
CS243 Homework Assignment 2

Due Tuesday, September 18

Please hand in a hard copy of your solutions before class on the due date.
The answers to the homework assignment should be your own individual
work. You may discuss problems with other students in the class; however,
your write-up must mention the names of these individuals.

1. (20 points, 4 points each) Consider domain D = {?, ◦}, binary predi-
cate p, and unary predicate q with the following interpretation I:

• q(?) = false, q(◦) = true

• p(?, ?) = true, p(?, ◦) = false, p(◦, ?) = false, p(◦, ◦) = true

For each of the first-order logic formulas below, state their truth value
under domain D and interpretation I given above. For each question,
explain your reasoning.

(a) ∀x.∃y.p(x, y)

(b) ∃x.∀y.p(x, y)

(c) ∀x.(q(x)→ (∃y.p(x, y)))

(d) ∀x.∀y.(p(x, y)→ q(x))

(e) ∃x.(q(x)→ (∀y.p(x, y)))

2. (20 points, 4 points each) Consider the following predicates:

• girl(x), which represents x is a girl

• guy(x), which represents x is a guy

• likes(x, y), which represents x likes y

• goodlooking(x), which represents x is goodlooking

Translate the following English sentences into first-order logic:
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(a) Every guy likes a girl.

(b) Some guys like all girls.

(c) Every girl likes all goodlooking guys.

(d) There are some girls who don’t like any guys.

(e) Every goodlooking girl is liked by some guy.

3. (10 points) Prove that the following formula is contingent:

∀x.∀y.(p(x, y)→ p(y, x))

4. (10 points) Prove that the following formulas F1 and F2 are equivalent:

F1 : ¬(∃x.(p(x) ∧ (∃y.(q(y) ∧ ¬r(x, y)))))
F2 : ∀x.(p(x)→ (∀y.(q(y)→ r(x, y))))

Clearly label each equivalence used in your proof.

5. (15 points) Consider the following hypotheses:

H1 : ∃x.(p(x) ∧ q(x))
H2 : ∀x.(q(x)→ r(x))

Use rules of inference to prove that the following conclusion follows
from these hypotheses:

C : ∃x.(p(x) ∧ r(x))

Clearly label the inference rules used at every step of your proof.

6. (15 points) Consider the following hypotheses:

H1 : ∀x.(¬C(x)→ ¬A(x))
H2 : ∀x.(A(x)→ ∀y.B(y))
H3 : ∃x.A(x)

Use rules of inference to prove that the following conclusion follows
from these hypotheses:

C : ∃x.(B(x) ∧ C(x))

Clearly label the inference rules used at every step of your proof.
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