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Announcements

I Class canceled next Thursday – I am out of town

I Homework 4 due Oct 22 instead of next Thursday (Oct 18)
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Agenda for Today

I Talk about RSA algorithm for public-key cryptography

I Start discussion of mathematical induction

I Will spend 2 lectures on mathematical induction
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Cryptography

I Cryptography is the study of techniques for secure
transmission of information in the presence of adversaries

I How can Alice send secrete messages to Bob without Eve
being able to read them?
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Private vs. Public Crypto Systems

I Two different kinds of cryptography systems:

1. Private (secret) key cryptography

2. Public key cryptography

I In private key cryptography, sender and receiver agree on
secret key that both use to encrypt/decrypt the message

I In public key crytography, a public key is used to encrypt the
message, and private key is used to decrypt the message

I Modern systems use puiblic key crypto, best known public key
encryption algorithm is RSA algorithm
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RSA History

I Named after its inventors Rivest, Shamir, and Adlemann, all
researchers at MIT (1978)

I Actually, similar system invented earlier by British researcher
Clifford Cocks, but classified – unknown until 90’s
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RSA Overview

I Bob has two keys: public and private

I Everyone knows Bob’s public key, but
only he knows his private key

I Alice encrypts message using Bob’s
public key

I Bob decrypts message using private key

I Public key can encrypt, but not decrypt

I Therefore, noone can read message
accept Bob
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High Level Math Behind RSA
I In the RSA system, private key consists of two very large

prime numbers p, q

I Public key consists of a number n, which is the product of
p, q and another number e

I e is a number relatively prime with (p − 1)(q − 1) (φ(n),
Euler’s totient function, which gives number of integers ≤ n
and relatively prime with n)

I Encrypt messages using n, e, but to decrypt, must know p, q

I In theory, can extract p, q from n using prime factorization,
but this is intractable for very large numbers

I Security of RSA relies on inherent computational
difficulty of prime factorization
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Encryption in RSA

I To send message to Bob, Alice first represents message as a
sequence of numbers

I Call this number representing message M

I Alice then uses Bob’s public key n, e to perform encryption as:

C = M e (mod n)

I C is called the ciphertext
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Encryption Example

I Encrypt message ”STOP” using RSA with n = 2537, e = 13

I First convert each letter to a number in [0, 25]:
S = 18,T = 19,O = 14,P = 15

I Group sequence into blocks of 4 digits:

M = 1819 1415

I Now encrypt each block as C = M 13 (mod 2537)

I For first block, 181913 (mod 2537) = 2081; for second block
141513 (mod 2537) = 2182

I Ciphertext: 2081 2182
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RSA Decryption

I How do we decrypt cipher text using private keys p, q?

I Decryption key d is the inverse of e modulo (p − 1)(q − 1):

d · e ≡ 1 (mod(p − 1)(q − 1))

I As we saw earlier, inverse of e mod (p − 1)(q − 1) can be
computed reasonably efficiently if we know (p − 1)(q − 1)

I However, since adversaries do not know p, q , they cannot
compute d with reasonable computational effort!

Işıl Dillig, CS243: Discrete Structures More on Cryptography and Mathematical Induction 11/47

RSA Decryption, cont.

I Using the Chinese remainder theorem and another theorem
called Fermat’s Little Theorem, it can be shown that:

(M e)d ≡ M (mod n)

I Since the ciphertext C is just M e , C d (mod n) allows
decrypting the message

I Since Bob can compute d using p, q , Bob can easily decrypt
message, but no one else can!
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Decryption Example

I Decrypt the cipher text 0981 0461 for the RSA cipher with
p = 43, q = 59, and e = 13.

I First we need to compute d , the inverse of e modulo
(p − 1)(q − 1)

I Here, (p − 1)(q − 1) = 2436; thus solve:

13x ≡ 1 (mod 2436)

I To solve this, first compute s, t such that:

13s + 2436t = 1

I Apply extended Euclidian algorithm: s = 937, t = −5
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Example, cont.

Decrypt 0981 0461 using p = 43, q = 59,n = 2537, and e = 13.

I To solve 13x ≡ 1 (mod 2436), computed s = 937, t = −5

I Recall: Solution to this sytem is given by:

x =
sb

d
+

m

d
u where u ∈ Z

I Here, s = 937, b, d = 1,m = 2436, thus solution: e = 937

I 0981937(mod 2537) = 0704; 0461937(mod 2537) = 1115

I Thus, decrypted message is 0704 1115, or in English, ”HELP”
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Security of RSA

I The encryption function used in RSA is a trapdoor function

I Trapdoor function is easy to compute in one direction, but
very difficult in reverse direction without additional knowledge

I Encryption direction is easy because just requires
exponentiation and mod

I Decryption without private key is very hard because requires
prime factorization

I Therefore, security of RSA depends on difficulty of prime
factorization
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Security of RSA, cont.

I However, as computers get more powerful and factorization
algorithms better, possible to factor larger and larger integers

I Therefore, over time, necessary to use larger and larger prime
numbers to ensure secure communication

I For quantum computing, there are very efficient algorithms for
computing prime factors (Shor’s algorithm)

I If we could build quantum computers with sufficient ”qubits”,
RSA would no longer be secure!

I However, today, RSA is considered secure if you use
sufficiently large prime numbers (> 200 digits)
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Book Recommendation

If you are interested in (history of)
cryptography, read ”The Code Book”by
Simon Singh!
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Introduction to Mathematical Induction

I Many mathematical theorems assert that a property holds for
all natural numbers, odd positive integers, etc.

I Mathematical induction: very important proof technique for
proving such universally quantified statements

I Induction will come up over and over again in other classes:

I algorithms, programming languages, automata theory, . . .
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Analogy

I Suppose we have an infinite ladder, and we
know two things:

1. We can reach the first rung of the ladder

2. If we reach a particular rung, then we can
also reach the next rung

I From these two facts, can we conclude we
can reach every step of the infinite ladder?

I Answer is yes, and mathematical induction
allows us to make arguments like this
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Mathematical Induction

I Used to prove statements of the form ∀x ∈ Z+. P(x )

I An inductive proof has two steps:

1. Base case: Prove that P(1) is true

2. Inductive step: Prove ∀n ∈ Z+. P(n)→ P(n + 1)

I Induction says if you can prove (1) and (2), you can conclude:

∀x ∈ Z+. P(x )
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Inductive Hypothesis

I In the inductive step, need to show:

∀n ∈ Z+. P(n)→ P(n + 1)

I To prove this, we assume P(n) holds, and based on this
assumption, prove P(n + 1)

I The assumption that P(n) holds is called the inductive
hypothesis
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Example 1

I Prove the following statement by induction:

∀n ∈ Z+.

n∑

i=1

i =
(n)(n + 1)

2

I Base case: n = 1. In this case,
∑1

i=1 i = 1 and (1)(1+1)
2 = 1; thus,

the base case holds.

I Inductive step: By the inductive hypothesis, we assume P(k):

k∑

i=1

i =
(k)(k + 1)

2

I Now, we want to show P(k + 1):

k+1∑

i=1

i =
(k + 1)(k + 2)

2
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Example 1, cont.

I First, observe:
k+1∑

i=1

i =

k∑

i=1

i + (k + 1)

I By the inductive hypothesis,
∑k

i=1 i =
(k)(k+1)

2 ; thus:

k+1∑

i=1

i =
(k)(k + 1)

2
+ (k + 1)

I Rewrite left hand side as:

k+1∑

i=1

i =
k2 + 3k + 2

2
=

(k + 1)(k + 2)

2

I Since we proved both base case and inductive step, property holds.
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Example 2

I Prove the following statement for all non-negative integers n:

n∑

i=0

2i = 2n+1 − 1

I Since need to show for all n ≥ 0 , base case is P(0), not P(1)!

I Base case (n = 0): 20 = 1 = 21 − 1

I Inductive step:
k+1∑

i=0

2i =
k∑

i=0

2i + 2k+1
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Example 2, cont.

k+1∑

i=0

2i =
k∑

i=0

2i + 2k+1

I By the inductive hypothesis, we have:

k∑

i=0

2i = 2k+1 − 1

I Therefore:
k+1∑

i=0

2i = 2k+1 − 1 + 2k+1

I Rewrite as:
k+1∑

i=0

2i = 2 · 2k+1 − 1+ = 2k+2 − 1
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Example 3

I Prove that n < 2n for all positive integers n

I Base case (n=0): 0 < 20

I Inductive step: Need to show k + 1 < 2k+1 assuming k < 2k

I From the inductive hypothesis, we know k + 1 < 2k + 1

I Since 1 ≤ 2k for k ∈ Z+, this implies k + 1 < 2k + 2k

I Thus, k + 1 < 2 · 2k = 2k+1
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Example 4

I Prove that 2n < n! for all integers n ≥ 4

I Base case (n=4): 24 = 16 < 24 = 4!

I Inductive step: By the inductive hypothesis, we know 2k < k !

I Multiply both sides by 2: 2 · 2k < 2 · k !

I Since k ≥ 4, 2 < k + 1, therefore:

2k+1 < (k + 1)k ! = (k + 1)!
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Example 5

I Prove that 3 | (n3 − n) for all positive integers n.

I Base case (n=1): 3|(0 = 13 − 1)

I Inductive step: Show 3|(k + 1)3 − (k + 1) assuming 3|k3 − k

I First, rewrite (k + 1)3 − (k + 1) as

k3 + 3k2 + 3k + 1− k − 1 = (k3 − k) + 3(k2 + k)

I By the inductive hypothesis, 3|(k2 + k); and also 3|3(k2 + k)

I By Thm from earlier, it follows that 3|(k3 − k + 3(k2 + k))
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Example 6

I We can also use induction to prove results about sets.

I Use induction to prove generalized DeMorgan’s law for sets:

n⋂

j=1

Aj =
n⋃

j=1

Aj for n ≥ 2

I We’ll prove this by induction on the number of sets

I Base case (n=2):

A1 ∩A2 = A1 ∪A2

I We already proved this earlier!
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Example 6, cont.

I Inductive step:
k+1⋂

j=1

Aj = (

k⋂

j=1

Aj ) ∩Ak+1

I Now, using De Morgan’s law, rewrite left hand side:

k+1⋂

j=1

Aj = (

k⋂

j=1

Aj ) ∪Ak+1

I From inductive hypothesis, we have (
⋂k

j=1 Aj ) = ∪kj=1Aj , thus:

k+1⋂

j=1

Aj =

k⋃

j=1

Aj ∪Ak+1 =

k+1⋃

j=1

Aj
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Correctness of Induction

I Why is induction a valid proof technique?

I Suppose we can prove the base case and inductive step, but
∀n.P(n) does not hold for positive integers.

I There must be a least element k for which P(k) doesn’t hold.

I Two possibilities: Either (i) k = 1 or (ii) k ≥ 2

I (i) k cannot be 1 because we proved P(1) in base case

I (ii) Since k is the least element, we know P(k − 1) holds

I But, in the inductive step we proved P(k − 1)→ P(k); thus,
P(k) must also hold!
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Strong Induction

I Slight variation on the inductive proof technique is strong
induction

I Regular and strong induction only differ in the inductive step

I Regular induction: assume P(k) holds and prove P(k + 1)

I Strong induction: assume P(1),P(2), ..,P(k); prove P(k + 1)

I Regular induction and strong induction are equivalent, but
strong induction can sometimes make proofs easier
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Motivation for Strong Induction

I Prove that if n is an integer greater than 1, then it is either a
prime or can be written as the product of primes.

I Let’s first try to prove the property using regular induction.

I Base case (n=2): Since 2 is a prime number, P(2) holds.

I Inductive step: Assume k is either a prime or the product of
primes.

I But this doesn’t really help us prove the property about k + 1!

I Claim is proven much easier using strong induction!
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Proof Using Strong Induction

Prove that if n is an integer greater than 1, then it is either a
prime or can be written as the product of primes.

I Base case: same as before.

I Inductive step: Assume each of 2, 3, . . . , k is either prime or
product of primes.

I Now, we want to prove the same thing about k + 1

I Two cases: k is either (i) prime or (ii) composite

I If it is prime, property holds.
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Proof, cont.

I If composite, k + 1 can be written as pq where 2 ≥ p, q ≥ k

I By the IH, p, q are either primes or product of primes.

I Thus, k + 1 can also be written as product of primes

I Observe: Much easier to prove this property using strong
induction!
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A Word about Base Cases

I In all examples so far, we had only one base case

I i.e., only proved the base case for one integer

I In some inductive proofs, there may be multiple base cases

I i.e., prove base case for the first k numbers

I In the latter case, inductive step only needs to consider
numbers greater than k
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Example

I Prove that every integer n ≥ 12 can be written as
n = 4a + 5b for some non-negative integers a, b.

I Proof by strong induction on n and consider 4 base cases

I Base case 1 (n=12): 12 = 3 · 4 + 0 · 5

I Base case 2 (n=13): 13 = 2 · 4 + 1 · 5

I Base case 3 (n=14): 14 = 1 · 4 + 2 · 5

I Base case 4 (n=15): 15 = 0 · 4 + 3 · 5
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Example, cont.

Prove that every integer n ≥ 12 can be written as n = 4a + 5b for
some non-negative integers a, b.

I Inductive hypothesis: Suppose every 12 ≤ i ≤ k can be
written as i = 4a + 5b.

I Inductive step: We want to show k + 1 can also be written
this way for k + 1 ≥ 16

I Observe: k + 1 = (k − 3) + 4

I By the inductive hypothesis, k − 3 = 4a + 5b for some a, b
because k − 3 ≥ 12

I But then, k + 1 can be written as 4(a + 1) + 5b
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Recursive Definitions

I In some cases, it is easier to define objects/functions in terms
of themselves rather than directly

I Such definitions are called recursive definitions

I Picture below is ”defined” recursively because each picture
containts a smaller version of itself
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Recursive Definitions in Math

I Recursive definitions come up a lot in discrete math

I For example, consider the following sequence:

1, 3, 9, 27, 81, . . .

I This sequence can be defined recursively as follows:

a0 = 1
an = 3 · an−1

I First part called base case; second part called recursive step

I Very similar to induction; in fact, recursive definitions
sometimes also called inductive definitions
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Recursively Defined Functions

I Just like sequences, functions can also be defined recursively

I Example:

f (0) = 3
f (n + 1) = 2f (n) + 3 (n ≥ 1)

I What is f (1)?

I What is f (2)?

I What is f (3)?
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Recursive Definition Examples

I Consider f (n) = 2n + 1 where n is non-negative integer

I What’s a recursive definition for f ?

I Consider the sequence 1, 4, 9, 16, . . .

I What is a recursive definition for this sequence?

I Recursive definition of function defined as f (n) =
n∑

i=1
i?
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Recursive Definitions of Important Functions

I Some important functions/sequences defined recursively

I Factorial function:

f (1) = 1
f (n) = n · f (n − 1) (n ≥ 2)

I Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, . . .

a1 = 1
a2 = 2
an = an−1 + an−2 (n ≥ 3)

I Just like there can be multiple bases cases in inductive proofs,
there can be multiple base cases in recursive definitions
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Inductive Proofs for Recursively Defined Structures

I Recursive definitions and inductive proofs are very similar

I Natural to use induction to prove properties about recursively
defined structures (sequences, functions etc.)
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Example

I Let fn denote the n’th element of the Fibonacci sequence

I Prove: For n ≥ 3, fn > αn−2 where α = 1+
√
5

2

I Proof is by strong induction on n with two base cases

I Intuition 1: Definition of fn has two base cases

I Intuition 2: Recursive step uses fn−1, fn−2 ⇒ strong induction

I Base case 1 (n=3): f3 = 2, and α < 2, thus f3 > α

I Base case 2 (n=4): f4 = 3 and α2 = (3+
√
5)

2 < 3
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Example, cont.

Prove: For n ≥ 3, fn > αn−2 where α = 1+
√
5

2

I Inductive step: Assuming property holds for fi where
3 ≤ i ≤ k , need to show fk+1 > αk−1

I First, rewrite αk−1 as α2αk−3

I α2 is equal to 1 + α because:

α2 =

(
1 +
√
5

2

)2

=

√
5 + 3

2
= α+ 1

I Thus, αk−1 = (α+ 1)(αk−3) = αk−2αk−3
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Example, cont.

I αk−1 = αk−2αk−3

I By recursive definition, we know fk+1 = fk + fk−1

I Furthermore, by inductive hypothesis:

fk > αk−2 fk−1 > αk−3

I Therefore, fk+1 > αk−2αk−3 = αk−1
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