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Functions

I A function f from a set A to a set B assigns each element of
A to exactly one element of B .

I A is called domain of f , and B is called codomain of f .

I If f maps element a ∈ A to element b ∈ B , we write f (a) = b

I If f (a) = b, b is called image of a; a is called preimage of b.

I Range of f is the set of all images of elements in A.
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Functions Examples and Non-Examples

Is this mapping a function?

A B

Işıl Dillig, CS243: Discrete Structures Functions 3/35

Functions Examples and Non-Examples

Is this mapping a function?

A B
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Function Terminology Examples

A B
a

b

c

d

e

f

I What is the range of this function?

I What is the image of c?

I What is the preimage of e?
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Image of a Set

I We can extend the definition of image to a set

I Suppose f is a function from A to B and S is a subset of A

I The image of S under f includes exactly those elements of B
that are images of elements of S :

f (S ) = {t | ∃s ∈ S . t = f (s)}

I What is the image of {b, c}?
A B

a

b

c

d

e

f
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One-to-One Functions

I A function f is called one-to-one if and only if f (x ) = f (y)
implies x = y for every x , y in the domain of f :

∀x , y . (f (x ) = f (y)→ x = y)

I One-to-one functions never assign different elements in the
domain to the same element in the codomain:

∀x , y . (x 6= y → f (x ) 6= f (y))

I A one-to-one function also called injection or injective function

I Is this function one-to-one?

A B
a

b

c

d

e

f
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More Injective Function Examples

I Is this function injective?

A B
a

b

c

d
e
f
g

I Consider the function f (x ) = x 2 from set of integers to set of
integers. Is this injective?

I What about if the domain of f is the set of non-negative
integers?
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Proving Injectivity Example

I Consider the function f from Z to Z defined as:

f (x ) =

{
3x + 1 if x ≥ 0
−3x + 2 if x < 0

I Prove that f is injective.

I We need to show that if x 6= y , then f (x ) 6= f (y)

I What proof technique do we need to use?
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Proving Injectivity Example, cont.

f (x ) =

{
3x + 1 if x ≥ 0
−3x + 2 if x < 0

I Case 1: x ≥ 0, y ≥ 0

I Let’s use proof by contradiction.

I Suppose x 6= y , but f (x ) = f (y)

I Since x , y ≥ 0, f (x ) = 3x + 1 and f (y) = 3y + 1

I Since we assume f (x ) = f (y), this implies 3x + 1 = 3y + 1

I But this implies x = y , a contradiction.
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Proving Injectivity Example, cont.

f (x ) =

{
3x + 1 if x ≥ 0
−3x + 2 if x < 0

I Case 2: x ≥ 0, y < 0

I For contradiction, suppose x 6= y , but f (x ) = f (y)

I Since x ≥ 0, f (x ) = 3x + 1

I Since y < 0, f (y) = −3y + 2

I Since we assume f (x ) = f (y), this implies 3x + 1 = −3y + 2

I But the equation 3x + 3y = 1 has no solutions over integers,
thus f (x ) 6= f (y)
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Proving Injectivity Example, cont.

f (x ) =

{
3x + 1 if x ≥ 0
−3x + 2 if x < 0

I Case 3: y ≥ 0, x < 0

I This proof is same as proof of case 2.

I Case 4: x < 0, y < 0

I Suppose x 6= y but f (x ) = f (y)

I Then, −3x + 2 = −3y + 2, but this implies x = y , a
contradiction.
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Onto Functions

I A function f from A to B is called onto iff for every element
y ∈ B , there is an element x ∈ A such that f (x ) = y :

∀y . (y ∈ B → (∃x . (x ∈ A ∧ f (x ) = y))

I Onto functions also called surjective functions or surjections

I Another way of desrcibing onto functions: range and
codomain are the same

I Is this function onto?

A B
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Examples of Onto Functions

I Is this function onto?

A B
a

b

c

d
e
f
g

I Consider the function f (x ) = x 2 from the set of integers to
the set of integers. Is f surjective?
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Bijective Functions

I Function that is both onto and one-to-one called bijection

I Bijection also called one-to-one correspondence or invertible
function

I Example of bijection:

A B
a

b

c

d
e
f
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Bijection Example

I The identity function I on a set A is the function that assigns
every element of A to itself, i.e., ∀x ∈ A. I (x ) = x

I Prove that the identity function is a bijection.

I Need to prove I is both one-to-one and onto.

I One-to-one: We need to show ∀x , y . (x 6= y → I (x ) 6= I (y))

I Suppose x 6= y .

I Since I (x ) = x and I (y) = y , and x 6= y , I (x ) 6= I (y)
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Bijection Example, cont.

I Now, prove I is onto, i.e., for every b, there exists some a
such that f (a) = b

I For contradiction, suppose there is some b such that
∀a ∈ A. I (a) 6= b

I Since I (a) = a, this means ∀a ∈ A. a 6= b

I But since b is itself in A, this would imply b 6= b, yielding a
contradiction.

I Since I is both onto and one-to-one, it is a bijection.
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Inverse Functions

I Every bijection from set A to set B also has an inverse
function

I The inverse of bijection f , written f −1, is the function that
assigns to b ∈ B a unique element a ∈ A such that f (a) = b

A B

a
b

f

f -1

I Observe: Inverse functions are only defined for bijections, not
arbitrary functions!

I This is why bijections are also called invertible functions
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Why are Inverse Functions Only Defined on Bijections?

I Suppose f is not injective, i.e., assigns distinct elements to
the same element.

A B
a

b

c

d

e

f

I Then, the inverse is not a function because it assigns the
same element to distinct elements

Işıl Dillig, CS243: Discrete Structures Functions 21/35

Why are Inverse Functions Only Defined on Bijections?

I Suppose f is not surjective, i.e., range and codomain are not
the same

A B
a

b

c

d
e
f
g

I Then, the inverse is not a function because it does not assign
some element in B to any element in A

I Hence, inverse functions only defined for bijections!
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Inverse Function Examples

I Let f be the function from Z to Z such that f (x ) = x 2. Is f
invertible?

I Let g be the function from Z to Z such that g(x ) = x + 1. Is
g invertible?

I What is g−1?
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Function Composition

I Let g be a function from A to B , and f from B to C .

I The composition of f and g , written f ◦ g , is defined by:

(f ◦ g)(x ) = f (g(x ))

A B

a

g(a)

f Cg

f(g(a))

f g
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Composition Example

I Let f and g be function from Z to Z such that f (x ) = 2x + 3
and g(x ) = 3x + 2

I What is f ◦ g?
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Another Composition Example

I Prove that f −1 ◦ f = I where I is the identity function.

I Since I (x ) = x , need to show (f −1 ◦ f )(x ) = x

I First, (f −1 ◦ f )(x ) = f −1(f (x ))

I Let f (x ) be y

I Then, f −1(f (x )) = f −1(y)

I By definition of inverse, f −1(y) = x iff f (x ) = y

I Thus, f −1(f (x )) = f −1(y) = x
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Example

I Prove that if f and g are injective, then f ◦ g is also injective.
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Floor and Ceiling Functions

I Two important functions in discrete math are floor and ceiling
functions, both from R to Z

I The floor of a real number x , written bxc, is the largest
integer less than or equal to x .
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Ceiling Function

I The ceiling of a real number x , written dxe, is the smallest
integer greater than or equal to x .
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Useful Properties of Floor and Ceiling Functions

I I I I I
x x+1x-1    n

(m-1)
   m
(n+1)

1. For integer n and real number x , bxc = n iff n ≤ x < n + 1

2. For integer n and real number x , dxe = m iff m − 1 < x ≤ m

3. For any real x , x − 1 < bxc ≤ x ≤ dxe < x + 1
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Proofs about Floor/Ceiling Functions

I I I I I
x x+1x-1    n

(m-1)
   m
(n+1)

Prove that b−xc = −dxe

I Let m be dxe. Then, by property (2), m − 1 < x ≤ m

I Multiple both sides by −1: −m + 1 > −x ≥ −m

I Rewrite this as: −m ≤ −x < −m + 1

I Now, by property (1), we have b−xc = −m

I Thus, b−xc = −m = −dxe
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Another Example

I I I I I
x x+1x-1    n

(m-1)
   m
(n+1)

Prove that bx + kc = bxc+ k where k is an integer

I Let n be bxc. Then, by property (1), n ≤ x < n + 1

I Add k to both sides: n + k ≤ x + k < n + k + 1

I Again, by property (1), bx + kc = n + k

I Since bxc = n, bxc+ k is also n + k

I Hence, bx + kc = bxc+ k
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More Examples

Prove that b2xc = bxc+
⌊
x + 1

2

⌋

I Observe: Any real number x can be written as n + ε where
n = bxc and 0 ≤ ε < 1

I To prove desired property, do proof by cases

I Case 1: 0 ≤ ε < 1
2

I Case 2: 1
2 ≤ ε < 1

I First prove property for first case, then second case
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Proof of Case 1

Prove that b2xc = bxc+
⌊
x + 1

2

⌋

I Let x be n + ε where 0 ≤ ε < 1
2

I Then, 2x = 2n + 2ε where 0 ≤ 2ε < 1

I Hence, b2xc = 2n

I Furthermore, x + 1
2 = n + ε+ 1

2

I Since ε+ 1
2 < 1,

⌊
x + 1

2

⌋
= n

I Thus, bxc+
⌊
x + 1

2

⌋
is also 2n = b2xc
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Proof of Case 2

Prove that b2xc = bxc+
⌊
x + 1

2

⌋

I Let x be n + ε where 1
2 ≤ ε < 1

I Then, 2x = 2n + 2ε where 1 ≤ 2ε < 2

I Hence, 2x = 2n + 1 + ε′ where 0 ≤ ε′ < 1

I Thus, b2xc = 2n + 1

I Furthermore, x + 1
2 = n + ε+ 1

2 = n + 1 + ε′′ (0 ≤ ε′′ < 1)

I Thus,
⌊
x + 1

2

⌋
= n + 1

I Thus, bxc+
⌊
x + 1

2

⌋
is also n + n + 1 = 2n + 1 = b2xc
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