
Cartesian Hoare Logic for Verifying k-Safety Properties ∗

Marcelo Sousa
University of Oxford, UK
marcelo.sousa@cs.ox.ac.uk

Isil Dillig
The University of Texas at Austin, USA

isil@cs.utexas.edu

Abstract
Unlike safety properties which require the absence of a “bad"
program trace, k-safety properties stipulate the absence of
a “bad" interaction between k traces. Examples of k-safety
properties include transitivity, associativity, anti-symmetry,
and monotonicity. This paper presents a sound and relatively
complete calculus, called Cartesian Hoare Logic (CHL), for
verifying k-safety properties. Our program logic is designed
with automation and scalability in mind, allowing us to
formulate a verification algorithm that automates reasoning
in CHL. We have implemented our verification algorithm in a
fully automated tool called DESCARTES, which can be used
to analyze any k-safety property of Java programs. We have
used DESCARTES to analyze user-defined relational operators
and demonstrate that DESCARTES is effective at verifying (or
finding violations of) multiple k-safety properties.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

Keywords Relational hoare logic; safety hyper-properties;
product programs; automated verification

1. Introduction
Following the success of Hoare logic as a formal system
to verify program correctness, many tools can prove safety
properties expressed as pre- and post-conditions. That is,
given a Hoare triple {Φ} S {Ψ}, program verifiers establish
that terminating executions of S on inputs satisfying Φ

∗ This work was supported in part by NSF Award #1453386 and AFRL
Awards # 8750-14-2-0270 and 8750-15-2-0096.

produce outputs consistent with Ψ. Hence, a valid Hoare
triple states which input-output pairs are feasible in a single,
but arbitrary, execution of S.

However, some important functional correctness proper-
ties require reasoning about the relationship between multiple
program executions. As a simple example, consider deter-
minism, which requires ∀x, y. x = y ⇒ f(x) = f(y). This
property is not a standard safety property because it cannot
be violated by any individual execution trace. Instead, de-
terminism is a so-called 2-safety hyperproperty [10] since
we need two execution traces to establish its violation. In
general, a k-safety (hyper-)property requires reasoning about
relationships between k different execution traces.

Even though there has been some work on verifying 2-
safety properties in the context of secure information flow [1,
3, 23] and security protocols of probabilistic systems [2, 4],
we are not aware of any general-purpose program logics that
allow verifying k-safety properties for arbitrary values of k.
Furthermore, even for k = 2, existing tools do not support a
high degree of automation.

This paper argues that many important functional correct-
ness properties are k-safety properties for k ≥ 2, and we
present Cartesian Hoare Logic (CHL) for verifying general
k-safety specifications. 1 Our new program logic for k-safety
is sound, relatively complete, and has been designed to be
easy to automate: We have built a verification tool called
DESCARTES that fully automates reasoning in CHL and suc-
cessfully used it to analyze k-safety requirements of user-
defined relational operators in Java programs.

Motivating Example. To motivate the need for verifying
k-safety properties, consider the widely used Comparator
interface in Java. By implementing the compare method
of this interface, programmers can define an ordering be-
tween objects of a given type. Unfortunately, writing a correct
compare method is notoriously hard, as any valid compara-
tor must satisfy three different k-safety properties:

• P1: ∀x, y. sgn(compare(x, y)) = −sgn(compare(y, x))

• P2: ∀x, y, z. (compare(x, y) > 0 ∧ compare(y, z) >
0)⇒ compare(x, z) > 0

1 We call our calculus Cartesian Hoare Logic because it allows reasoning
about the cartesian product of sets of input-output pairs from different runs.

• P3: ∀x, y, z. (compare(x, y) = 0 ⇒
(sgn(compare(x, z)) = sgn(compare(y, z))))

Among these properties, P1 is a 2-safety property, while
P2 and P3 are 3-safety properties. For instance, property P2
corresponds to transitivity, which can only be violated by a
collection of three different runs of compare: Specifically,
two runs where compare(a,b) and compare(b,c)
both return positive values, and a third run compare(a,c)
that returns zero or a negative value.

To demonstrate that implementing comparators can be
hard, consider the compare method shown in Figure 1,
which is taken verbatim from a Stackoverflow post. This
method is used for sorting poker hands according to their
strength and represents hands as strings of 13 characters.
In particular, the occurrence of number n at position k of
the string indicates that the hand contains n cards of type k.
Unfortunately, this method has a logical error when one of the
hands is a full house and the other one has 3 cards of a kind; it
therefore ends up violating properties P2 and P3. As a result,
programs using this comparator either suffer from run-time
exceptions or lose elements inserted into collections.

Cartesian Hoare Logic. As illustrated by this example, an-
alyzing k-safety properties is extremely relevant for ensuring
software correctness; yet there are no general purpose auto-
mated tools for analyzing k-safety properties. This paper aims
to rectify this situation by proposing a general framework for
specifying and verifying general k-safety properties.

In our approach, k-safety properties are specified using
Cartesian Hoare triples of the form ‖Φ‖ S ‖Ψ‖, where Φ
and Ψ are first-order formulas that relate k different program
runs. For instance, we can express property P2 from above
using the following Cartesian Hoare triple:

‖y1 = x2 ∧ x1 = x3 ∧ y2 = y3‖
compare(x, y){...}

‖ret1 > 0 ∧ ret2 > 0⇒ ret3 > 0‖

Here, a variable named vi refers to the value of program
variable v in the i’th program execution. Hence, the pre-
condition Φ states that we are only interested in triples of
executions (π1, π2, π3) where (i) the value of y in π1 is equal
to the value of x in π2, (ii) the values of x in π1 and π3 are
the same, and (iii) the values of y are the same in π2 and π3.
The postcondition Ψ says that, if compare returns a positive
value in both π1 and π2, then it should also be positive in π3.

To verify such Cartesian Hoare triples, our new program
logic reasons about the Cartesian product of sets of input-
output pairs from k program runs. Specifically, if Σ represents
the set of all input-output pairs of code S, then the judgment
` ‖Φ‖ S ‖Ψ‖ is derivable in our calculus iff every k-tuple in
Σk that satisfies Φ also satisfies Ψ.

The key idea underlying our approach is to reduce the
verification of a Cartesian Hoare triple to a standard Hoare
triple that can be easily verified. Specifically, our calculus de-
rives judgments of the form 〈Φ〉 (S1 ~ . . .~ Sk) 〈Ψ〉 where

Statement S := A | S;S | S ⊕c S |
[(c1, S1, S

′
1), . . . , (cn, Sn, S

′
n)]∗

Atom A := [| x := e | x[e] := e |
√
c

Expr e := int | x | x[e] | e opa e
Cond c := > | ⊥ | ? | e opl e | ¬c | c ∧ c | c ∨ c

Figure 2. Language for formalization. opa, opl denote arithmetic
and logical operators, and ? represents non-deterministic choice.

S1 ~ . . . ~ Sk represents a set of programs that simulta-
neously execute S1, . . . , Sk. While every pair of programs
P, P ′ ∈ (S1 ~ . . . ~ Sk) are semantically equivalent, our
calculus exploits the fact that some of these programs are
much easier to verify than others. Furthermore, and perhaps
more crucially, our approach does not explicitly construct the
set of programs in (S1~ . . .~Sk) but reasons directly about
the provability of Ψ on tuples of runs that satisfy Φ.

Contributions. To summarize, this paper makes the follow-
ing key contributions:

• We argue that many natural functional correctness prop-
erties are k-safety properties, and we propose Cartesian
Hoare triples for specifying them (Section 3).
• We present a sound and complete proof system called

Cartesian Hoare Logic (CHL) for proving valid Cartesian
Hoare triples (Section 4).
• We describe a practical algorithm based on CHL for

automatically proving k-safety properties (Section 5).
• We use our techniques to analyze user-defined relational

operators in Java and show that our tool can successfully
verify (or find bugs in) such methods (Section 7).

2. Language and Preliminaries
Figure 2 presents a simple imperative language that we use
for formalizing Cartesian Hoare Logic. In this language,
atomic statements A include skip (denoted as [), assignments
(x := e), array writes x[e] := e, and assume statements
written as

√
c. Statements also include composition S;S and

conditionals S1 ⊕c S2, which execute S1 if c evaluates to
true and S2 otherwise. In our language, loops have the syntax
[(c1, S1, S

′
1), . . . , (cn, Sn, S

′
n)]∗ which is short-hand for the

more convential loop construct:

while(true) {
if(c_1) then S_1 else { S_1’; break; }
...
if(c_n) then S_n else { S_n’; break; }

}

In this paper, we choose to formalize loops with breaks
rather than the simpler loop construct while(c) do S (i.e.,
[(c, S, [)]∗) because break statements are ubiquitous in real
programs and present a challenge for verifying k-safety.

We assume an operational semantics that is specified using
judgments of the form σ, e ⇓ int and σ, S ⇓ σ′, where e is a

public int compare(String c1, String c2) {
if (c1.indexOf(’4’) != -1 || c2.indexOf(’4’) != -1) { // Four of a kind

if (c1.indexOf(’4’) == c2.indexOf(’4’)) {
for (int i = 12; i >= 0; i--) {

if (c1.charAt(i) != ’0’ && c1.charAt(i) != ’4’) {
if (c2.charAt(i) != ’0’ && c2.charAt(i) != ’4’) return 0;
return 1; }

if (c2.charAt(i) != ’0’ && c2.charAt(i) != ’4’) return -1; } }
return c1.indexOf(’4’) - c2.indexOf(’4’); }

int tripleCount1 = StringFunctions.countOccurrencesOf(c1, "3");
int tripleCount2 = StringFunctions.countOccurrencesOf(c2, "3");
if (tripleCount1 > 1 || (tripleCount1 == 1 && c1.indexOf(’2’) != -1) ||

tripleCount2 > 1 || (tripleCount2 == 1 && c2.indexOf(’2’) != -1)) { // Full house
int higherTriple = c1.lastIndexOf(’3’);
if (higherTriple == c2.lastIndexOf(’3’)) {

for (int i = 12; i >= 0; i--) {
if (i == higherTriple) continue;
if (c1.charAt(i) == ’2’ || c1.charAt(i) == ’3’) {

if (c2.charAt(i) == ’2’ || c2.charAt(i) == ’3’) return 0;
return 1; }

if (c2.charAt(i) == ’2’ || c2.charAt(i) == ’3’) return -1; } }
return higherTriple - c2.lastIndexOf(’3’); }

return 0; }

Figure 1. A (buggy) comparator for sorting poker hands

Cartesian Hoare Triple Valid?
‖x1 = y2 ∧ x2 = y1‖ z := x− y ‖z1 = z2‖ 7

‖x1 = y2 ∧ x2 = y1‖ z := x− y ‖z1 = −z2‖ 3

‖x1 = x2 ∧ y1 = y2‖ z := 1⊕x>y z := 0 ‖z1 = z2‖ 3

‖x1 = x2 ∧ y1 = y2‖ z := 1⊕? z := 0 ‖z1 = z2‖ 7

‖x1 = x2‖ [(true, x := x+ 1, [)]∗ ‖x1 6= x2‖ 3

‖x1 = x2‖ [(x < 10, x := x+ 1, [)]∗ ‖x1 6= x2‖ 7

Figure 4. Example Cartesian Hoare triples

program expression, S is a statement, and σ, σ′ are valuations
(stores) mapping program variables to their values. Since the
operational semantics of this language is standard, we refer
the interested reader to the extended version of the paper.

Definition 1. (Entailment) Let σ be a valuation and ϕ a
formula. We write σ |= ϕ iff σ, ϕ ⇓ true.

Definition 2. (Semantic Equivalence) Two statements S1

and S2 are semantically equivalent, written S1 ≡ S2, if for
all valuations σ, we have σ, S1 ⇓ σ′ iff σ, S2 ⇓ σ′.

3. Validity of Cartesian Hoare Triples
We now introduce Cartesian Hoare triples and provide use
cases from real-world programming idioms to motivate the
relevance and general applicability of k-safety properties.

Definition 3. (Hoare Triple) Given statement S, a Hoare
triple {Φ} S {Ψ} is valid if for all pairs of valuations (σ, σ′)
satisfying σ |= Φ and σ, S ⇓ σ′, we have σ′ |= Ψ.

Cartesian Hoare triples generalize standard Hoare triples
by allowing us to relate different program executions:

Definition 4. (Cartesian Hoare Triple) Let S be a state-
ment over variables ~x, and let Φ,Ψ be formulas over
variables ~x1, . . . , ~xk. Then, the Cartesian Hoare triple

‖Φ‖ S ‖Ψ‖ is valid, written |= ‖Φ‖ S ‖Ψ‖, if for every
set of valuation pairs {(σ1, σ′1), . . . , (σk, σ

′
k)} satisfying(⊎

1≤i≤k

σi[~xi/~x]
)
|= Φ and ∀i ∈ [1, k]. σi, S ⇓ σ′i

we also have:
(⊎
1≤i≤k

σ′i[~xi/~x]
)
|= Ψ

Intuitively, the validity of ‖Φ‖ S ‖Ψ‖ means that, if we
run S on k inputs whose relationship is given by Φ, then the
resulting outputs must respect Ψ. Hence, unlike a standard
Hoare triple for which a counterexample consists of a single
execution, a counterexample for a Cartesian Hoare triple
includes k different executions. In the rest of the paper, we
refer to the value k as the arity of the Cartesian Hoare triple.

Example 1. Figure 3 shows some familiar properties and
their corresponding specification. Among these Cartesian
Hoare triples, transitivity and homomorphism correspond to
3-safety properties, and associativity is a 4-safety property.
The remaining Cartesian Hoare triples, such as monotocity,
injectivity, and idempotence, have arity 2.

Example 2. Figure 4 shows some Cartesian Hoare triples
and indicates whether they are valid. For instance, consider
the first two rows of Figure 4. For both examples, the precon-
dition tells us to consider a pair of executions π1, π2 where
the values of x and y are swapped (i.e., the value of x in π1
is the value of y in π2 and vice versa). Since the statement of
interest is z := x− y, the value of z in π1 will be the additive
inverse of the value of z in π2. Hence, the second Cartesian
Hoare triple is valid, but the first one is not.

3.1 Realistic Use Cases for Cartesian Hoare Triples
We now highlight some scenarios where k-safety properties
are relevant in modern programming. Since it is well-known
that security properties such as non-interference are 2-safety
properties [3, 23], we do not include them in this discussion.

Property Specification
Monotonicity ‖x2 ≤ x1‖ f(x) ‖ret2 ≤ ret1‖
Determinism ‖~x1 = ~x2‖ f(~x) ‖ret1 = ret2‖

Injectivity ‖~x1 6= ~x2‖ f(~x) ‖ret1 6= ret2‖
Symmetric relation ‖x1 = y2 ∧ y1 = x2‖ R(x, y) ‖ret1 = ret2‖

Anti-symmetric relation ‖x1 = y2 ∧ y1 = x2 ∧ x1 6= y1‖ R(x, y) ‖ret1 = false ∨ ret2 = false‖
Asymmetric relation ‖x1 = y2 ∧ y1 = x2‖ R(x, y) ‖ret1 = true⇒ ret2 = false‖
Transitive relation ‖y1 = x2 ∧ x1 = x3 ∧ y2 = y3‖ R(x, y) ‖(ret1 = true ∧ ret2 = true)⇒ ret3 = true‖

Total relation ‖x1 = y2 ∧ y1 = x2‖ R(x, y) ‖ret1 = true ∨ ret2 = true‖
Associativity ‖y1 = x2 ∧ y2 = y3 ∧ x1 = x4‖ f(x, y) ‖(x3 = ret1 ∧ y4 = ret2)⇒ ret3 = ret4‖

Homomorphism ‖x3 = x1 · x2‖ f(x) ‖ret3 = ret1 · ret2‖
Idempotence ‖true‖ f(x) ‖ret1 = x2 ⇒ ret1 = ret2‖

Figure 3. Example k-safety properties and their specification

Equality. A ubiquitious programming practice is to imple-
ment a custom equality operator for a given type, for ex-
ample, by overriding the equals method in Java. A key
property of equals is that it must be an equivalence relation
(i.e., reflexive, symmetric, and transitive). While reflexivity
can be expressed as a standard Hoare triple, symmetry and
transitivity are 2 and 3-safety properties respectively. Fur-
thermore, equals must satisfy another 2-safety property
called consistency, which requires multiple invocations of
x.equals(y) to consistently return true or false.
Comparators. Another common programming pattern in-
volves writing a custom ordering operator, for example
by implementing the Comparator interface in Java or
operator<= in C++. Such comparators are required to de-
fine a total order – i.e., they must be reflexive, anti-symmetric,
transitive, and total. Programming errors in comparators are
quite common and can have a variety of serious consequences.
For instance, such bugs can cause collections to unexpectedly
lose elements or not be properly sorted.
Map/Reduce. Map-reduce is a widely-used paradigm for writ-
ing parallel code [13, 24]. Here, the user-defined reduce
function must be associative and stateless. Furthermore, if
reduce is commutative and associative, then it can be used
as a combiner, a “mini-reducer" that can be executed be-
tween the map and reduce phases to optimize bandwidth.
In concurrent data structures that support reduce operations
(e.g., the Java ConcurrentHashMap), the user-defined
function must also be commutative and associative.

4. Cartesian Hoare Logic
We now present our program logic (CHL) for verifying
Cartesian Hoare triples. The key idea underlying CHL is
to verify ‖Φ‖ S ‖Ψ‖ by proving judgements of the form
〈Φ〉 (S1 ~ . . .~ Sk) 〈Ψ〉 where each Si corresponds to a
different execution of S. Here, the notation S1 ~ . . . ~ Sk

represents the set of all programs that are semantically
equivalent to simultaneously running S1, . . . , Sk. However,
rather than explicitly constructing this set –or even any

program in this set– we only reason about the provability of Ψ
on sets of runs that jointly satisfy Φ. Hence, unlike previous
approaches for proving equivalence or non-interference [3, 5,
26], our technique does not construct a product program that
is subsequently fed to an off-the-shelf verifier. Instead, we
combine the verification task with the construction of only
the relevant parts of the product program.

To motivate the advantages of our approach over explicit
product construction, consider the following specification:

‖x1 > 0 ∧ x2 ≤ 0‖ S1 ⊕x>0 S2 ‖y1 = −y2‖

where S1 and S2 are very large code fragments. Now, let Sij

represent Sj [~xi/~x] , and let Sij,kl be a program that executes
Sij and Skl in lockstep. One way to verify our Cartesian
Hoare triple is to construct the following product program
and feed it to an off-the-shelf verifier:

P : (S11,21 ⊕x2>0 S11,22)⊕x1>0 (S12,21 ⊕x2>0 S12,22)

However, this strategy is quite suboptimal: Since the pre-
condition is x1 > 0 ∧ x2 ≤ 0, we are only interested in a
small subset of P , which only includes S11,22. In contrast,
by combining semantic reasoning with construction of the
relevant Hoare triples, our approach can avoid constructing
and reasoning about redundant parts of the product program.

4.1 Core Cartesian Hoare Logic
With this intuition in mind, we now explain the core subset of
Cartesian Hoare Logic shown in Figure 5. Since our calculus
derives judgments of the form 〈Φ〉 S1 ~ . . .~ Sn 〈Ψ〉, we
first start by defining the product space of two programs S1

and S2, which we denote as S1 ~ S2:

Definition 5. (Product space) Let S1 and S2 be two state-
ments such that vars(S1) ∩ vars(S2) = ∅. Then,

JS1 ~ S2K =

{
S
∣∣∣ ∀σ1, σ2, σ

′
1, σ
′
2.

(σ1, S1 ⇓ σ′1 ∧ σ2, S2 ⇓ σ′2)
⇔ (σ1] σ2, S ⇓ σ′1] σ′2)

}
Intuitively, S1 ~ S2 represents the set of programs that

are semantically equivalent to the simultaneous execution

of S1 and S2. We generalize this notion of product space
to arbitrary values of k and consider product terms χ of the
form S1 ~ . . .~ Sk where:

JSK = {S}
JS ~ χK = JS ~ S′K where S′ ∈ JχK

Since we want to reason about different runs of the same
program, we also define the self-product space as follows:

Definition 6. (Self product space)

�S1 ≡ S[~x1/~x]
�Sn ≡ (�Sn−1)~ S[~xn/~x]

In other words, �Sn represents the product space of n
different α-renamed copies of S.

At a high level, the calculus rules shown in Figure 5
derive judgments of the form ` 〈Φ〉 χ 〈Ψ〉 indicating the
provability of the standard Hoare triple {Φ} P {Ψ} for some
program P ∈ JχK. Since all programs in JχK are semantically
equivalent, this means that the Hoare triple {Φ} P ′ {Ψ} is
valid for any P ′ ∈ JχK. However, since some programs are
easier to verify than other semantically equivalent variants,
our calculus enables the verification of a Cartesian Hoare
triple ‖Φ‖ S ‖Ψ‖ by considering different variants in the
self-product space �Sn.

We now explain the CHL rules in more detail and highlight
how these proof rules allow us to achieve a good combination
of flexibility, automatability, and scalability.

Expand. The first rule of Figure 5 reduces the verification
of an n-ary Cartesian Hoare triple ‖Φ‖ S ‖Ψ‖ to the prov-
ability of 〈Φ〉 �Sn 〈Ψ〉. Since each program P ∈ �Sn is
semantically equivalent to the sequential execution of n α-
renamed copies of S, the derivability of 〈Φ〉 �Sn 〈Ψ〉 im-
plies the validity of ‖Φ‖ S ‖Ψ‖.

Lift. The Lift rule allows us to prove 〈Φ〉 �Sn 〈Ψ〉 in the
degenerate case where n = 1. In this case, we resort to
standard Hoare logic to prove the validity of {Φ} S {Ψ}.

Skip intro. The next two rules, labeled [-intro, allow us to
introduce no-ops after statements and at the end of other prod-
uct terms. These rules are useful for eliminating redundancy
in our calculus.

Skip elim. The [-elim rule, which is the analog of the [-intro
2 rule, eliminates skip statements from product terms. Note
that the elimination analog of the [-intro 1 rule is unnecessary
because it is derivable using the other rules.

Associativity. The Assoc rule exploits the associativity of
operator ~: To prove 〈Φ〉 (χ1 ~ χ2)~ χ3 〈Ψ〉, it suffices to
show 〈Φ〉 χ1 ~ (χ2 ~ χ3) 〈Ψ〉. The associativity rule is very
important for the flexibility of our calculus because, together
with the commutativity rule, it allows us to consider different
interleavings between k program executions.

(Expand)
` 〈Φ〉 �Sn 〈Ψ〉
` ‖Φ‖ S ‖Ψ‖

(Lift)
` {Φ} S {Ψ}
` 〈Φ〉 S 〈Ψ〉

([−intro 1)
` 〈Φ〉 S; [~ χ 〈Ψ〉
` 〈Φ〉 S ~ χ 〈Ψ〉

([−intro 2)
` 〈Φ〉 χ ~ [〈Ψ〉
` 〈Φ〉 χ 〈Ψ〉

([−elim)
` 〈Φ〉 χ 〈Ψ〉
` 〈Φ〉 χ ~ [〈Ψ〉

(Assoc)
` 〈Φ〉 χ1 ~ (χ2 ~ χ3) 〈Ψ〉
` 〈Φ〉 (χ1 ~ χ2) ~ χ3 〈Ψ〉

(Comm)
` 〈Φ〉 χ2 ~ χ1 〈Ψ〉
` 〈Φ〉 χ1 ~ χ2 〈Ψ〉

(Step)
` {Φ} S1 {Φ′} ` 〈Φ′〉 S2 ~ χ 〈Ψ〉

` 〈Φ〉 S1;S2 ~ χ 〈Ψ〉

(Havoc)
V = vars(χ)

` 〈Φ〉 χ 〈∃V.Φ〉

(Consq)
Φ⇒ Φ′ Ψ′ ⇒ Ψ ` 〈Φ′〉 χ 〈Ψ′〉

` 〈Φ〉 χ 〈Ψ〉

(Seq)

` 〈Φ〉 (S1 ~ . . . ~ Sn) 〈Φ′〉
` 〈Φ′〉 (R1 ~ . . . ~Rn) ~ χ 〈Ψ〉

` 〈Φ〉 (S1;R1 ~ . . . ~ Sn;Rn) ~ χ 〈Ψ〉

(If)

` 〈Φ ∧ c〉 S1;S ~ χ 〈Ψ〉
` 〈Φ ∧ ¬c〉 S2;S ~ χ 〈Ψ〉
` 〈Φ〉 (S1 ⊕c S2;S) ~ χ 〈Ψ〉

(Loop)

Φ⇒ I
` {I} [(c1, S1, [), . . . , (cn, Sn, [)]∗ {I}

` 〈posti(I) ∧ ¬ci〉 S′i ~ χ 〈Ψ〉 (∀i ∈ [1, n])

` 〈Φ〉 [(c1, S1, S′1), . . . , (cn, Sn, S′n)]∗ ~ χ 〈Ψ〉

Figure 5. Core Cartesian Hoare Logic (CHL)

Commutativity. The Comm rule states the commutativity
of ~. Specifically, it says that a proof of 〈Φ〉 χ1 ~ χ2 〈Ψ〉
also constitutes a proof of 〈Φ〉 χ2 ~ χ1 〈Ψ〉.

Step. The Step rule allows us to decompose the verification
of 〈Φ〉 S1;S2 ~ χ 〈Ψ〉 in the following way: First, we find an
auxiliary assertion Φ′ and prove the validity of {Φ} S1 {Φ′}.
If we can also establish the validity of 〈Φ′〉 S2 ~ χ 〈Ψ〉, we
obtain a proof of 〈Φ〉 S1;S2 ~ χ 〈Ψ〉. This rule turns out
to be particularly useful when we can execute S2 and χ in
lockstep, but not S1 and χ.

Havoc. This rule allows us to prove 〈Φ〉 χ 〈∃V.Φ〉 for
any χ, where V denotes free variables in χ. Note that by,
existentially quantifying V , we effectively assume that χ
invalidates all facts we know about variables V . However,
facts involving variables that are not modified by χ are
still valid. The main purpose of the Havoc rule is to prune

irrelevant parts of the state space by combining it with the
Consq rule.

Consequence. The Consq rule is the direct analog of the
standard consequence rule in Hoare logic. As expected, this
rule states that we can prove the validity of 〈Φ〉 χ 〈Ψ〉 by
proving 〈Φ′〉 χ 〈Ψ′〉 where Φ⇒ Φ′ and Ψ′ ⇒ Ψ.

Example 3. We now illustrate why the Havoc and Consq
rules are very useful. Suppose we would like to prove:

〈true〉 x1 := false~ S2 ~ S3 〈(x1 ∧ x2)⇒ x3〉

where S2, S3 are statements over x2, x3. After using Step
to prove {true} x1 := false {¬x1}, we end up with proof
obligation 〈¬x1〉 S2 ~ S3 〈x1 ∧ x2 ⇒ x3〉. Since S2, S3 do
not contain variable x1, we can use Havoc to obtain a
proof of 〈¬x1〉 S2 ~ S3 〈¬x1〉. Now, since we have ¬x1 ⇒
(x1 ∧ x2 ⇒ x3), the consequence rule allows us to obtain
the desired proof. Observe that, even though S2 and S3 are
potentially very large program fragments, we were able to
complete the proof without reasoning about S2 ~ S3 at all.

Sequence. The Seq rule allows us to execute statements
from different runs in lockstep. In particular, it tells us
that we can prove 〈Φ〉 (S1;R1 ~ . . .~ Sn;Rn)~ χ 〈Ψ〉 by
first showing 〈Φ〉 S1 ~ . . .~ Sn 〈Φ′〉 and then separately
constructing a proof of 〈Φ′〉 R1 ~ . . .~ Rn ~ χ 〈Ψ〉.

If. The If rule allows us to “embed" product term χ inside
each branch of S1 ⊕c S2. As the next example illustrates,
this rule can be useful for simplifying the verification task,
particularly when combined with Havoc and Consq.

Example 4. Suppose we want to prove:

‖ϕ1‖ y := 1⊕x>0 y := 0 ‖ϕ2‖

where ϕ1 is x1 = −x2∧x1 6= 0 and ϕ2 is y1 +y2 = 1. After
applying the Expand and If rules (combined with [elim and
intro), we end up with the following two proof obligations:
(1) 〈ϕ1 ∧ x1 > 0〉 y1 := 1~ (y2 := 1⊕x2>0 y2 := 0) 〈ϕ2〉
(2) 〈ϕ1 ∧ x1 ≤ 0〉 y1 := 0~ (y2 := 1⊕x2>0 y2 := 0) 〈ϕ2〉

Let’s only focus on (1), since (2) is similar. Using first Comm
and then If, we generate the following proof obligations:

(1a) 〈ϕ1 ∧ x1 > 0 ∧ x2 > 0〉 y2 := 1~ y1 := 1 〈ϕ2〉
(1b) 〈ϕ1 ∧ x1 > 0 ∧ x2 ≤ 0〉 y2 := 0~ y1 := 1 〈ϕ2〉

Since the precondition of (1a) is unsatisfiable, we can imme-
diately discharge it using Havoc and Consq. We can also dis-
charge (1b) by computing its postcondition y2 = 0 ∧ y1 = 1,
which can be obtained using Step, [-intro, elim, and Lift.

Note that we could even verify this property using a path-
insensitive analysis (e.g., the polyhedra [11] or octagon [17]
abstract domains) using the above proof strategy. In particu-
lar, conceptually embedding the second program inside the
then and else branches of the first program greatly simplifies
the proof. While we could also prove this simple property us-
ing self composition, the proof would require a path-sensitive
analysis.

Loop. At a conceptual level, the Loop rule allows us to
reason about L = [(c1, S1, S

′
1), . . . , (cn, Sn, S

′
n)]∗ ~ χ as

though χ was “embedded" inside each exit (break) point
of L. In particular, this rule first reasons about the first
k − 1 iterations of the loop (i.e., all except the last one) and
then considers Lk ~ χ where Lk represents the computation
performed during the last iteration.

Let us now consider this rule in more detail. The first two
lines of the premise state that I is an inductive invariant of
the first k − 1 iterations of L, where k denotes the number of
iterations of L. Hence, we know that I holds at the end of the
k−1’th iteration. Now, we essentially perform a case analysis:
When the loop terminates, one of the ci’s must be false, but
we don’t know which one, so we try to prove Ψ for each of the
n possibilities. Specifically, suppose L terminated because
ci was the first condition to evaluate to false during the
k’th iteration. In this case, we need to symbolically execute
S1, . . . , Si−1 before we can reason about S′i ~ χ. For this
purpose, we define posti(I) as follows:

post1(I) = I
posti(I) = post(posti−1(I) ∧ ci−1, Si−1)

where post(φ, S) denotes a post-condition of S with respect
to φ. Hence, posti(I) represents facts that hold right be-
fore executing (ci, Si, S

′
i). Now, if the loop terminates due

to condition ci, we need to prove Ψ holds after executing
S′i ~ χ assuming posti(I) ∧ ¬ci. Hence, if we can establish
〈posti(I) ∧ ¬ci〉 S′i ~ χ 〈Ψ〉 for all i ∈ [1, n], this also gives
us a proof of 〈Φ〉 [(c1, S1, S

′
1), . . . , (cn, Sn, S

′
n)]∗ ~ χ 〈Ψ〉.

Example 5. Consider the following loop L:

[(i < n, [, [), (a[i] ≥ b[i], [, r:=−1), (a[i] ≤ b[i], i++, r:=1)]∗

which often arises when implementing a lexicographic order.
Suppose we want to prove the following 3-safety property:

‖a1 = a3 ∧ b1 = a2 ∧ b2 = b3 ∧ n1 = n2 ∧ n2 = n3‖
r := 0; i := 0;L

‖r1 ≤ 0 ∧ r2 ≤ 0⇒ r3 ≤ 0‖

We can verify this Cartesian Hoare triple using our Loop rule
and loop invariant ∀j. 0 ≤ j < i ⇒ a[j] = b[j]. However,
this invariant is not sufficient if we try to verify this code
using self-composition.

4.2 Cartesian Loop Logic
The core calculus we have considered so far is sound and
relatively complete, but it does not allow us to execute loops
from different runs in lockstep. Since lockstep execution
can greatly simplify the verification task (e.g., by requiring
simpler invariants), we have augmented our calculus with
additional rules for reasoning about loops. These proof rules,
which we refer to as “Cartesian Loop Logic" are summarized
in Figure 6 and explained next.

(Transform− single)
[(c, S, S′)]∗ [(c, S, [)]∗;

√
¬c;S′

(Transform−multi)
[R]∗ [(c′, S′, [)]∗;S′′ c′′ = c1 ∧ wp(c′, S1)

[(c1, S1, S′1), R]∗ [(c′′, S1;S′, [)]∗; (
√
c1;S1;S′′)⊕? (

√
¬c1;S′1)

(Flatten)
[L]∗ [(c,B, [)]∗;R ` 〈Φ〉 [(c,B, [)]∗;R ~ χ 〈Ψ〉

` 〈Φ〉 [L]∗ ~ χ 〈Ψ〉

(Fusion 1)

` 〈I ∧
∧

1≤i≤n ci〉 S1 ~ . . .~ Sn 〈I〉
Φ⇒ I

(I ∧ ¬
∧

1≤i≤n ci)⇒
∧

1≤i≤n ¬ci
` 〈Φ〉 [(c1, S1, [)]∗ ~ . . .~ [(cn, Sn, [)]∗ 〈I ∧ ¬

∧
1≤i≤n ci〉

(Fusion 2)

` 〈I ∧
∧

1≤i≤n ci〉 S1 ~ . . .~ Sn 〈I〉
` 〈I ∧ ¬c1〉 [(c2, S2, [)]

∗ ~ . . .~ [(cn, Sn, [)]
∗ 〈Ψ〉

` 〈I ∧ ¬c2〉 [(c1, S1, [)]
∗ ~ [(c3, S3, [)]

∗ ~ . . .~ [(cn, Sn, [)]
∗ 〈Ψ〉

. . .
` 〈I ∧ ¬cn〉 [(c1, S1, [)]

∗ ~ . . .~ [(cn−1, Sn−1, [)]
∗ 〈Ψ〉

` 〈Φ〉 [(c1, S1, [)]∗ ~ . . .~ [(cn, Sn, [)]∗ 〈Ψ〉
(n ≥ 2.,Φ⇒ I)

Figure 6. Cartesian Loop Logic (CLL)

Transform. The first two rules, labeled Transform-single
and Transform-multi, allow us to “rewrite" complicated loops
L containing break statements into code snippets of the form
while(C) do {S}; S’. These rules derive judgments
of the form L S stating that any Hoare triple that is valid
for S is also valid for L. In particular, while L and S may
not be semantically equivalent, our transformation L S
guarantees that any valid Hoare triple {Φ} S {Ψ} implies the
validity of {Φ} L {Ψ}.

Let us first consider the Transform-single rule where the
loop contains a single break statement. This rule simply
“rewrites" the loop [(c, S, S′)∗] to [(c, S, [)∗;

√
¬c;S′]. In

other words, it says that we can replace S′ with a skip
statement and simply execute S′ once the loop terminates.

The Transform-multi rule handles loops containing mul-
tiple break points. In particular, suppose we have a loop
L of the form [(c1, S1, S

′
1), R]∗ and suppose that R∗

[(c′, S′, [)]∗;S′′. This means that R is semantically equiv-
alent to (c′, S′, [) in all iterations of L except the last one.
Hence, the loop L′ : [(c1, S1, [), (c

′, S′, [)]∗ is also equiva-
lent to L under all valuations in which L executes at least
once more. Furthermore, if wp(c′, S1) denotes the weakest
precondition of c′ with respect to S1, then L′ (and therefore
L) is also equivalent to

L′′ : [(c1 ∧ wp(c′, S1), S1;S′, [)]∗

under all valuations in which L executes one or more times.
Now, let’s consider the last iteration of L. There are two

possibilities: Either we broke out of the loop because c1
evaluated to false or some other condition ci in R evaluated
to false. In the former case, we can assume ¬c1 and we need
to execute S′1. In the latter case, we can assume c1, and we
still need to execute S1 as well as the “part" of R that is
executed in the last iteration, which is given by S′′. Hence,

we can soundly reason about the last iteration of L using
(
√
c1;S1;S′′)⊕? (

√
¬c1;S′1). 2

Example 6. Consider again loop L from Example 5. Using
Transform rules of Figure 6, we have L S where S is:

[(i < n ∧ a[i] = b[i], i++, [)]∗;
(
√
c1; (
√
c2;
√
¬c3; r:= 1⊕?

√
¬c2; r:= −1))⊕?

√
¬c1

Here, c1, c2, c3 represent i < n, a[i] ≥ b[i], and a[i] ≤ b[i].

Flatten. The Flatten rule uses the previously discussed
Transform rules to simplify the proof of 〈Φ〉 [L]∗ 〈Ψ〉. In
particular, it first “rewrites" [L]∗ as S and then proves the
validity of 〈Φ〉 S ~ χ 〈Ψ〉. This proof rule is sound since
{φ} S {ϕ} always implies the validity of {φ} [L]∗ {ϕ} for
any φ, ϕ whenever [L]∗ S. As we will see shortly, the
Flatten rule can make proofs significantly easier, particularly
when combined with the Fusion rules explained below.

Fusion 1. This rule effectively allows us to perform lock-
step execution for loops L1, . . . , Ln that always execute the
same number of times. Observe that this rule requires each
Li to contain a single break point; hence, if this requirement
is violated, we must first apply the Flatten rule.

Let us now consider this rule in more detail. Recall that
S1 ~ . . . ~ Sn is the set of programs that are semantically
equivalent to S1; . . . , Sn. Hence, the first two lines of the
premise effectively state that I is an inductive invariant of:

L : [(c1 ∧ . . . ∧ cn, S1; . . . ;Sn, [)]
∗

Furthermore, the third line of the premise tells us that every
ci will evaluate to false when L terminates, which, in turn,

2 The careful reader may wonder whether the last iteration of the loop could
be accounted for using S1;S′′ ⊕c1 S

′
1. This reasoning would not be sound

since c1 may be modified in S2, . . . , Sn.

indicates that all Li’s always execute the same number
of times. Thus, I ∧ ¬

∧
i ci is a valid post-condition of

L1 ~ . . .~ Ln under precondition Φ.

Example 7. Consider loop L from Example 5, and suppose
we want to verify the following Cartesian Hoare triple:

‖Φ‖ (r := 0; i := 0;L) ‖Ψ‖

where Φ is a1 = b2 ∧ b1 = a2 ∧ a1 6= b1 and Ψ is
r1 < 0 ⇒ r2 ≥ 0. After applying Seq, we generate the
following proof obligation:

〈Φ ∧ r1 = r2 = 0 ∧ i1 = i2 = 0〉 L1 ~ L2 〈Ψ〉

We then apply Flatten to both L1 and L2, which yields the
following proof obligation:

〈Φ ∧ r1 = r2 = 0 ∧ i1 = i2 = 0〉 L′1;S′1 ~ L
′
2;S′2 〈Ψ〉

where L′1, L
′
2 are α-renamed versions of the loop obtained

in Example 6 and S1, S2 are α-renamed versions of S from
Example 6. We now apply Seq again, grouping together L1

and L2, and then use Fusion to obtain a postcondition Φ′:

〈Φ ∧ r1 = r2 = 0 ∧ i1 = i2 = 0〉 L′1 ~ L′2 〈Φ′〉

Using the loop invariant Φ ∧ i1 = i2 and the Fusion
and Consq rules, we can obtain the post-condition Φ′ =
(Φ∧ i1 = i2). This finally leaves us with the proof obligation
〈Φ′〉 S′1 ~ S′2 〈Ψ〉, which is easy to discharge using If and
Havoc: Note that the post-condition can only be violated
in the branches where r1 and r2 are both assigned to −1.
However since r1 := −1 and r2 := −1 only execute
when a1[i1] < b1[i1] and a2[i2] < b2[i2] respectively, the
precondition Φ∧i1 = i2 implies ¬(a1[i1] < b1[i1]∧a2[i2] <
b2[i2]). Hence, the original Cartesian Hoare triple is valid.

Observe that the Flatten and Fusion rules allow us to
verify the desired property using the simple loop invariant
i1 = i2 without requiring any quantified array invariants.

Fusion 2. The Fusion 2 rule is similar to Fusion 1 and
allows us to perform partial lockstep execution when we
cannot prove that loops L1, . . . , Lk execute the same num-
ber of times. Conceptually, this rule “executes" the loop
bodies S1, . . . , Sn in lockstep until one of the continua-
tion conditions ci becomes false. Then, the rule proceeds
with a case analysis: Assuming ci is the first condition to
evaluate to false, we potentially still need to execute loops
L1, . . . , Li−1, Li+1, . . . , Ln. Furthermore, when we execute
these loops, we can assume the loop invariant I of the first
loop as well as condition ¬ci (since we are assuming that ci
is the first condition to evaluate to false). Hence, lines 3-5 in
the premise verify the following proof obligation for each i:

〈I ∧ ¬ci〉 L1 ~ . . .~ Li−1 ~ Li+1 ~ . . .~ Ln 〈Ψ〉

Theorem 1 (Soundness). If ` ‖Φ‖ S ‖Ψ‖, then |= ‖Φ‖ S ‖Ψ‖.

Proof. The proof is given in Appendix A.

1: procedure K-VERIFY(Φ, χ, Ψ)

2: Input: Precondition Φ, term χ, postcondition Ψ
3: Output: Boolean indicating whether property holds

4: let V := Vars(χ) in
5: if ((∃V.Φ)⇒ Ψ) then return true; . Havoc and Consq

6: match χ with
7: | S: return VERIFY(Φ, S,Ψ); . Lift
8: | [~ χ′: return K-VERIFY(Φ, χ′,Ψ) . [-elim
9: | [L1]∗;S1 ~ . . .~ [Ln]∗;Sn: . all loops

10: return K-VERIFYLOOP(Φ, χ,Ψ)
11: | [L]∗;S ~ χ′

12: return K-VERIFY(Φ, χ′ ~ [L]∗;S) . Comm
13: | A;S ~ χ′: let Φ′ := post(A,Φ) in
14: return K-VERIFY(Φ′, S ~ χ′,Ψ) . Step
15: | S1 ⊕c S2;S ~ χ′:
16: let r := K-VERIFY(Φ ∧ c, S1;S ~ χ′,Ψ) in
17: if(r != true) return false; . If
18: return K-VERIFY(Φ ∧ ¬c, S2;S ~ χ′,Ψ)
19: | S ~ χ′: return K-VERIFY(Φ, S; [~ χ′,Ψ) . [-intro
20: | (χ1 ~ χ2)~ χ3:
21: return K-VERIFY(Φ, χ1 ~ (χ2 ~ χ3),Ψ) . Assoc

Figure 7. Verification algorithm for k-safety

Theorem 2 (Relative Completeness). Given an oracle for
deciding the validity of any standard Hoare triple, if |=
‖Φ‖ S ‖Ψ‖, then we also have ` ‖Φ‖ S ‖Ψ‖.

The proofs of both theorems are provided in the extended
version of the paper.

Proof. The proof is given in Appendix A.

5. Verification Algorithm Based on CHL
We now describe how to incorporate the CHL proof rules
into a useful verification algorithm. At a high level, there
are three important ideas: First, since the Havoc and Conse-
quence rules can greatly simplify the verification task, our
algorithm applies these rules at every opportunity. Second,
we always prefer the If rule over other rules like Seq or Step,
as this strategy avoids reasoning about parts of �Sn that con-
tradict the desired precondition. Third, we try to maximize
opportunities for lockstep execution of loops. For example,
we use Associativity and Commutativity in a way that tries
to maximize possible applications of the Fusion rules.

Our verification algorithm is presented in Figure 7: K-
VERIFY takes as input pre- and post-conditions Φ,Ψ, product
term χ, and returns true iff we can prove 〈Φ〉 χ 〈Ψ〉. As a
first step, we check if 〈Φ〉 χ 〈Ψ〉 can be verified using only
the Havoc and Consequence rules (lines 4–5).

Next, the algorithm performs pattern matching on χ in
lines 6–21. In the base case, χ is a single program S, so we
simply invoke a procedure VERIFY for proving the standard
Hoare triple {Φ} S {Ψ} (line 7). The next case [~ χ′ at
line 8 is equally simple; in this case, we proceed by applying
[-elimination to verify 〈Φ〉 χ′ 〈Ψ〉.

The next two cases concern terms χ that start with a loop.
In particular, the pattern at line 9 checks if χ is of the form
[L1]∗;S1~. . .~[Ln]∗;Sn (i.e., all programs start with a loop).
In this case, we invoke the helper function K-VERIFYLOOP
which chooses between the proof tactics from Figure 6 and
which we consider in more detail later. On the other hand, if
the first program starts with a loop (but not all the remaining
ones), we then use Commutativity (line 12) with the hope
that we will eventually find matching loops in all programs
(i.e., match line 9 in a future recursive call).

Continuing with line 13, we next pattern match on terms
of the form A;S ~ χ′ where the first program starts with an
atomA. Since we can compute the strongest postcondition for
atomic statements in an exact way, we apply the Step rule and
generate a new proof obligation 〈post(A,Φ)〉 S ~ χ′ 〈Ψ〉
where post(A,Φ) denotes the (strongest) postcondition of A
with respect to Φ.

Next, consider the case where χ starts with a program
whose first statement is S1 ⊕c S2. In this case, we apply
the If rule rather than the Step rule, as this strategy has two
advantages: First, as we saw in Example 4, this rule often
simplifies the verification task. Second, since one of Φ ∧ c
or Φ ∧ ¬c may be unsatisfiable, we might be able to easily
discharge the new proof obligations in the recursive calls to
K-VERIFY using the Consequence rule.

The next case at line 19 applies to product terms of the
form S ~ χ′. Note that we only match this case if S consists
of a single loop or conditional. Since we would like to apply
the appropriate rules for conditionals and loops, we use [
intro and then make a recursive call — this strategy ensures
that we will match one of the cases at lines 9, 11, or 15 in the
next recursive call.

The final case at line 20 exploits associativity: If the first
term of χ is not a single program, but rather another product
term of the form χ1 ~ χ2, we apply associativity. This tactic
guarantees that χ will eventually be of the form S ~ χ′ in
one of the future recursive calls.

Let us now turn our attention to the auxiliary procedure
K-VERIFYLOOP shown in Figure 8. The interface of this
function is the same as that of K-VERIFY, but it is only
invoked on terms of the form [L1]∗;S1~ . . .~ [Ln]∗;Sn (i.e.,
all programs start with a loop). The goal of K-VERIFYLOOP
is to determine which loop-related proof rule to use.

In the case analysis of lines 2-21, we first check whether
all terms in χ start with loops of the form [c, S, []∗ , and if so,
we apply one of the Fusion rules from Figure 6. Towards this
goal, we invoke a function called FINDINV which returns a
formula I with the following properties:

(1) Φ⇒ I
(2) ` 〈I ∧

∧
i ci〉 S1 ~ . . .~ Sn 〈I〉

Continuing with lines 6-12, we next check whether it
is legal to apply the simpler Fusion 1 rule or whether it is
necessary to use the more general Fusion 2 rule. If it is the

1: procedure K-VERIFYLOOP(Φ, χ,Ψ)

2: match χ with
3: | [(c1, S1 [)]

∗;R1 ~ . . .~ [(cn, Sn [)]
∗;Rn:

4: let I := FINDINV(Φ,
∧

i ci, S1, . . . , Sn) in
5: let Φ′ := I ∧ ¬

∧
i ci in

6: if(Φ′ ⇒
∧

i ¬ci) then . Fuse 1, Seq

7: return K-VERIFY(Φ′, R1 ~ . . .~Rn,Ψ);

8: else
9: forach(i ∈ [1,n]) . Fuse 2, Seq

10: let χi := REMOVEITH(χ, i) in
11: if(!K-VERIFY(Φ′, χi,Ψ)) return false;
12: return true;

13: | [L]∗;R ~ χ′:

14: if([L]∗ [(c,B, [)]∗;R′) then . Flatten

15: return K-VERIFY(Φ, χ′ ~ [(c,B, [)]∗;R′;R,Ψ);
16: else
17: let I := LOOPINV([L]∗) in . Loop
18: foreach (i ∈ [1,n])
19: let Φ′ := posti(I) ∧ ¬ci;
20: if(!K-VERIFY(Φ′, S′i;R ~ χ

′))
21: then return false;
22: return true;

Figure 8. Helper procedure for loops

case that (I ∧ ¬
∧

i ci)⇒
∧

i ¬ci, all loops execute the same
number of times, so we can apply Fusion 1.

Otherwise, we apply the more general Fusion 2 rule.
In particular, the recursive calls at line 11 correspond to
discharging the proof obligations in the premises of the
Fusion 2 rule from Figure 6. Here, the call to the auxiliary
procedure to REMOVEITH returns the following formula:

[(c1, S1, [)]
∗;R1 ~ . . .~ [(ci−1, Si−1, [)]

∗;Ri−1~
[(ci+1, Si+1, [)]

∗;Ri+1 ~ . . .~ [(cn, Sn, [)]
∗;Rn

Observe that we return true if and only if we can discharge
all proof obligations for every i ∈ [1, n].

Now consider the final case at line 13 of the algorithm. In
this case, we know that not all loops are of the form [c, S, []∗,
so it may not be possible to apply the Fusion rules. Hence,
we first apply the Transform rules from Figure 6 to rewrite
the first loop in the form [(c,B, [)]∗ If this rewrite is possible,
we then apply the Flatten rule at line 15; otherwise, we resort
to the Loop rule from Figure 5. 3 Observe that recursive calls
to K-VERIFY at line 20 correspond to the proof obligations
in the premise of the Loop rule from Figure 5.

Theorem 3 (Termination). K-VERIFY(Φ, χ,Ψ) terminates
for every Φ, χ,Ψ.

Proof. The proof is given in Appendix A.

3 Recall that the Transform rules from Figure 6 require computing weakest
preconditions, which may be difficult to do in the presence of nested loops.

6. Implementation
We implemented the verification algorithm from Section 5 in
a tool called DESCARTES, written in Haskell. DESCARTES
uses the Haskell language-java package to parse Java source
code and the Z3 SMT solver [12] for determining satisfiability.
Our implementation models object fields with uninterpreted
functions and uses axioms for library methods implemented
by the Java SDK.

The main verification procedure in DESCARTES receives
a Cartesian Hoare triple that is composed of a method in
the IR format, the arity of the specification, and the pre- and
post-conditions. It then generates k alpha-renamed methods
and applies the K-VERIFY algorithm from Section 5. If the
specification is not respected, DESCARTES outputs the Z3
model that can used to construct a counterexample.

As a design choice, our loop invariant generator (i.e., the
implementation of FINDINV) is decoupled from the main
verification method since we aim to experiment with several
loop invariant generation techniques in the future. Currently,
our implementation of FINDINV follows standard guess-and
check methodology [14, 20]:

1. A guess procedure guesses a candidate invariant I . Cur-
rently, we generate candidate invariants by instantiating
a set of built-in templates with program variables and
constants which include (i) equalities and inequalities be-
tween pairs of variables and (ii) quantified invariants of
the form ∀j.• ≤ j < • ⇒ •[•] op • [•] where • indicates
an unknown expression to be instantiated with variables
and constants.

2. A check procedure verifies if candidate invariant I is in-
ductive. This is performed by discharging two verification
conditions (VCs):
• The pre-condition implies I;
• The cartesian hoare triple given by Eq (2) in Section

6 is valid. The validity of this cartesian hoare triple is
checked by a recursive call to K-VERIFY.

7. Experimental Evaluation
To evaluate our approach, we used DESCARTES to verify
user-defined relational operators in Java programs, including
compare, compareTo, and equals. We believe this
application domain is a good testbed for our approach for
multiple reasons: First, as mentioned in Section 3, these
relational operators must obey multiple k-safety properties,
allowing us to consider five different k-safety properties
in our evaluation. Second, since comparators and equals
methods are ubiquitous in Java, we can test our approach
on a variety of different applications. Third, comparators
are notoriously tricky to get right; in fact, web forums like
Stackoverflow abound with questions from programmers who
are trying to debug their comparator implementations.

P1 P2 P3

Benchmark V t(s) V t(s) V t(s)

ARRAYINT 3 0.14 3 0.16 7 0.27
ARRAYINT† 3 0.19 3 0.41 3 0.38
CATBPOS 7 0.33 7 8.35 7 2.59
CHROMOSOME 3 0.15 7 0.19 7 0.34
CHROMOSOME† 3 0.36 3 4.26 3 3.90
COLITEM 7 0.09 7 0.15 7 0.17
COLITEM† 3 0.07 3 0.17 3 0.17
CONTACT 3 0.11 7 1.14 7 1.85
CONTAINER-V1 7 0.04 7 0.04 7 0.04
CONTAINER-V2 7 0.05 7 0.04 7 0.05
CONTAINER† 3 0.27 3 3.44 3 1.28
DATAPOINT 7 0.26 7 0.89 7 0.51
FILEITEM 3 0.03 3 0.03 7 0.09
FILEITEM† 3 0.05 3 0.06 3 0.08
ISOSPRITE-V1 7 0.06 7 0.04 7 0.07
ISOSPRITE-V2 7 0.40 7 1.82 3 0.18
MATCH 7 0.05 3 0.04 7 0.06
MATCH† 3 0.05 3 0.05 3 0.06
NAME 7 0.15 3 0.38 3 0.27
NAME† 3 0.16 3 0.40 3 0.50
NODE 3 0.03 3 0.03 7 0.09
NODE† 3 0.04 3 0.06 3 0.07
NZBFILE 7 0.14 3 0.28 3 0.13
NZBFILE† 3 0.25 3 0.48 3 0.99
POKERHAND 3 0.55 7 0.71 7 2.34
POKERHAND† 3 0.61 3 0.78 3 1.61
SOLUTION 3 0.19 3 0.52 7 0.68
SOLUTION† 3 0.42 3 1.33 3 1.24
TEXTPOS 3 0.10 7 0.25 7 0.26
TEXTPOS† 3 0.11 3 0.48 3 0.19
TIME 7 0.10 3 0.36 3 0.02
TIME† 3 0.08 3 0.35 3 0.22
WORD 7 0.84 7 6.19 3 0.07
WORD† 3 0.24 3 0.52 3 0.28

Figure 9. Evaluation on Stackoverflow examples.

The goal of our experimental evaluation is to explore the
following questions: (1) Is DESCARTES able to successfully
uncover k-safety property violations in buggy programs? (2)
Is DESCARTES practical? (i.e., how long does verification
take, and how many false positives does it report?) (3) How
does DESCARTES compare with competing approaches such
as self-composition [1] and product construction [3, 5]?

To answer these three questions, we performed three
sets of experiments. In the first experiment, we consider
examples of buggy comparators from Stackoverflow as
well as their repaired versions. In the second experiment,
we use DESCARTES to analyze equals, compare, and
compareTo methods that we found in industrial-strength
Java projects from Github. In our third experiment, we com-
pare DESCARTES with the self-composition and product
construction approaches and report our findings. In what
follows, we describe these experiments in more detail.

7.1 Buggy Examples from Stackoverflow
We manually curated a set of 34 comparator examples from
on-line forums such as Stackoverflow. In many online discus-
sions that we looked at, a developer posts a buggy comparator

–often with quite tricky program logic– and asks other forum
users for help with fixing his/her code. Hence, we were often
able to extract a buggy comparator together with its repaired
version from each Stackoverflow post. Given this collection of
benchmarks containing both buggy and correct programs, we
used DESCARTES to check whether each comparator obeys
properties P1-P3 required by the Java Comparator and
Comparable interfaces.

The results of our evaluation are presented in Figure 9, and
the benchmarks are provided under supplemental materials.
For a buggy comparator called COMPARE, the benchmark
labeled COMPARE† describes its repaired version. For the
column labeled V , 3 indicates that DESCARTES was able to
verify the property, and 7 means that DESCARTES reported
a violation of the property. For a few benchmarks, (e.g.,
CATBPOS), the post did not contain the correct version of the
comparator and the problem did not seem to have a simple
fix; hence, Figure 9 does not include the repaired versions of
a few benchmarks.

From Figure 9, we see that DESCARTES automatically
verifies all correct comparators and does not report any false
alarms. Furthermore, for each buggy program, DESCARTES
pinpoints the violated property and provides a counterexam-
ple. Finally, the running times of the tool are quite reasonable:
On average, DESCARTES takes 1.21 seconds per benchmark
to analyze all relevant k-safety properties.

7.2 Relational Operators from Github Projects
In our second experiment, we evaluated our approach on
equals, compare, and compareTo methods assembled
from top-ranked Java projects on Github, such as Apache
Storm, libGDX, Android and Netty. Towards this goal, we
wrote a script to collect relational operators satisfying certain
complexity criteria, such as containing loops or at least
20 lines of code and 4 conditionals. Our script also filters
out comparators containing features that are currently not
supported by our tool (e.g., bitwise operators, reflection).

In total, we ran DESCARTES over 2000 LOC from 62 rela-
tional operators collected from real-world Java applications
(provided under supplemental materials). Specifically, our
benchmarks contain 28 comparators and 34 equals meth-
ods. In terms of running time, DESCARTES takes an average
of 9.14 seconds to analyze all relevant k-safety properties of
the relational operator. Furthermore, the maximum verifica-
tion time across all benchmarks is 55.27 seconds. Among the
analyzed methods, DESCARTES was able to automatically
verify all properties in 52 of the 62 benchmarks. Upon man-
ual inspection of the remaining 10 relational operators, we
discovered that DESCARTES reported 5 false positives, owing
to weak loop invariants. However, the five remaining methods
turned out to be indeed buggy — they violate at least one of
the three required k-safety properties.

In summary, DESCARTES was able to verify complex real-
world Java relational operators with a very low false positive
rate of 8%. Furthermore, DESCARTES was able to uncover

five real bugs in widely-used and well-tested Java projects.
We believe this experiment demonstrates that reasoning about
k-safety properties is difficult for programmers and that tools
like DESCARTES can help programmers uncover non-trivial
logical errors in their code.

7.3 Comparison with Self-Composition and Product
In our last experiment, we compare DESCARTES with two
competing approaches, namely the self-composition [1]
and product construction [3, 5] methods, which are the only
existing techniques for verifying k-safety properties. Recall
that both of these approaches explicitly construct a new
program that is subsequently fed to an off-the-shelf verifier.
To compare our technique with these approaches, we use the
non-buggy benchmarks considered in Sections 7.1 and 7.2.

Self-composition. Given Cartesian Hoare triple ‖Φ‖ S ‖Ψ‖
of arity k, we emulate the self-composition approach by gen-
erating k-alpha-renamed copies of S and then verifying the
standard Hoare triple {Φ}S1; . . . ;Sk{Ψ}. However, for the
benchmarks from Sections 7.1 and 7.2, this strategy fails to
verify more than half (52%) of the examples. Furthermore,
for the examples where self composition is able to prove the
relevant k-safety properties, it is ∼ 20× slower compared to
DESCARTES. We believe this result demonstrates that self-
composition is not a viable strategy for verifying k-safety
properties in many programs.

Product programs. As mentioned earlier, another strategy
for verifying k-safety is to explicitly construct a so-called
product program and use an off-the-shelf verifier. Unfortu-
nately, there is no existing tool for product construction in
Java, and there are several possible heuristics one can use
for constructing the product program. Furthermore, previous
work on sound product construction [3] only considers loops
of the form while(C) do S, making it difficult to apply
this technique to our benchmarks, almost all of which contain
break or return statements inside loops. 4

Hence, even though a completely reliable comparison with
the product construction approach is not feasible, we tried to
emulate this approach by considering two different strategies
for product construction:

• S1: We eliminated break statements in loops in the stan-
dard way by introducing additional boolean variables.5

• S2: We eliminated break statements in loops by using our
Transform rules from Figure 6.

In both strategies, our product construction tries to maxi-
mize the use of the Fusion rules from Figure 6, since this rule
appears to be critical for successful verification.

4 The product construction described in [5] can, in principle, handle arbitrary
control flow. However, the generated product program is only sound under
certain restricted conditions, which must be verified using non-trivial
verification conditions.
5 In this approach, while(true){S; if(b) break;} is modeled
as f=true; while(f){S; if(b) f=false;}

Product construction with S1. In terms of the overall out-
come, this product construction strategy yielded results very
similar to self-composition. In particular, we were only able
to verify half of the benchmarks (50.7% to be exact), and
analysis time was a lot longer (143 seconds/benchmark for
product construction vs. 8 seconds for DESCARTES). While
it may be possible to decrease the false positive rate of this
approach using a more sophisticated invariant generator, this
result demonstrates that our approach is effective even when
used with a relatively simple invariant generation technique.

Product construction with S2. When using strategy S2
together with the Fusion rules of Figure 6, we were able
to prove 85% of the correct benchmarks, but verification
became significantly slower. In particular, DESCARTES is,
on average, ∼ 21× faster compared to the explicit product
construction approach, and, in several cases, three orders
of magnitude faster. However, since the Transform rule is
a contribution of this paper, it is entirely unclear whether
previous product construction approaches can verify the 71
correct benchmarks we consider here.

8. Related Work
The term 2-safety property was originally introduced by
Terauchi and Aiken [23]. They define a 2-safety property to
be “a property which can be refuted by observing two finite
traces" and show that non-interference [16, 19] is a 2-safety
property. Clarkson and Schneider generalize this notion to
k-safety hyperproperties and specify such properties using
second-order formulas over traces [10]. However, they do not
consider the problem of automatically verifying k-safety.

Self-composition. Barthe et al. propose a method called
self-composition for verifying secure information flow [1].
In essence, this method reduces 2-safety to standard safety
by sequentially composing two alpha-renamed copies of the
same program. Self-composition is, in theory, also applicable
for verifying k-safety since we can create k alpha-renamed
copies of the program and use an off-the-shelf verifier. While
theoretically complete, self-composition does not work well
in practice (see Section 7 and [23]).

Product programs. Our work is most closely related to a
line of work on product programs, which have been used
in the context of translation validation [18], proving non-
interference [3, 5] and program optimizations [21]. Given two
programs A,B (with disjoint variables), these approaches
explicitly construct a new program, called the product of
A and B, that is semantically equivalent to A;B but is
somehow easier to verify. While there are several different
techniques for creating product programs, the key idea is to
execute A and B in lockstep whenever possible, with the
goal of making verification easier. Unlike these approaches,
we do not explicitly create a full product program that is
subsequently fed to an off-the-shelf verifier. In contrast, our
approach combines semantic reasoning with the construction

of Hoare triples that are relevant for verifying the desired
k-safety property.

Relational program logics. Our work is also closely related
to a line of work on relational program logics [6, 25]. Ben-
ton originally proposed Relational Hoare Logic (RHL) for
verifying program transformations performed by optimizing
compilers [6]. While Benton’s RHL provides a general frame-
work for relational correctness proofs, it can only be used
when two programs always follow the same control-flow path,
which is not the case for different executions of the same pro-
gram. Several extensions of Benton’s RHL have been devised
by Barthe et al. to verify security properties of probabilistic
systems, where the closest to our work is pRHL [2]. While
pRHL is a relational logic specialized for probabilistic sys-
tems, our core CHL calculus is a generalization of pRHL for
proving general k-safety properties for k > 2, modulo the
rules dedicated to probabilistic reasoning. Specifically, CHL
allows the exploration of any arbitrary interleaving of k pro-
grams and does not require any form of structural similarity
between programs. It is unclear how to use prior work on
relational program logics for proving k-safety properties for
k > 2.

Another key difference of this work from previous tech-
niques is the focus on automation. Specifically, unlike prior
work that uses relational hoare logics, our verification proce-
dure is fully automated and does not rely on interactive theo-
rem provers to discharge proof obligations. Another common
limitation of previous relational logics (e.g., RHL and pRHL)
is that they do not yield satisfactory algorithmic solutions for
reasoning about asynchronous loops that execute different
numbers of times. In contrast, we propose a specialized cal-
culus to reason about both synchronous and asynchronous
loops and show that our approach can be successfully auto-
mated. Furthermore, our approach can reason about loops
that contain multiple exit points, whereas previous work only
considers loops of the form while(C) do S.

Bug finding. In this work, we focused on verifying the ab-
sence of k-safety property violations. While our technique is
sound, it may have false positives. A complementary research
direction is to develop automated bug finding techniques
for finding violations of k-safety properties. One possible
approach for automated bug detection is to construct a har-
ness program using self-composition and then use off-the-
shelf bug detection tools, such as dynamic symbolic exec-
tion [8, 15] or bounded model checking [7, 9]. Based on our
experience with the CATG tool [22] for dynamic symbolic ex-
ecution, this naive approach based on self-composition does
not seem to scale for examples that contain input-dependent
loops. For example, we were not able to successfully use
dynamic symbolic execution to detect the bug in the com-
parator from Figure 1 since CATG times-out. We believe a
promising direction for future research could be to explore
complementary bug finding techniques for detecting viola-
tions of k-safety properties.

9. Conclusion
We have proposed Cartesian Hoare Logic (CHL) for proving
k-safety properties and presented a verification algorithm
that fully automates reasoning in CHL. Our approach can
handle arbitrary values of k, does not require different runs
to follow similar paths, and combines the verification task
with the exploration of k simultaneous executions. Most
importantly, our approach supports full automation and does
not require the use of interactive theorem provers. Our
evaluation shows that DESCARTES is practical and gives
good results when verifying five different k-safety properties
of relational operators in Java programs. Our comparison
also demonstrates the advantages of DESCARTES over self-
composition and explicit product construction approaches,
both in terms of precision as well as running time.

Acknowledgments
The authors would like to thank Valentin Wustholz and
Kostas Ferles for their help with the CATG tool and Doug
Lea, Hongseok Yang, Thomas Dillig, Yu Feng, Navid Yagh-
mazadeh, Vijay D’Silva, Ruben Martins, and the anonymous
reviewers for their helpful feedback.

i int constant

σ, i ⇓ i
σ(x, 0) = i

σ, x ⇓ i

σ, e ⇓ i σ(x, i) = i′

σ, x[e] ⇓ i′
σ, e1 ⇓ i1 σ, e2 ⇓ i2
σ, e1 opa e2 ⇓ i1 opa i2

b ∈ {>,⊥}
σ, b ⇓ JbK

σ, c ⇓ i
σ,¬c ⇓ 1− i

b = choose(>,⊥)
σ, b ⇓ i
σ, ? ⇓ i

� ∈ {∧,∨}
σ, c1 ⇓ i1 σ, c2 ⇓ i2
σ, c1 � c2 ⇓ i1J�Ki2

σ, e1 ⇓ i1 σ, e2 ⇓ i2
σ, e1 opl e2 ⇓ Ji1 opl i2K σ, [⇓ σ

σ, c ⇓ 1

σ,
√
c ⇓ σ

σ, e ⇓ i
σ, x := e ⇓ σ[i/(x, 0)]

σ, e1 ⇓ i1 σ, e2 ⇓ i2
σ, x[e1] := e2 ⇓ σ[i2/(x, i1)]

σ, S1 ⇓ σ1 σ′, S2 ⇓ σ2

σ, S1;S2 ⇓ σ2

σ, c ⇓ 1
σ, S1 ⇓ σ′

σ, S1 ⊕c S2 ⇓ σ′

σ, c ⇓ 0
σ, S2 ⇓ σ′

σ, S1 ⊕c S2 ⇓ σ′

σ, c1 ⇓ 0
σ, S′1 ⇓ σ′

σ, [(c1, S1, S′1), R]∗ ⇓ σ′

σ, c1 ⇓ 1
σ, S1; [R, (c1, S1, S

′
1)]∗ ⇓ σ′

σ, ([(c1, S1, S′1), R]∗ ⇓ σ′

Figure 10. Operational semantics. Here, JbK is 1 if b is true
and 0 otherwise. Also, i1J∧Ki2 is min(i1, i2) and i1J∨Ki2 is
max(i1, i2).

Appendix A: Operational Semantics
Since we define the validity of Cartesian Hoare triples with
respect to an underlying operational semantics, Figure 10
describes the semantics for this language. Specifically, the
operational semantics are presented using judgments of the
form:

σ, e ⇓ int and σ, S ⇓ σ′

Here, σ is a valuation (or store) with signature var×int→
int. For a scalar variable x, σ(x, 0) yields the value of x, and,
for an array x′, σ(x′, i) yields the value stored at index i of
variable x′. Hence, if σ, e ⇓ i, then the value of expression
e evaluates to i under valuation σ. Similarly, σ, S ⇓ σ′

indicates that, if statement S is executed under valuation σ,
then we obtain a new valuation σ′ after executing S. Since the
operational semantics are quite standard, we do not explain
the rules from Figure 10 in detail.

Appendix B
We start by definining a linearization operation L(χ) on
consolidation terms as follows:

L(S) := S
L(χ1 ~ χ2) = L(χ1);L(χ2)

Let �Sn denote S[~x1/~x]; . . . ;S[~xn/~x]. Then, L(�Sn) =
�Sn.

Theorem 1 (Soundness). If ` ‖Φ‖ S ‖Ψ‖, then |= ‖Φ‖ S ‖Ψ‖.

Proof. Using the Expand rule of Figure 5, ` ‖Φ‖ S ‖Ψ‖
implies ` 〈Φ〉 �Sn 〈Ψ〉. Using Lemma 1 and the above
definition, we have ` {Φ} �Sn {Ψ}. By the soundness of
Hoare logic, this implies |= {Φ} �Sn {Ψ}. Now, using the
soundness of self-composition, |= {Φ} �Sn {Ψ} implies
|= ‖Φ‖ S ‖Ψ‖.

Lemma 1. If ` 〈Φ〉 χ 〈Ψ〉, then ` {Φ} L(χ) {Ψ}.

Proof. By structural induction on the proof rules of Figures 5
and 6.

• Lift: Since L(S) = S, the lemma follows from the
premise of the proof rule.
• [-intro 1: By the premise of the proof rule and the

inductive hypothesis, we have ` {Φ} S; [{Ψ}. Since
S; [≡ S, this implies ` {Φ} S {Ψ}. Since L(S) = S,
we have ` {Φ} L(S) {Ψ}.
• [-intro 2: By the premise of the proof rule and the

inductive hypothesis, we have ` {Φ} L(χ~ [) {Ψ}.
Since L(χ~ [) = L(χ), we have ` {Φ} L(χ) {Ψ}.
• [-elim: By the premise of the proof rule and the inductive

hypothesis, we have ` {Φ} L(χ) {Ψ}. Since L(χ~ [) =
L(χ), we have ` {Φ} L(χ~ [) {Ψ}.
• Assoc: By the premise of the proof rule and the IH, we

have ` {Φ} L(χ1 ~ (χ2 ~ χ3)) {Ψ}. Using definition of
linearization, this implies ` {Φ}L(χ1); (L(χ2);L(χ3)) {Ψ}.
Since sequential composition is associative, this means `
{Φ} (L(χ1);L(χ2);)L(χ3) {Ψ}. Using the definition of
linearization again, we have ` {Φ}L((χ1 ~ χ2)~ χ3) {Ψ}.
• Comm: By the premise of the proof rule and induc-

tive hypothesis, we know ` {Φ} L(χ2 ~ χ1) {Ψ}.
Using the definition of linearization, this implies `
{Φ} L(χ2);L(χ1) {Ψ}. Since vars(χ1) ∩ vars(χ2) = ∅,
Lemma 2 implies L(χ2);L(χ1) ≡ L(χ1);L(χ2). Thus,
` {Φ} L(χ1);L(χ2) {Ψ}. Using the definition of lin-
earization, we conclude ` {Φ} L(χ1 ~ χ2) {Ψ}
• Step: By the second premise and the inductive hypothesis,

we have ` {Φ′} L(S2 ~ χ) {Ψ}. Using the definition
of linearization, we obtain ` {Φ′} S2;L(χ) {Ψ}. Using
the first premise and the Hoare logic rule for sequential
composition, we derive ` {Φ} S1;S2;L(χ) {Ψ}. Now,
using the definition of linearization again, we obtain
` {Φ} L(S1;S2 ~ χ) {Ψ}.
• Havoc: We need to show ` {Φ} L(χ) {∃V.Φ}. Clearly,

for any formula Φ, Φ ⇒ ∃V.Φ. Since L(χ) does not
modify variables other than V , {∃V.Φ} L(χ) {∃V.Φ}
is a valid Hoare triple. Using the standard Hoare rule

for consequence (i.e., precondition strengthening), this
implies {Φ} L(χ) {∃V.Φ}.
• Consq: By the premise of the proof rule and the induc-

tive hypothesis, we have ` {Φ′} L(χ) {Ψ′}. Using the
standard Hoare logic rule for consequence, this implies
` {Φ} L(χ) {Ψ}.
• Seq: By the first premise, the inductive hypothesis, and

the definition of linearization, we have:

` {Φ} S1; . . . ;Sn {Φ′}

Using the second premise, IH, and definition of lineariza-
tion, we know ` {Φ′} R1; . . . ;Rn;L(χ) {Ψ}. Using the
standard Hoare logic rule for sequential composition, we
obtain:

` {Φ} S1; . . . ;Sn;R1; . . . ;Rn;L(χ) {Ψ}

Now, using Lemma 3, we can conclude:

` {Φ} S1;R1; . . . ;Sn;Rn;L(χ) {Ψ}

Using the definition of linearization, this allows to deduce:

` {Φ} L((S1;R1 ~ . . .~ Sn;Rn)~ χ) {Ψ}

• If: Using the premises of the If rule and IH, we have `
{Φ ∧ c} S1;S;L(χ) {Ψ} and ` {Φ ∧ ¬c} S2;S;L(χ) {Ψ}.
Using the standard Hoare rule for sequential composition
we have:
1. ` {Φ ∧ c} S1 {Φ1}
2. ` {Φ1} S;L(χ) {Ψ}
3. ` {Φ ∧ ¬c} S2 {Φ2}
4. ` {Φ2} S;L(χ) {Ψ}
Let Φ′ be the wp(Ψ, S;L(χ)). By the validity of 2 and 4,
we know that Φ1 ⇒ Φ′ and Φ2 ⇒ Φ′. By post-condition
weakening and using 1 and 3, we have:
5. ` {Φ ∧ c} S1 {Φ′}
6. ` {Φ ∧ ¬c} S2 {Φ′}
Hence, using the standard Hoare rule for conditionals, we
have
7. ` {Φ} S1 ⊕c S2 {Φ′}
Since Φ′ is wp(Ψ, S;L(χ)) we have
8. ` {Φ′} S;L(χ) {Ψ}
Using the standard Hoare rule for sequential composition,
we have ` {Φ} S1 ⊕c S2;S;L(χ) {Ψ}, which implies
` {Φ} L(S1 ⊕c S2;S ~ χ) {Ψ} from the definition of
linearization.
• Loop: Let L be the loop [(c1, S1, S

′
1), . . . , (cn, Sn, S

′
n)]∗

and let L′ be L with each S′i replaced by skip. We need to
show:

1. ` {Φ} L;L(χ) {Ψ}
From the first premise and the standard Hoare logic rule
for loops, we know:

2. ` {Φ} L′ {I}

Also, from the second premise and the IH, we have:

3. ` {posti(I) ∧ ¬ci} S′i;L(χ) {Ψ}

Let Φ′ be an auxiliary assertion such that:

4. ` {posti(I) ∧ ¬ci} S′i {Φ′}
5. ` {Φ′} L(χ) {Ψ}

We will show {Φ} L {Φ′} is valid, which implies (1)
using (5) and the standard Hoare logic rule for sequential
composition.
Let n denote the number of iterations of L (i.e., the
number of times we evaluate c1), and let Li denote the
sequence of instructions executed for i complete iterations
of L. Since Φ⇒ I and {I} L′ {I}, this means that I is an
invariant of the first n−1 iterations of L (because (i) I is a
loop invariant for L′, and (ii) L and L′ execute exactly the
same sequence of instructions in the first n− 1 iterations).
Hence, using the fact that Φ⇒ I, we have {Φ} Ln−1 {I}
for any n.
Now, consider the last (n’th) iteration of L and suppose
that ci is the first condition to evaluate to false. The
sequence of instructions Ri executed during the n’th
iteration is then:

Ri =
√
c1;S1; . . . ;

√
ci−1;Si−1;

√
¬ci;S′i

Hence, to prove the validity of the Hoare triple {Φ}L {Φ′},
it suffices to prove {Φ} Ln−1;Ri {Φ′} for any n and
i. From earlier, we know {Φ} Ln−1 {I}; so, we only
need to establish {I} Ri {Φ′}. Now, let Rc

i denote√
c1;S1; . . . ;

√
ci;Si, so Ri = Rc

i ;
√
¬ci;S′i. First, ob-

serve that {I}Ri
c {posti(I)} since posti(I) is the strongest

postcondition of Ri
c with respect to I. Using the fact

that {posti(I) ∧ ¬ci} S′i {Φ′} (from (4)), this implies
{I} Ri {Φ′} for all i.
• Flatten: From the second premise of the Flatten proof

rule and the inductive hypothesis, we know:

` {Φ} [(c,B, [)]∗;L(χ) {Ψ}

Let Φ′ be an auxiliary assertion such that ` {Φ} [(c,B, [)]∗ {Φ′}
and ` {Φ′} L(χ) {Ψ}. From the first premise of the proof
rule and Lemma 4, we know that, if ` {Φ} [(c,B, [)]∗ {Φ′},
then we also have ` {Φ} [L]∗ {Φ′}. Using the standard
Hoare logic rule for sequential composition, this implies:

` {Φ} [L]∗;L(χ) {Ψ}

which means ` {Φ} L([L]∗ ~ χ) {Ψ}.
• Fusion 1: We need to show:

` {Φ} [(c1, S1, [)]
∗; . . . ; [(cn, Sn, [)]

∗ {I ∧ ¬
∧
i

ci}

First, we use the following semantic equivalence:

[(c1, S1, [)]
∗; . . . ; [(cn, Sn, [)]

∗

≡
L; [(c1, S1, [)]

∗; . . . ; [(cn, Sn, [)]
∗

where L is [(c1 . . . cn, S1; . . . ;Sn, [)]
∗. According to the

first two lines of the premise of Fusion 1 and the standard
Hoare rule for loops, we know that I is a loop invariant of
L. Let ϕ be the formula:

ϕ : I ∧ ¬
∧
i

ci

Using the standard Hoare logic rule for loops, we have
` {Φ} L {ϕ}. Using the third line of the proof rule, we
know that ϕ ∧ ci ≡ false for every ci (i.e., none of the
loops [(ci, Si, [)]

∗ will execute after L). Hence ϕ is also
an invariant of each loop [(ci, Si, [)]

∗. Hence, we have:

` {Φ} L; [(c1, S1, [)]
∗; . . . ; [(cn, Sn, [)]

∗ {ϕ}

which implies the desired conclusion.
• Fusion 2: We need to show:

` {Φ} [(c1, S1, [)]
∗; . . . ; [(cn, Sn, [)]

∗ {Ψ}

Let L denote [(c1 . . . cn, S1; . . . ;Sn, [)]
∗, and let the

notation Li,j represent:

[(ci, Si, [)]
∗; . . . ; [(cj , Sj , [)]

∗;

We now make use of the following semantic equivalence:

[(c1, S1, [)]
∗; . . . ; [(cn, Sn, [)]

∗

≡
L; (L2,n ⊕¬c1 (L1,1;L3,n ⊕¬c2 . . . ((L1,n−1 ⊕¬cn [)))︸ ︷︷ ︸

Sn−1

)

︸ ︷︷ ︸
Sn

Let ϕ be the following formula:

ϕ : I ∧ ¬
∧

1≤i≤n

ci

The proof now proceeds using induction on k (i.e., number
of nested conditionals in Sk). Observe that S0 = [, and,
for 1 ≤ k ≤ n, Sk is always of the form:

L1,n−k;Ln−k+2,n ⊕cn−k+1
Sk−1

We will show:

` {I ∧ ϕ ∧
∧

1≤i≤n−k

ci} Sk {Ψ}

For the base case, we have k = 0, so S0 = [. In this case,
we have:

(I ∧ ϕ ∧
∧

1≥i≤n−k

ci) ⇒ false

hence the Hoare triple is valid.
For the inductive case, we need to show:

` {I ∧ ϕ ∧
∧

i≤n−k

ci}L1,n−k;Ln−k+2,n ⊕cn−k+1
Sk−1 {Ψ}

From the premises of the proof rule and the inductive
hypothesis of the overall proof, we know:

` {I ∧ cn−k+1} L1,n−k;Ln−k+2,n {Ψ}

By precondition strengthening, this implies:

` {I ∧ ϕ ∧
∧

i≤n−k

ci ∧ cn−k+1} L1,n−k;Ln−k+2,n {Ψ}

From the inductive hypothesis, we also have:

` {I ∧ ϕ ∧
∧

1≤i≤n−k

ci} Sk−1 {Ψ}

Again, by precondition strengthening, this implies:

` {I ∧ ϕ ∧
∧

1≤i≤n−k

ci ∧ ¬cn−k+1} Sk−1 {Ψ}

Hence, using the standard Hoare logic rule for If, we have:

` {I ∧ ϕ ∧
∧

1≤i≤n−k

ci} Sk {Ψ}

To conclude the proof, we need to show ` {Φ} L;Sn {Ψ}.
Observe that the first two premises of the proof rule state
that I as a loop invariant of L; hence, using the standard
Hoare logic rule for loops, we have ` {Φ} L {I ∧ ϕ}.
Since k = n, we have:

I ∧ ϕ ∧
∧

1≤i≤n−k

= I ∧ ϕ

Hence, using the result we just showed, we have `
{I ∧ ϕ} Sn {Ψ}.

Lemma 2. If vars(S1) ∩ vars(S2) = ∅, then S1;S2 ≡
S2;S1.

Proof. Suppose σ, S1;S2 ⇓ σ′ and σ, S2;S1 ⇓ σ′′ but σ′ 6=
σ′′. Let σ = σ1] σ2] σ3 where the dom(σ1) = vars(S1),
dom(σ1) = vars(S2), and dom(σ3) = dom(σ)−vars(S1)−
vars(S2). Suppose σ1, S1 ⇓ σ′1 and σ2, S2 ⇓ σ′2. Clearly,
dom(σ′i) ∩ dom(σj) where j 6= i. Since Si does not modify
σj where j 6= i, we have σ1] σ2] σ3, S1 ⇓ σ′1] σ2] σ3
and σ, S2 ⇓ σ′2] σ1] σ3. By the same reasoning, we also
have σ1]σ′2]σ3, S1 ⇓ σ′1]σ′2]σ3 and σ′1]σ2]σ3, S2 ⇓
σ′1] σ′2] σ3. Using the operational semantics rule for
sequential composition, this means σ, S1;S2 ⇓ σ′1] σ′2] σ3
and σ, S2;S1 ⇓ σ′1] σ′2] σ3. But this implies σ′ = σ′′.

Lemma 3. Let S1;R1, S2;R2, . . . Sn;Rn be statements
such that vars(Si;Ri) ∩ vars(Sj ;Rj) = ∅ for any i 6= j.
Then S1; . . . ;Sn;R1; . . . ;Rn ≡ S1;R1; . . . ;Sn;Rn.

Proof. The proof is by induction on n. The base case is trivial
since S1;R1 ≡ S1;R1. Now, we wish to show:

S1; . . . ;Sk+1;R1; . . . ;Rk+1 ≡ S1;R1; . . . ;Sk+1;Rk+1

for k ≥ 1. Let S = S2; . . . Sk+1. Then, using Lemma 2, we
have S;R1 ≡ R1;S since vars(S) ∩ vars(R1) = ∅. Hence,
this implies:

S1; . . . ;Sk+1;R1; . . . ;Rk+1

≡
S1;R1;S2 . . . ;Sk+1;R2; . . . ;Rk+1

By the inductive hypothesis:

S2; . . . ;Sk+1;R2; . . . ;Rk+1 ≡ S2;R2; . . . ;Sk+1;Rk+1

Hence, we obtain:

S1; . . . ;Sk+1;R1; . . . ;Rk+1 ≡ S1;R1; . . . ;Sk+1;Rk+1

Lemma 4. If L L′;T ′ and ` {Φ} L′;T ′ {Ψ}, then we
also have ` {Φ} L {Ψ}.

Proof. Let n denote the number of iterations of L (i.e., the
number of times we evaluate c1), and let Li denote the se-
quence of instructions executed for i complete iterations of L,
and let Ti be the sequence of instructions executed during the
n’th iteration of n assuming ci is the first condition to eval-
uate to false. Observe that Li = [

√
c1;S1; . . . ,

√
cn;Sn]i =

Bi. Also, note that if ` {Φ} Ln−1;Ti {Ψ} for any n, i,
this implies ` {Φ} L {Ψ}. Hence, we will show that if
` {Φ} L′;T ′ {Ψ}, then ` {Φ} Bn−1;Ti {Ψ}.

Now, if ` {Φ}L′;T ′ {Ψ}, then there exists some auxiliary
assertion I such that Φ ⇒ I and ` {I} B′ {I} where
L′ = [B′]∗ and ` {I} T ′ {Ψ}. We will show that `
{φ} B′ {ϕ′} implies ` {φ} B {ϕ′} and that ` {φ} T ′ {ϕ}
implies that ` {φ} Ti {Ψ}, which suffices to establish
` {Φ} Bn−1;Ti {Ψ}.

The proof proceeds using induction on the number of
break points in L. For the base case, L is of the form
[(c, S, S′)]∗. Given an execution where L iterates n times, we
have [

√
c;S]n−1;

√
¬c;S′. From the Transform-single rule,

we know L [(c, S, [)]∗;
√
¬c;S′. We need to show that

(1) ` {φ} S ⊕c [{ϕ} implies (2) ` {φ}
√
c;S {ϕ}. This

holds because, to show (2), we must show ` {φ ∧ c} S {ϕ},
which follows from the premise of (1). Hence, the base case
holds.

For the inductive case, letL be [(c1, S1, S
′
1), . . . (ck, Sk, S

′
k)]∗.

Now, given an execution where L iterates n times and takes
the i’th exit, we have:

[
√
c1;S1; . . . ;

√
cn;Sn]n−1;Ti

where T1 =
√
¬c1;S′1 and

Ti =
√
c1;S1; . . .

√
ci−1;Si−1;

√
¬ci;S′i (i ≥ 2)

Using the premise of the Transform-multi rule and the induc-
tive hypothesis, we know that, for any φ, ϕ,

` {φ} S′ ⊕c′ [{ϕ} ⇒ ` {φ}
√
c2;S2; . . . ;

√
cn;Sn {ϕ}

and

` {φ} S′′ {ϕ}
⇒

` {φ}
√
c2;S2; . . .

√
ci−1;Si−1;

√
¬ci;S′i {ϕ}

Now, one of the two things we need to show is that, if

(3) ` {φ} S1;S′′ ⊕c1∧wp(c′,S1) [{ϕ}

then
(4) ` {φ}

√
c1;S1; . . . ;

√
cn;Sn {ϕ}

Observe that (3) implies:

(5) ` {φ} S1; (S′′ ⊕c′ [)⊕c1 [{ϕ}

To establish (4), we need to show:

(6) ` {φ ∧ c1} S1; . . . ;
√
cn;Sn {ϕ}

Using (5) and the Hoare rule for if, we have:

(7) ` {φ ∧ c1} S1;S′′ ⊕c′ [{ϕ}

This follows immediately from the inductive hypothesis.
Now, the second (and last) thing we need to show is, if

(8) ` {φ}
√
c1;S1;S′′ ⊕?

√
¬c1;S′1 {ϕ}

then ` {φ} Ti {ϕ}We now proceed using proof by cases on
i. If i = 1, then Ti =

√
¬c1;S′1. This follows immediately

using (8) and the proof rule for if statements (the else branch).
For i ≥ 2, we have:

Ti =
√
c1;S1; . . .

√
ci−1;Si−1;

√
¬ci;S′i

Using (8) and the standard Hoare proof rule for If, we have:

(9) ` {φ}
√
c1;S1;S′′ {ϕ}

Let φ′ be an auxiliary assertion such that ` {φ}
√
c1;S1 {φ′}

and ` {φ′} S′′ {ϕ}. By the inductive hypothesis, ` {φ′} S′′ {ϕ}
implies

` {φ′}
√
c2;S2; . . .

√
ci−1;Si−1;

√
¬ci;S′i {ϕ}

Hence, we have ` {φ} Ti {ϕ}.

Theorem 2 (Relative Completeness). Given an oracle for
deciding the validity of any standard Hoare triple, if |=
‖Φ‖ S ‖Ψ‖, then we also have ` ‖Φ‖ S ‖Ψ‖.

Proof. If |= ‖Φ‖ S ‖Ψ‖, this implies |= {Φ} �Sn {Ψ}.
Due to the relative completeness of Hoare logic, this
implies ` {Φ} �Sn {Ψ}. Using Lemma 5, we have
` 〈Φ〉 �Sn 〈Ψ〉. Hence, using the Expand proof rule, this
implies ` ‖Φ‖ S ‖Ψ‖.

Lemma 5. If ` {Φ} L(χ) {Ψ}, then ` 〈Φ〉 χ 〈Ψ〉.

Proof. Let n be the number of ~ operators in χ. The proof is
by induction on n. For the base case, we have n = 0. In this
case, χ = S = L(χ). Using the Lift rule, we have:

` {Φ} S {Ψ} ⇒` 〈Φ〉 S 〈Ψ〉

For the inductive step, let χ contain n + 1 ~ operators.
First, we use associativity to rewrite χ as S ~ χ′ where
χ′ contains n operators. Clearly, L(χ) = S;L(χ′). By
assumption, we know:

` {Φ} S;L(χ′) {Ψ}

Let Φ′ be an auxiliary assertion such that

` {Φ} S {Φ′} and ` {Φ′} L(χ′) {Ψ}

We need to show ` 〈Φ〉 S ~ χ′ 〈Ψ〉 which then implies
` 〈Φ〉 χ 〈Ψ〉 using associativity. By the inductive hypothesis,
we have ` 〈Φ′〉 χ′ 〈Ψ〉. Using commutativity and [-elim, we
have:

` 〈Φ′〉 [~ χ′ 〈Ψ〉

Now, using Step and ` {Φ} S {Φ′}, we derive:

` 〈Φ〉 S; [~ χ′ 〈Ψ〉

Finally, using [-intro 1, we obtain:

` 〈Φ〉 S;~χ′ 〈Ψ〉

Theorem 3 (Termination). K-VERIFY(Φ, χ,Ψ) terminates
for every Φ, χ,Ψ.

Proof. We assume that the input program, S, has a finite
number of instructions and that VERIFY(Φ, S,Ψ) terminates
for any Φ,Ψ and S. Also, we assume that all sub-routines
of K-VERIFY except K-VERIFYLOOP terminate. Given some
program S, an arbitrary number of applications of all rules ex-
cept Comm, Assoc and K-VERIFYLOOP, leads to termination
since the input of the recursive call to K-VERIFY decreases in
the number of instructions and it is finite. An infinite number
of applications of Assoc is not possible since it would require
an infinite number of programs parenthesised to left. Fur-
thermore, since the algorithm operates by pattern matching,
the check in Line 9, precedes the one in Line 11. Hence, if
we have k programs, the algorithm performs at most k − 1
consecutive applications of Comm. It is left then to prove the
termination of the case K-VERIFY(Φ, χ,Ψ) when it leads to

public int compareTo(Chromosome o) {
if(o == null)

return(1);
int comp = 0;
comp += Double.compare(getScore(1),o.getScore(1));
comp += Double.compare(getScore(2),o.getScore(2));
comp += Double.compare(getScore(3),o.getScore(3));
comp += Double.compare(getScore(5),o.getScore(5));
comp += Double.compare(getScore(7),o.getScore(7));
if(comp == 0)

return(0);
if(comp > 0)

return(1);
else

return(-1);
}

Figure 11. Buggy comparator for Chromosome

K-VERIFYLOOP(Φ, χ,Ψ). The application of the Fuse rules,
Line 7 and 9, and for the same reason the Loop rule, lead to
termination since the size of input decreases in the number
of instructions. However, the same argument does not apply
to the application of the Flatten rule in Line 14, since the
number of instructions increases with respect the size of the
input. Nevertheless, it increases in finite number and there at
most k − 1 applications of Flatten for k programs at which
point, the size of input will decrease. Since the initial χ only
contains a finite number of loops, K-VERIFYLOOP(Φ, χ,Ψ)
is guaranteed to terminate.

Appendix C
Here, we present some representative examples of buggy and
correct comparators whose analysis results were summarized
in Figure 9 from Section 7.

Chromosome benchmark. Figure 11 shows a buggy com-
parator that we found in a discussion from Stackoverflow. In
this example, an instance of the Chromosome class contains
a number of scores generated in various ways. In this scenario,
a developer wants to implement a compareTo method that
sorts chromosomes based on some relevant scores of interest.

The original implementation shown in Figure 11 violates
properties P2 and P3. To see why it violates transitivity (P2),
consider the following table which shows the scores for each
relevant position in three chromosomes A,B,C:

Chromosome S1 S2 S3 S5 S7
A 1 2 3 0 0
B 2 3 1 0 0
C 3 1 2 0 0

Observe that calling B.compareTo(A) and C.compareTo(B)
both yield 1. While transitivity implies C.compareTo(A)
should also yield 1, it actually returns -1, thereby violating
property P2.

Similarly, to see why this implementation violates property
P3, consider the following table:

public int compareTo(Chromosome o) {
if(o == null)

return(1);
int[] indices = {1, 2, 3, 5, 7};
for (int i : indices) {

int s1 = getScore(i);
int s2 = o.getScore(i);
int c = Double.compare(s1, s2);
if (c != 0)

return c;
}
return 0;

}

Figure 12. Correct comparator for Chromosome

Chromosome S1 S2 S3 S5 S7
A 1 0 0 0 0
B 0 1 0 0 0
C -1 1 0 0 0

Here, calling A.compareTo(B) and A.compareTo(C)
both yield 0, but B.compareTo(C) returns 1. Hence, the
implementation also violates property P3.

In contrast, Figure 12 shows the repaired version of the
Chromosome comparator. DESCARTES was able to automati-
cally verify the implementation of the repaired compareTo
method. Furthermore, since DESCARTES does not unroll
loops, but rather infers loop invariants, the proof goes through
even when indices are not statically known.

Name benchmark. Consider a class called myClass
which has a number of fields, including one called name of
type String. A user wants to implement a comparator that
orders myClass objects based on their name. However, the
user also wants to prioritize names that belong to a “priority
list" called strNames. In other words, if we are comparing
two objects A and B such that A.name is less that B.name,
but A.name is in the list strNames, then the compare
method should yield A > B.

Figure 13 shows a buggy comparator implementation
based on this idea. In particular, this comparemethod obeys
properties P2 and P3, but violates P1. To see why, suppose
the list strNames contains the string "abc". Also, let
A,B be objects that both have name "abc". In this case,
compare(A, B) yields 1 and compare(B, A) also
yields 1, thereby breaking the anti-symmetry requirement.

Figure 14 shows a repaired version of this compara-
tor that first checks if x and y are equal before compar-
ing them against the names in strNames. DESCARTES
is able to automatically verify the repaired version of the
NameComparator implementation.

PokerHand benchmark. Consider a program that repre-
sents a poker hand as a 13 character long string such that
the occurrence of number n at position k indicates that the
poker hand contains n cards of type k. For instance, the
string "0100300200100" represents a poker hand which

public class NameComparator implements Comparator {

public int compare(MyClass objX, MyClass objY) {
String x = objX.Name;
String y = objY.Name;
String strCurrentName;

for(strCurrentName: strNames) {
if(strCurrentName.equals(x)) {
return 1;

}
if(strCurrentName.equals(y)) {
return -1;

}
}
return x.compareTo(y);

}

}

Figure 13. Buggy NameComparator

public class NameComparator implements Comparator {

public int compare(MyClass objX, MyClass objY) {
String x = objX.Name;
String y = objY.Name;
String strCurrentName;

if(x.equals(y)) {
return 0;

}

for(strCurrentName: strNames) {
if(strCurrentName.equals(x)) {
return 1;

}
if(strCurrentName.equals(y)) {
return -1;

}
}
return x.compareTo(y);

}

}

Figure 14. Repaired version of NameComparator

consists of one card of 3, three cards of 6, two cards of 9,
and one card of queen. A programmer wishes to implement a
comparator that orders the strings according to the strength
of the corresponding poker hand.

Consider the compare implementation in Figure 15
which was taken from a post on Stackoverflow. This imple-
mentation obeys property P1, but violates properties P2 and
P3. For example, to see why the comparator violates transitiv-
ity, consider the following three poker hands H1, H2, H3:

• Hand 1 (H1): three Kings, one 8, one 7, one 4, one 3,
which is represented as the string "0110011000030"
• Hand 2 (H2): three Queens, two 6’s, one 3, one 2, which

is represented as "1100200000300"

final Comparator<String> COMBINATION_ORDER = new Comparator<String>() {
@Override
public int compare(String c1, String c2) {

if (c1.indexOf(’4’) != -1 || c2.indexOf(’4’) != -1) { // Four of a kind
if (c1.indexOf(’4’) == c2.indexOf(’4’)) {

for (int i = 12; i >= 0; i--) {
if (c1.charAt(i) != ’0’ && c1.charAt(i) != ’4’) {

if (c2.charAt(i) != ’0’ && c2.charAt(i) != ’4’) {
return 0;

}
return 1;

}
if (c2.charAt(i) != ’0’ && c2.charAt(i) != ’4’) {

return -1;
}

}
}
return c1.indexOf(’4’) - c2.indexOf(’4’);

}
int tripleCount1 = StringFunctions.countOccurrencesOf(c1, "3");
int tripleCount2 = StringFunctions.countOccurrencesOf(c2, "3");
if (tripleCount1 > 1 || (tripleCount1 == 1 && c1.indexOf(’2’) != -1) ||

tripleCount2 > 1 || (tripleCount2 == 1 && c2.indexOf(’2’) != -1)) { // Full house
int higherTriple = c1.lastIndexOf(’3’);
if (higherTriple == c2.lastIndexOf(’3’)) {

for (int i = 12; i >= 0; i--) {
if (i == higherTriple) {

continue;
}
if (c1.charAt(i) == ’2’ || c1.charAt(i) == ’3’) {

if (c2.charAt(i) == ’2’ || c2.charAt(i) == ’3’) {
return 0;

}
return 1;

}
if (c2.charAt(i) == ’2’ || c2.charAt(i) == ’3’) {

return -1;
}

}
}
return higherTriple - c2.lastIndexOf(’3’);

}
return 0;

}
};

Figure 15. Buggy version of PokerHand

• Hand 3 (H3): three Jokers, one 8, one 7, one 4, one 3,
which is represented as "0110011003000"

According to the compare function in Figure 15, we
have H1 > H2, and H2 > H3, so transitivity implies
H1 > H3. However, the compare implementation erro-
neously returns 0 on the string "0110011000030" and
"0110011003000". The same counterexample also illus-
trate a violation of property P3 because compare(H1, H3) =
0, compare(H1, H2) = 1, and compare(H3, H2) = −1.

In contrast, Figure 16 shows a correct version of the com-
parator for a poker hand. Again, DESCARTES was able to
automatically verify all properties P1-P3 for the implementa-
tion shown in Figure 16.

final Comparator<String> COMBINATION_ORDER = new Comparator<String>() {
@Override
public int compare(String c1, String c2) {

if (c1.indexOf(’4’) != -1 || c2.indexOf(’4’) != -1) { // Four of a kind
if (c1.indexOf(’4’) == c2.indexOf(’4’)) {

for (int i = 12; i >= 0; i--) {
if (c1.charAt(i) != ’0’ && c1.charAt(i) != ’4’) {

if (c2.charAt(i) != ’0’ && c2.charAt(i) != ’4’) {
return 0;

}
return 1;

}
if (c2.charAt(i) != ’0’ && c2.charAt(i) != ’4’) {

return -1;
}

}
}
return c1.indexOf(’4’) - c2.indexOf(’4’);

}
int tripleCount1 = StringFunctions.countOccurrencesOf(c1, "3");
int tripleCount2 = StringFunctions.countOccurrencesOf(c2, "3");
if (tripleCount1 > 1 || (tripleCount1 == 1 && c1.indexOf(’2’) != -1)) { // c1 Full house

if (tripleCount2 > 1 || (tripleCount2 == 1 && c2.indexOf(’2’) != -1)) { // c2 Full house too
int higherTriple = c1.lastIndexOf(’3’);
if (higherTriple == c2.lastIndexOf(’3’)) {

for (int i = 12; i >= 0; i--) {
if (i == higherTriple) {

continue;
}
if (c1.charAt(i) == ’2’ || c1.charAt(i) == ’3’) {

if (c2.charAt(i) == ’2’ || c2.charAt(i) == ’3’) {
return 0;

}
return 1; // only c1 Full house

}
if (c2.charAt(i) == ’2’ || c2.charAt(i) == ’3’) { // only c2 Full house

return -1;
}

}
}
return higherTriple - c2.lastIndexOf(’3’);

}
return 1;

}
if (tripleCount2 > 1 || (tripleCount2 == 1 && c2.indexOf(’2’) != -1)) {

return -1;
}
return 0;

}
};

Figure 16. Repaired version of PokerHand

References
[1] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information

flow by self-composition. In Computer Security Foundations
Workshop, 2004. Proceedings. 17th IEEE, pages 100–114.
IEEE, 2004.

[2] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certi-
fication of code-based cryptographic proofs. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 90–101. ACM,
2009.

[3] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification
using product programs. In FM 2011: Formal Methods, pages
200–214. Springer, 2011.

[4] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin.
Probabilistic relational reasoning for differential privacy. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
97–110. ACM, 2012.

[5] G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asym-
metric product programs for relational program verification.
In Logical Foundations of Computer Science, pages 29–43.
Springer, 2013.

[6] N. Benton. Simple relational correctness proofs for static
analyses and program transformations. In ACM SIGPLAN
Notices, volume 39, pages 14–25. ACM, 2004.

[7] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu.
Bounded model checking. Advances in computers, 58:117–
148, 2003.

[8] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In OSDI, volume 8, pages 209–224, 2008.

[9] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ansi-c programs. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 168–176. Springer, 2004.

[10] M. R. Clarkson and F. B. Schneider. Hyperproperties. In
Computer Security Foundations Symposium, 2008. CSF’08.
IEEE 21st, pages 51–65. IEEE, 2008.

[11] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of
the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 84–96. ACM, 1978.

[12] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Tools and Algorithms for the Construction and Analysis of

Systems, pages 337–340. Springer, 2008.

[13] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):
107–113, 2008.

[14] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for esc/java. In FME 2001: Formal Methods for
Increasing Software Productivity, pages 500–517. Springer,
2001.

[15] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed auto-
mated random testing. In ACM Sigplan Notices, volume 40,
pages 213–223. ACM, 2005.

[16] J. A. Goguen and J. Meseguer. Security policies and security
models. IEEE, 1982.

[17] A. Miné. The octagon abstract domain. Higher-Order and
Symbolic Computation, 19(1):31–100, 2006.

[18] A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
In Tools and Algorithms for the Construction and Analysis of
Systems, pages 151–166. Springer, 1998.

[19] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. Selected Areas in Communications, IEEE
Journal on, 21(1):5–19, 2003.

[20] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and
A. V. Nori. A data driven approach for algebraic loop invariants.
In Programming Languages and Systems, pages 574–592.
Springer, 2013.

[21] M. Sousa, I. Dillig, D. Vytiniotis, T. Dillig, and C. Gkantsidis.
Consolidation of queries with user-defined functions. PLDI,
49(6):554–564, 2014.

[22] H. Tanno, X. Zhang, T. Hoshino, and K. Sen. Tesma and catg:
Automated test generation tools for models of enterprise appli-
cations. In Proceedings of the 37th International Conference
on Software Engineering - Volume 2, pages 717–720. IEEE
Press, 2015.

[23] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In Static Analysis Symposium (SAS). Springer, 2005.

[24] T. White. Hadoop: The definitive guide. " O’Reilly Media,
Inc.", 2012.

[25] H. Yang. Relational separation logic. Theoretical Computer
Science, 375(1):308–334, 2007.

[26] A. Zaks and A. Pnueli. Covac: Compiler validation by program
analysis of the cross-product. In FM 2008: Formal Methods,
pages 35–51. Springer, 2008.

