment for ¢.

Our intuition behind an MSA for ¢ is that it gives a valuation for a minimum-
cost subset of the free variables of ¢, such that ¢ is true for all valuations of the
remaining variables. We capture this idea with satisfying partial assignments:

Definition 2. (Satisfying partial assignment) A satisfying partial assign-
ment for formula ¢ is a pair (M,o0), where M = (U,T) is a model, o is a
valuation over M such that dom(o) C free(¢), and such that for every valuation
p € (free(¢) \ dom(o)) — U, (M, o U p) is a satisfying assignment for ¢.

The following is an alternate statement of this definition:

Proposition 1. A satisfying partial assignment for formula ¢ is a satisfying
assignment for the formula VX. ¢, for some X C free(o).

Now, in order to define a minimum partial assignment, we introduce a cost
function over partial assignments. For a given function C' € ¥V — N, the cost
of a set of variables X is C(X) = X,exC(v) and the cost of a valuation o is
C(o) = C(dom(c)). Minimum satisfying assignments are now defined as follows:

Definition 3. (Minimum satisfying assignment) Given a cost function C €
YV — N, ¢ minimum satisfying assignment (MSA) for formula ¢ is a partial
satisfying assignment (M, o) for ¢ minimizing C (o).

As observed in Proposition 1, a partial satisfying assignment (M, o) for ¢ is
just a satisfying assignment for VX.¢. We observe that the free variables in this
formula are free(¢) \ X, therefore dom(c) = free(¢) \ X. Minimizing the cost of
o is thus equivalent to mazimizing the cost of X such that VX. ¢ is satisfiable.
We can formalize this idea as follows:

Definition 4. (Maximum universal subset) A universal set for formula ¢
modulo theory T is a set of variables X such that VX.¢ is satisfiable. For a given
cost function C € ¥V — N, a¢ maximum universal subset (MUS) is a universal
set X C free(¢) mazimizing C(X).



MUS’s and MSA’s are related by the following theorem:

Theorem 1. An MSA of formula ¢ for a given cost function C is precisely a
satisfying assignment of VX. ¢ for some MUS X.

Proof. By Proposition 1, a set X C free(¢) is a universal set exactly when there
is a partial satisfying assignment (M, o) for ¢ such dom(o) = free(¢) \ X, and
therefore C(o) = C(free(¢)) — C(X). It follows that X is maximum-cost exactly
when o is minimum-cost. O

The following corollary follows immediately from Theorem 1:

Corollary 1. Let 0 be an MSA for formula ¢, and let X be an MUS of ¢ for
cost function C. Then,

Clo)y=| Y. Cl|-CXx)

veEfree(¢)

Universal sets have some useful properties, derived from the properties of
universal quantifiers that will aid us in maximizing their cost. First, as stated by
Proposition 2, universal sets are downward-closed. Second, as stated by Propo-
sition 3, universal sets are closed under implications:

Proposition 2. Given a universal set X for formula ¢, every X' C X is also
a universal set of ¢.

Proposition 3. If X is a universal set for ¢ and ¢ implies 1, then X is a
universal set for 1.

3 A Branch-and-Bound Algorithm for Computing MSAs

To compute minimum satisfying assignments, we first focus on the problem of
finding maximum universal subsets. Since we cannot compute MUSs using a
greedy approach, we apply a recursive branch-and-bound algorithm for finding
maximum universal sets, shown in Figure 1. This algorithm relies on the down-
ward closure property of universal sets (Proposition 2) to bound the search.

The algorithm find mus of Figure 1 takes as input a formula ¢, a cost func-
tion C, a set of candidate variables V', and a lower bound L, and computes a
maximum-cost universal set for ¢ that is a subset of V| with cost greater than L.
If there is no such subset, it returns the empty set. The lower bound allows us
to cut off the search in cases where the best result thus far cannot be improved.

At each recursive call, the algorithm evaluates at line 1 whether the given
lower bound can be improved using the available candidate variables. If not, it
gives up and returns the empty set. Otherwise, if there are remaining candidates,
it chooses a variable x from the candidate set V' (line 3) and decides whether the
cost of the universal subset containing x is higher than the cost of the universal
subset not containing = (lines 4-10).

At lines 4 — 7, the algorithm determines the cost of the universal subset con-
taining x. Before adding z to the universally quantified subset, we test whether



Requires: ¢ is satisfiable

findmus(¢, C, V, L) {

1. If V=0 or C(V)<L return ) /* cannot improve bound */
2. Set best = 0

3. choose z €V

if (SAT(Vz.¢)) {

Set Y = findmus(Vz.¢p, C, V\{z}, L—-C(x));
Int cost = C(Y) + C(z)

If (cost > L) { best = YU{z}; L = cost }

}

8. Set Y = findmus(¢,C,V\{z},L);

9. If (C(Y)>L) { best =Y }

~N o O

10. return best;

Fig. 1: Algorithm to compute a maximum universal subset (MUS)

the result is still satisfiable. If not, we give up, since adding more universal
quantifiers cannot make the formula satisfiable (the downward closure property
of Proposition 2). The recursive call at line 5 computes the maximum universal
subset of Vz.¢, adjusting the cost bound and candidate variables as necessary.
Finally, we compute the cost of the universal subset involving x, and if it is
higher than the previous bound L, we set the new lower bound to cost.

Lines 8 — 9 consider the cost of the universal subset not containing x. The
recursive call at line 8 computes the maximum universal subset of ¢, but the
current variable z is removed from the candidate variable set. The algorithm
compares the costs of the universal subsets with and without z, and returns the
subset with the higher cost.

Finally, the algorithm in Figure 2 computes an MSA of ¢ by using find mus.
Here, we first test whether ¢ is satisfiable. If so, we compute a maximum universal
subset X for ¢, and return a satisfying assignment for V.X. ¢, as described in
Theorem 1. This algorithm potentially needs to explore an exponential number
of possible universal subsets. However, in practice, the recursion can often be cut
off at a shallow depth, either because a previous solution cannot be improved, or
because the formula Vz. ¢ becomes unsatisfiable, allowing us to avoid branching.
Of course, the effectiveness of these pruning strategies depend strongly on the
choice of the candidate variable at line 4 as well as the initial bound L on the cost
of the MUS. In the following sections, we will describe some heuristics for this
purpose that dramatically improve the performance of the algorithm in practice.

findmsa(¢, C) {

1. If ¢ is unsatisfiable, return °‘UNSAT’’
2. Set X = findmus(¢, C, free(¢), 0)

3. return a satisfying assignment for VX. ¢.
}

Fig.2: Algorithm to compute minimum satisfying partial assignment



4 Variable Order and Initial Cost Estimate

The performance of the algorithm described in Section 3 can be greatly improved
by computing a good initial lower bound L on the cost of the MUS, and by
choosing a good variable order. A good initial cost bound L should be as close
as possible to the actual MUS cost in order to maximize pruning opportunities
at line 1 of the algorithm from Figure 1. Furthermore, a good variable order
should first choose variables = for which Vz.¢ is unsatisfiable at line 4 of the
find mus algorithm, as this choice avoids branching early on and immediately
excludes large parts of the search space.

Thus, to improve the algorithm of Section 3, we need to compute a good
initial MUS cost estimate as well as a set of variables for which the test at line 4
is likely to be unsatisfiable. Observe that computing an initial MUS cost estimate
is equivalent to computing an MSA cost estimate, since these values are related
as stated by Corollary 1. Furthermore, observe that if « is not part of an MSA,
V. is guaranteed to be satisfiable and the check at line 4 of the algorithm will
never avoid branching. Thus, if we choose variables likely to be part of an MSA
first, there is a much greater chance we can avoid branching early on.

Therefore, our goal is to compute a partial satisfying assignment ¢ that is
a reasonable approximation for an MSA of the formula. That is, o should have
cost close to the minimum cost, and the variables that are part of ¢ should
largely overlap with variables part of an MSA. If we can compute such a partial
assignment ¢ in a reasonably cheap way, we can use it to both compute the
initial lower bound L on the cost of the MUS, and choose a good variable order
by considering variables part of o first.

4.1 Using Implicants to Approximate MSAs

One very simple heuristic to approximate MSAs is to greedily compute a minimal
satisfying assignment o for ¢, and use o to approximate both the cost and the
variables of an MSA. Unfortunately, as discussed in Section 1, minimal satisfying
assignments can be arbitrarily far from an MSA and, in practice, do not yield
good cost estimates or good variable orders (see Section 7).

In this section, we show how to exploit Proposition 3 to find partial satisfying
assignments that are good approximations of an MSA. Recall from Proposition 3
that, if ¢’ implies ¢ (is an implicant of ¢), then a universal set of ¢’ is also a
universal set of ¢. In other words, if ¢’ is an implicant of ¢, then a partial
satisfying assignment of ¢’ is also a partial satisfying assignment of ¢. Thus, if
we can compute an implicant of ¢ with a low-cost partial satisfying assignment,
we can use it to approximate both the cost as well as the variables of an MSA.

The question then is, how can we cheaply find implicants of ¢ with high-
cost universal sets (correspondingly, low-cost partial satisfying assignments)?
To do this, we adapt methods for computing “minimum prime implicants” of
propositional formulas [5,6], and consider implicants that are conjunctions of
literals. We define a T -satisfiable implicant as a conjunction of literals that
propositionally implies ¢ and is itself satisfiable modulo 7. We say a cube is a
conjunction of literals which does not contain any atom and its negation.



Definition 5. (7-satisfiable implicant) Let B, be a bijective function from
each atom in T -formula ¢ to a fresh propositional variable. We say that a cube
m is a T -satisfiable implicant of ¢ if (i) Bg(m) is a propositional implicant of
By (¢) and (ii) m is T -satisfiable.

Of course, for an implicant to be useful for improving our algorithm, it not
only needs to be satisfiable modulo theory 7, but also needs to have a low-cost
satisfying assignment. It would defeat our purpose, however, to optimize this
cost. Instead, we will simply use the cost of the free variables in the implicant
as a trivial upper bound on its MSA. Thus, we will search for implicants whose
free variables have low cost.

Definition 6. (Minimum 7 -satisfiable implicant) Given a cost function
C €V — N, a minimum T -satisfiable implicant of formula ¢ is a T -satisfiable
implicant © of ¢ minimizing C(free(r)).

Ezample 2. Consider the formula
(a+b>0V2e+d<10)A(a—b<5)

For this formula, a + b > 0Aa—b <5 and 2c+d < 10 Aa— b < 5 are both
T-satisfiable implicants. However, only a + b > 0 Aa — b < 5 is a minimum
T-satisfiable implicant (with cost 2).

To improve the algorithm from Section 3, what we would like to do is to
compute a minimum 7 -satisfiable implicant for formula ¢, and use the cost and
variables in this implicant as an approximation for those of an MSA of ¢. Unfor-
tunately, the problem of finding true minimum 7 -satisfiable implicants subsumes
the problem of finding minimum propositional prime implicants, which is already
XP-complete. For this reason, we will consider a subclass of T-satisfiable impli-
cants, called monotone implicants, whose variable cost can be optimized using
SMT techniques.

To define monotone implicants, we consider only quantifier-free formulas in
negation-normal form (NNF) meaning negation is applied only to atoms. If ¢ is
not originally in this form, we assume that quantifier elimination is applied and
the result is converted to NNF.

Definition 7. (Minimum 7 -satisfiable monotone implicant) Given a bi-
jective map By from literals of ¢ to fresh propositional variables, let ¢+ denote
¢ with every literal | in ¢ replaced by By(l). We say a cube 7 is a monotone
implicant of ¢ if 7T implies ¢t. A minimum T -satisfiable monotone implicant
of ¢ is a monotone implicant that is T -satisfiable and minimizes C(free(w)) with
respect to a cost function C.

To see how monotone implicants differ from implicants, consider the formula
¢ = pV —p. Clearly TRUE is an implicant of ¢. However, it is not a monotone
implicant. That is, suppose that B4 maps literals p and —p to fresh propositional
variables ¢ and r respectively, thus ¢+ = ¢ V r. This formula is not implied by
TRUE. In fact, the only monotone implicants are p and —p. In general, every
monotone implicant is an implicant, but not conversely.



4.2 Computing Minimum 7 -satisfiable Monotone Implicants

Our goal is to use minimum 7 -satisfiable monotone implicants to compute a con-
servative upper bound on MSA cost and guide variable selection order. In this
section, we describe a practical technique for computing minimum 7 -satisfiable
monotone implicants. Our algorithm is inspired by the technique of [5] and for-
mulates this problem as an optimization problem.

The first step in our algorithm is to construct a boolean abstraction ¢ of ¢ as
described in Definition 7. Observe that this boolean abstraction is different from
the standard boolean skeleton of ¢ in that two atoms A and —A are replaced
with different boolean variables. We note that a satisfying assignment for ¢
corresponds to a monotone implicant of ¢, provided it is consistent, meaning
that it does not assign true to both A and —A for some atom A.

After we construct the boolean abstraction ¢1, we add additional constraints
to ensure that any propositional assignment to ¢ is T-satisfiable. Let £ be the
set of literals occurring in ¢. We add a constraint ¥ encoding theory-consistency
of the implicant as follows:

=N\ (Bs(l) =1)

leL

Note that in particular, this constraint guarantees that any satisfying assignment
is consistent. Moreover, it guarantees that the satisfying assignments modulo 7
correspond to precisely the T -satisfiable monotone implicants.

Finally, we construct a constraint {2 to encode the cost of the monotone
implicant. To do this, we first introduce a fresh cost variable ¢, for each variable
x in the original formula ¢. Intuitively, ¢, will be set to the cost of x if any literal
containing z is assigned to true, and to 0 otherwise. We construct {2 as follows:

2= N\ (Bs(l) = N\ e =C) AN\ (e >0)

leL zefree(l) zefree(s)

The first conjunct of this formula states that if the boolean variable repre-
senting literal [ is assigned to true, then the cost variable ¢, for each variable
in [ is assigned to the actual cost of x. The second conjunct states that all cost
variables must have a non-negative value.

Finally, to compute a minimum 7 -satisfiable monotone implicant, we solve
the following optimization problem:

Minimize: Y, ¢ subject to (¢ AW A ()

This optimization problem can be solved, for example, using the binary search
technique of [7], and the minimum value of the cost function yields the cost
of the minimum 7 -satisfiable monotone implicant. Similarly, the minimum 7 -
satisfiable monotone implicant can be obtained from an assignment to (¢ AW A
£2) minimizing the value of the cost function.



5 Using Implicates to Identify Non-Universal Sets

Another useful optimization to the algorithm of Section 3 can be obtained by
applying the contrapositive of Proposition 3. That is, suppose that we can find
a formula ¢ that is implied by ¢ (that is, an implicate of ¢). If Y is not a
universal set for ¥ then it cannot be a universal set for ¢. This fact can allow
us to avoid the satisfiability test in line 4 of Algorithm find_mus, since as soon
as our proposed universal subset X contains Y, we know that VX. ¢ must be
unsatisfiable. To use this idea, we need a cheap way to find implicates of ¢ that
have small non-universal sets.

To make this problem easier, we will consider only theories 7 that are com-
plete. This means that all the models of T are elementarily equivalent, that is,
they satisfy the same set of first-order sentences. Another way to say this is that
T entails every sentence or its negation. An example of a complete theory is
Presburger arithmetic, with signature {0, 1, 4+, <}. Given completeness, we have
the following proposition:

Proposition 4. Given a complete theory T, and formula 1, if =) is satisfiable
modulo T, then Viree(v). v is unsatisfiable modulo T .

Proof. Let V be the set of free variables in 1. Since —) is satisfiable modulo T,
there is a model M of T such that M = 3V.—). Since T is complete, it follows
that IV.—1) is true in all models of T, hence VV. ¢ is unsatisfiable modulo 7. O

This means that if we can find an implicate 1 of ¢, such that —) is satisfiable,
then we can rule out any candidate universal subset for ¢ that contains the free
variables of ¢. To find such non-trivial implicates, we will search for formulas
of the form ¢ = i)y = 15, where ¥; and ¥ are built from sub-formulas of ¢.
The advantage of considering this special class of implicates is that they can be
easily derived from the boolean structure of the formula.

Specifically, to derive these implicates, we first convert ¢ to NNF and compute
a so-called trigger II for each subformula of ¢. Triggers of each subformula are
defined recursively as follows:

1. For the top-level formula ¢, IT(¢p) = true.
2. For a subformula ¢’ = ¢1 A ¢o, I (¢1) = II(¢'), and I (¢2) = II(¢).
3. For a subformula ¢’ = ¢1 V ¢, I (Pp1) = II(¢) A =2, and

II(¢2) = I1(¢') A —~¢1.

Ezample 3. Consider the formula x # 0V (x +y < 5A z = 3). Here, the triggers
for each literal are as follows:

x4y <5)=-(x#£0)
II(z =3) =-(z #0)
II(x #0) =-(r+y<bAz=3)



It is easy to see that if [ is a literal in formula ¢ with trigger I7(l), then ¢
implies IT(l) = I. Thus, II(l) = [ is always a valid implicate of ¢. However, it
is not the necessarily the case that —~(I1(l) = [) is satisfiable. To make sure we
only obtain implicates where —(II(l) = [) is satisfiable, we first convert ¢ to a
simplified form defined in [8]. This representation guarantees that for any trigger
II(1) of I, ~(II1(I) = 1) is satisfiable. Thus, once a formula ¢ has been converted
to simplified form, implicates with satisfiable negations can be read off directly
from the boolean structure of the formula without requiring satisfiability checks.

If¢p = II(I) = [ is an implicate obtained as described above, we know that no
universal subset for ¢ contains free(t). Thus, when the last variable in free(v))
is universally quantified, we can backtrack without checking satisfiability.

6 Implementation

We have implemented the techniques described in this paper in our Mistral
SMT solver available at www.cs.wm.edu/ tdillig/mistral.tar.gz. Mistral
solves constraints in the combined theories of linear integer arithmetic, theory
of equality with uninterpreted functions, and propositional logic. Mistral solves
linear inequalities over integers using the Cuts-from-Proofs algorithm described
in [9], and uses the MiniSAT solver as its SAT solving engine [10].

While the algorithm described in this paper applies to all theories that ad-
mit quantifier elimination, our implementation focuses on computing minimum
satisfying assignments in Presburger arithmetic (linear arithmetic over integers).
To decide satisfiability of quantified formulas in linear integer arithmetic, we use
Cooper’s technique for quantifier elimination [11]. However, since we expect a
significant portion of the universally quantified formulas constructed by the al-
gorithm to be unsatisfiable, we perform a simple optimization designed to detect
unsatisfiable formulas: In particular, before we apply Cooper’s method, we first
instantiate universally quantified variables with a few concrete values. If any
of these instantiated formulas are unsatisfiable, we know that the universally
quantified formula must be unsatisfiable.

The algorithm presented in this paper performs satisfiability checks on many
similar formulas. Since many of these formulas are comprised of the same set of
atoms, the SMT solver typically relearns the same theory conflict clauses many
times. Thus, to take advantage of the similarity of satisfiability queries, we reuse
theory conflict clauses across different satisfiability checks whenever possible.

For computing minimum 7 -satisfiable implicants, we have implemented the
technique described in Section 4, and used the binary search technique described
in [7] for optimizing the cost function. However, since finding the actual mini-
mum monotone implicant can be expensive (see Section 7.1), our implementation
allows terminating the search for an optimal value after a fixed number of steps.
In practice, this results in implicants that are not in fact minimum, but “close
enough” to the minimum. This approach is sound because the underlying opti-
mization procedure hill climbs from an initial solution towards an optimal one,
and the solution at any step of the optimization procedure can be used as a
bound on the cost of a minimum 7 -satisfiable implicant.
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7 Experimental Results

To evaluate the performance of the algorithm proposed in this paper, we com-
puted minimum satisfying assignments for approximately 400 constraints gen-
erated by the program analysis tool Compass [12,13]. In this application, min-
imum satisfying assignments are used to compute small, relevant queries that
help users diagnose error reports as real bugs or false alarms [12]. In this setting,
the number of variables in the satisfying partial assignment greatly affects the
quality of queries presented to users. As a result, the time programmers take
to diagnose potential errors depends greatly on the number of variables used in
the satisfying assignment; thus, computing true minimum-cost assignments is
crucial in this setting. The benchmarks we used for our evaluation are available
from www.cs.wm.edu/ tdillig/msa-benchmarks.tar.gz.

We chose to evaluate the proposed algorithm on the constraints generated
by Compass rather than the standard SMTLIB benchmarks for two reasons:
First, unlike the constraints we used, SMTLIB benchmarks are not taken from
applications that require computing minimum satisfying assignments. Second,
the large of majority of benchmarks in the QF_LIA category of the SMTLIB
benchmarks contain uninteresting MSAs (containing all or almost all variables
in the original formula), making them inappropriate for evaluating an algorithm
for computing MSAs.

The constraints we used in our experimental evaluation range in size from a
few to several hundred boolean connectives, with up to approximately 40 vari-
ables. In our evaluation, we measured the performance of all four versions of
the algorithm. The first version, indicated with red in Figures 3 and 4, corre-
sponds to the basic branch-and-bound algorithm described in Section 3. The
second version, indicated with green on the graphs, uses the minimum impli-
cant optimization of Section 4. However, as mentioned earlier, since computing
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the true minimum implicant can be expensive (see Section 7.1), we only use an
approximate solution to the resulting optimization problem. The third version
of the algorithm is indicated with blue lines and corresponds to the basic algo-
rithm from Section 3 augmented with the technique of Section 5 for identifying
non-universal sets. Finally, the last version of the algorithm using both of the
optimizations of Sections 4 and 5 is indicated in the graphs with pink lines.

Figure 3 plots the number of variables in the original formula against running
time in seconds for all four versions of the algorithm. As this figure shows,
the performance of the basic algorithm is highly sensitive to the number of
variables in the original formula and does not seem to be practical for formulas
containing more than ~ 18 variables. Fortunately, the improvements described in
Sections 4 and 5 have a dramatic positive impact on performance. As is evident
from a comparison of the blue, green, and pink lines, the two optimizations
of Section 4 and Section 5 complement each other, and we obtain the most
performant version of the algorithm by combining both of these optimizations.
In fact, the cost of the algorithm using both optimizations seems to grow slowly
in the number of variables, indicating that the algorithm should perform well in
many settings. However, even using both optimizations, computing MSAs is still
much more computationally expensive than deciding satisfiability. On average,
computing MSAs is about 25 times as expensive as computing satisfiability on
our benchmarks.

Figure 4 plots the fraction

_ #tof variables in MSA
X= #of variables in formula

against running time in seconds. As this figure shows, if x is very small (i.e.,
the MSA is small compared to the number of variables in the formula), the
problem of computing minimum satisfying assignments is easy, particularly for
the versions of the algorithm using the minimum implicant optimization. Dually,
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as y gets close to 1 (i.e., MSA contains almost all variables in the formula, thus
few variables can be universally quantified), the problem of computing minimum
satisfying assignments again becomes easier. As is evident from the shape of all
four graphs in Figure 4, the problem seems to be the hardest for those constraints
where x is approximately 0.6. Furthermore, observe that for constraints with
X < 0.6, the minimum implicant optimization is much more important than the
optimization of Section 5. In contrast, the non-universal sets optimization seems
to become more important as x exceeds the value 0.7. Finally, observe that
the fully optimized version of the algorithm often performs at least an order of
magnitude better than the basic algorithm; at x = 0.6, the optimized algorithm
takes an average of 2.7 seconds, while the basic algorithm takes 28.2 seconds.

Figure 5 explores why we observe a bell-shaped curve in Figure 4. Figure 5(a)
plots the value x against the percentage of all search paths pruned because the
current best cost estimate cannot be improved. As this figure shows, the smaller
X i8, the more paths can be pruned due to the bound and the more important it
is to have a good initial estimate. This observation explains why the minimum
implicant optimization is especially important for small values of x.

In contrast, Figure 5(b) plots the value of x against the percentage of paths
pruned due to the formula ¢ becoming unsatisfiable (i.e., due to Proposition 2).
This graph shows that, as the value of x increases, and thus the MUS’s become
smaller, more paths are pruned in this way. This observation explains why all
versions of the algorithm from Figure 4 perform much better as x increases.

7.1 Other Strategies to Obtain Bound and Variable Order
In earlier sections, we made the following claims:

1. Computing true minimum-cost implicants is too expensive, but we can ob-
tain a very good approximation to the minimum implicant by terminating
the optimizer after a small number of steps

2. Minimal satisfying assignments are not useful for obtaining a good cost
estimate and variable order
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In this section, we give empirical data to justify both of these claims.

Figure 6 compares the performance of the algorithm using different strategies
to obtain a cost estimate and variable order. As before, the z-axis plots the
value of x and the y-axis is running time in seconds. The red line in this figure
shows the total running time of the MSA algorithm using the true minimum-
cost monotone implicant. In contrast, the green line shows the total running
time of the algorithm using an approximation of the minimum-cost monotone
implicant, obtained by terminating the search for the optimum value after a
fixed small number of steps. As is evident from this figure, the performance of
the algorithm using the true-cost minimum implicant is much worse than the
approximately-minimum implicant. This observation is explained by considering
the pink line in Figure 6, which plots the time for computing the true minimum-
cost monotone implicant. As can be seen by comparing the red and pink lines, the
time to compute the true minimum implicant completely dominates the time for
the total MSA computation. In contrast, the time to compute the approximate
minimum implicant (shown in blue) is negligible, but it is nearly as effective for
improving the running time of the MSA algorithm.

We now consider the performance of the algorithm (shown in orange in Fig-
ure 6) when we use a minimal satisfying assignment to bound the initial cost
estimate and choose a variable order. The brown line in the figure shows the
time to compute a minimal satisfying assignment. As is clear from Figure 6,
the overhead of computing a minimal satisfying assignment is very low, but
the performance of the MSA computation algorithm using minimal satisfying
assignments is very poor. One explanation for this is that minimal satisfying
assignments do not seem to be very good approximations for true MSAs. For
instance, on average, the cost of a minimal satisfying assignment is 30.6% greater
than the cost of an MSA, while the cost of the approximately minimum mono-
tone implicant is only 7.7% greater than the MSA cost. Thus, using minimal
satisfying assignments to bound cost and choose a variable order does not seem
to be a very good heuristic.



8 Related Work

The problem of computing minimum satisfying assignments in propositional
logic is addressed in [5,14, 6]. All of these approaches formulate the problem of
computing implicants as integer linear programming and solve an optimization
problem to find a satisfying assignment. Our technique for computing minimum
T -satisfiable monotone implicants as described in Section 4 is similar to these ap-
proaches. However, we are not aware of any algorithms for computing minimum
satisfying assignments in theories richer than propositional logic.

Minimum satisfying assignments have important applications in program
analysis and verification. One application of minimum satisfying assignments
is finding concise explanations for potential program errors. For instance, recent
work [4] uses minimum satisfying assignments for automating error classification
and diagnosis using abductive inference. In this context, minimum satisfying as-
signments are used for computing small, intuitive queries that are sufficient for
validating or discharging potential errors. Similarly, the work described in [1]
uses minimal satisfying assignments to make model checking tools more under-
standable to users. In this context, minimal satisfying assignments are used to
derive small, reduced counterexample traces that are easily understandable.

Another important application of minimum satisfying assignments in verifica-
tion is abstraction refinement. One can think of minimum satisfying assignments
in this context as an application of Occam’s razor: the simplest explanation of
satisfiability is the best; thus, minimum satisfying assignments can be used as a
guide to choose the most relevant refinements. For instance, the work of Amla
and McMillan [15] uses an approximation of minimal satisfying assignments, re-
ferred to as justifications, for abstraction refinement in SAT-based model check-
ing. Similarly, the work presented in [3] uses minimal satisfying assignments
for obtaining a small set of predicates used in the abstraction. However, the
results presented in [3] indicate that using minimum rather than minimal satis-
fying assignments might be more beneficial in this context. In fact, the authors
themselves remark on the following: “Another major drawback of the greedy
approach is its unpredictability ... Clearly, the order in which this strategy tries
to eliminate predicates in each iteration is very critical to its success.”

9 Conclusion

In this paper, we have considered the problem of computing minimum satisfying
assignments for SMT formulas, which has important applications in software
verification. We have shown that MSAs can be computed with reasonable cost
in practice using a branch-and-bound approach, at least for a set of benchmarks
obtained from software verification problems. We have shown that the search
can be usefully bounded by computing implicants with upper-bounded MSAs
and implicates with upper-bounded MUS’s, provided the cost of obtaining these
is low. While our optimizations seem effective, we anticipate that significant
improvements are possible, both in the basic algorithm and the optimizations.



Expanding the approach to richer theories is also an interesting research
direction. The problem of finding MSA modulo 7T is decidable when the satisfi-
ability modulo 7 is decidable in the universally quantified fragment of the logic.
This is true for a number of useful theories, including Presburger and bitvector
arithmetic. While our approach does not apply to theories that include uninter-
preted functions, arrays or lists, this problem may be solved or approximated in
practice. In this case, it could be that the notion of partial assignment must be
refined, so that the cost metric can take into account the complexity of valuations
of structured objects such as arrays and lists.

In summary, we believe that the problem of finding MSAs modulo theories
will have numerous applications and is a promising avenue for future research.
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