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Announcements

I Homework 4 is due today

I Homework 5 is out today

I Covers induction (last lecture, this lecture, and next lecture)

I Homework 5 due next Thursday Nov. 1

I 7 questions, all of them require proofs ⇒ start early!
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Review

I Induction is used to prove universally quantified properties
about natural numbers and other countably infinite sets

I Consists of a base case and inductive step

I Base case: prove property about the least element(s)

I Inductive step: assume P(k) and prove P(k + 1)

I The assumption that P(k) is true is called inductive
hypothesis
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Example (review)

I Prove the following statement by induction:

∀n ∈ Z+.

n∑

i=1

i =
(n)(n + 1)

2

I Base case: n = 1. In this case,
∑1

i=1 i = 1 and (1)(1+1)
2 = 1; thus,

the base case holds.

I Inductive step: By the inductive hypothesis, we assume P(k):

k∑

i=1

i =
(k)(k + 1)

2

I Now, we want to show P(k + 1):

k+1∑

i=1

i =
(k + 1)(k + 2)

2
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Example (review), cont.

I First, observe:
k+1∑

i=1

i =

k∑

i=1

i + (k + 1)

I By the inductive hypothesis,
∑k

i=1 i = (k)(k+1)
2 ; thus:

k+1∑

i=1

i =
(k)(k + 1)

2
+ (k + 1)

I Rewrite left hand side as:

k+1∑

i=1

i =
k2 + 3k + 2

2
=

(k + 1)(k + 2)

2

I Since we proved both base case and inductive step, property holds.

Işıl Dillig, CS243: Discrete Structures Strong Induction and Recursively Defined Structures 5/34

Plan for Today

I Strong induction

I Recursive definitions

I Proving properties of recursively defined functions
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Strong Induction

I Strong induction is a proof technique that is a slight variation
on matemathical (regular) induction

I Just like regular induction, have to prove base case and
inductive step, but inductive step is slightly different

I Regular induction: assume P(k) holds and prove P(k + 1)

I Strong induction: assume P(1),P(2), ..,P(k); prove P(k + 1)

I Regular induction and strong induction are equivalent, but
strong induction can sometimes make proofs easier
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Motivation for Strong Induction

I Prove that if n is an integer greater than 1, then it is either a
prime or can be written as the product of primes.

I Let’s first try to prove the property using regular induction.

I Base case (n=2): Since 2 is a prime number, P(2) holds.

I Inductive step: Assume k is either a prime or the product of
primes.

I But this doesn’t really help us prove the property about k + 1!

I Claim is proven much easier using strong induction!
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Proof Using Strong Induction

Prove that if n is an integer greater than 1, then it is either a
prime or can be written as the product of primes.

I Base case: same as before.

I Inductive step: Assume each of 2, 3, . . . , k is either prime or
product of primes.

I Now, we want to prove the same thing about k + 1

I Two cases: k + 1 is either (i) prime or (ii) composite

I If it is prime, property holds.
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Proof, cont.

I If composite, k + 1 can be written as pq where 2 ≥ p, q ≥ k

I Because a composite number has a divisor distinct from 1 and
itself

I By the IH, p, q are either primes or product of primes.

I Thus, k + 1 can also be written as product of primes

I Observe: Much easier to prove this property using strong
induction!
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A Word about Base Cases

I In all examples so far, we had only one base case

I i.e., only proved the base case for one integer

I In some inductive proofs, there may be multiple base cases

I i.e., prove base case for the first m numbers

I Perfectly fine to have inductive proofs with multiple base cases

I In such proofs, inductive step only needs to consider numbers
greater than m
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Example

I Prove that every integer n ≥ 12 can be written as
n = 4a + 5b for some non-negative integers a, b.

I Proof by strong induction on n and consider 4 base cases

I Base case 1 (n=12):

I Base case 2 (n=13):

I Base case 3 (n=14):

I Base case 4 (n=15):
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Example, cont.

Prove that every integer n ≥ 12 can be written as n = 4a + 5b for
some non-negative integers a, b.

I Inductive hypothesis: Suppose every 12 ≤ i ≤ k can be
written as i = 4a + 5b.

I Inductive step: We want to show k + 1 can also be written
this way for k + 1 ≥ 16

I Observe: k + 1 = (k − 3) + 4

I By IH, k − 3 = 4a + 5b for some a, b because k − 3 ≥ 12

I But then, k + 1 can be written as 4(a + 1) + 5b

I Would this proof work if we only showed base case for n = 12?
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Recursive Definitions

I In this class, we saw how to define functions and sequences:

I f (n) = 2n

I an = 3n + 1

I These are examples of direct (non-recursive) definitions

I But in some cases, it is easier to define functions/sets in
terms of themselves rather than directly
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Recursive Definitions

I Definitions of structures that refer to themselves are called
recursive definitions

I Picture below is ”defined” recursively because each picture
containts a smaller version of itself
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Recursive Definitions in Math

I Recursive definitions come up a lot in discrete math

I Consider the factorial function: n! = 1 · 2 · 3 . . . · n

I This is a direct definition, but easier to define factorial
recursively:

1! = 1
n! = (n − 1)! · n

I Definition is recursive because we use ! when defining !
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General Structure of Recursive Definitions

I Recursive definitions consist of base case and recursive step

I Base case defines function for least element in the domain

I Recursive step shows how to compute f (k + 1) assuming f (k)
can be computed

I For factorial, base case is 1! = 1

I For factorial, recursive step is n! = (n − 1)! · n

I Recursive definitions are similar to proofs by induction

I In fact, recursive definitions sometimes called inductive
definitions
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Recursively Defined Function Example

I Here is another recursive definition:

f (0) = 3
f (n + 1) = 2f (n) + 3 (n ≥ 1)

I What is f (1)?

I What is f (2)?

I What is f (3)?
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Recursively Defined Sequences

I Just like functions, sequences can also be defined recursively

I For example, consider the following sequence:

1, 3, 9, 27, 81, . . .

I What is a recursive definition of this sequence?

I Base case:

I Recursive step:
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Recursive Definition Examples

I Consider f (n) = 2n + 1 where n is non-negative integer

I What’s a recursive definition for f ?

I Consider the sequence 1, 4, 9, 16, . . .

I What is a recursive definition for this sequence?

I Recursive definition of function defined as f (n) =
n∑

i=1
i?
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Recursive Definitions of Important Functions

I Some important functions/sequences defined recursively

I Factorial function:

f (1) = 1
f (n) = n · f (n − 1) (n ≥ 2)

I Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

a0 = 0
a1 = 1
an = an−1 + an−2 (n ≥ 2)

I Just like there can be multiple bases cases in inductive proofs,
there can be multiple base cases in recursive definitions

Işıl Dillig, CS243: Discrete Structures Strong Induction and Recursively Defined Structures 21/34

Inductive Proofs for Recursively Defined Structures

I Recursive definitions and inductive proofs are very similar

I Therefore, it’s natural to use induction to prove properties
about recursively defined functions and sequences

I In these proofs, base case of induction shows property holds
for base case of recursive definition

I Similarly, the inductive step shows the property holds for the
recursive part of the definition
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Example 1

I Consider the function defined recursively as follows:

f (0) = 1
f (n) = f (n − 1) + 3

I Prove that f (n) = 3n + 1

I We’ll prove this by regular mathematical induction

I Base case:
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Example 1, cont.

f (0) = 1
f (n) = f (n − 1) + 3

I Inductive step: We need to show f (k + 1) = 3(k + 1) + 1
assuming f (k) = 3k + 1

I Using the recursive case of definition, f (k + 1) = f (k) + 3

I From IH, f (k) = 3k + 1

I Thus, f (k + 1) = 3k + 1 + 3 = 3(k + 1) + 1
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Example 2

I Let fn denote the n’th element of the Fibonacci sequence

I Prove: For n ≥ 3, fn > αn−2 where α = 1+
√
5

2

I Proof is by strong induction on n with two base cases

I Base case 1 (n=3): f3 = 2, and α < 2, thus f3 > α

I Base case 2 (n=4): f4 = 3 and α2 = (3+
√
5)

2 < 3
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Example 2, cont.

Prove: For n ≥ 3, fn > αn−2 where α = 1+
√
5

2

I Inductive step: We need to show fk+1 > αk−1 for k + 1 > 4

I Using IH, we can assume fi > αi−2 for 3 ≤ i ≤ k

I First, rewrite αk−1 as α2αk−3

I α2 is equal to 1 + α because:

α2 =

(
1 +
√

5

2

)2

=

√
5 + 3

2
= α+ 1

I Thus, αk−1 = (α+ 1)(αk−3) = αk−2αk−3
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Example, cont.

I αk−1 = αk−2αk−3

I By recursive definition, we know fk+1 = fk + fk−1

I Furthermore, by inductive hypothesis:

fk > αk−2 fk−1 > αk−3

I Therefore, fk+1 > αk−2αk−3 = αk−1
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Recursively Defined Sets and Structures

I We saw how to define functions and sequences recursively

I We can also define sets and other data structures recursively

I Example: Consider the set S defined as:

3 ∈ S
If x ∈ S and y ∈ S , then x + y ∈ S

I What is the set S defined as above?
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More Examples

I Give a recursive definition of the set E of all even integers:

I Base case:

I Recursive step:

I Give a recursive definition of N, the set of all natural numbers:

I Base case:

I Recursive step:
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Strings and Alphabets

I Recursive definitions play important role in study of strings

I Strings are defined over an alphabet Σ

I Example: Σ1 = {a, b}

I Example: Σ2 = {0}

I Examples of strings over Σ1: a, b, aa, ab, ba, bb, . . .

I Set of all strings formed from Σ forms language called Σ∗

I Σ∗
2 = {ε, 0, 00, 000, . . .}
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Recursive Definition of Strings

I The language Σ∗ has natural recursive definition:

I Base case: ε ∈ Σ∗ (empty string)

I Recursive step: If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗

I Since ε is the empty string, εs = s

I Consider the alphabet Σ = {0, 1}

I How is the string ”1” formed according to this definition?

I How is ”10” formed?
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Recursive Definitions of String Operations

I Many operations on strings can be defined recursively.

I Consider function l(w) which yields length of string w

I Example: Give recursive definition of l(w)

I Base case:

I Recursive step:
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Another Example

I The reverse of a string s is s written backwards.

I Example: Reverse of ”abc” is ”bca”

I Give a recursive definition of the reverse(s) operation

I Base case:

I Recursive step:
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Palindromes

I A palindrome is a string that reads the same forwards and
backwards

I Examples: ”mom”, ”dad”, ”abba”, ”Madam I’m Adam”, . . .

I Give a recursive definition of the set P of all palindromes over
the alphabet Σ = {a, b}

I Base cases:

I Recursive step:
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