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Functions

v

A function f from a set A to a set B assigns each element of
A to exactly one element of B.

v

A is called domain of f, and B is called codomain of f.

v

If f maps element a € A to element b € B, we write f(a) = b

v

If f(a) =0, bis called image of a; a is called preimage of b.

v

Range of f is the set of all images of elements in A.
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Function Terminology Examples

» What is the range of this function?
» What is the image of ¢?

» What is the preimage of e?

Image of a Set

> We can extend the definition of image to a set

» Suppose f is a function from A to B and S is a subset of A

> The image of S under f includes exactly those elements of B
that are images of elements of S:
fS) =A{t]3IseS. t=f(s)}
» What is the image of {b, c}?
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One-to-One Functions

» A function f is called one-to-one if and only if f(z) = f(y)
implies © = y for every z, y in the domain of f:

Va,y. (f(z) =f(y) >z =vy)

» One-to-one functions never assign different elements in the
domain to the same element in the codomain:

Vo, y. (¢ #y — f(z) # f(y))
» A one-to-one function also called injection or injective function

» |s this function one-to-one?

Gusy

More Injective Function Examples

> |s this function injective?

A B

» Consider the function f(z) = 22 from set of integers to set of
integers. Is this injective?

» What about if the domain of f is the set of non-negative
integers?
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Proving Injectivity Example

» Consider the function f from Z to Z defined as:
3r+1 ifz>0
fle) = { 3z +2 ifr<0

v

Prove that f is injective.

v

We need to show that if z # y, then f(z) # f(y)

v

What proof technique do we need to use?

Proving Injectivity Example, cont.

()= { —3;;4-12

Case 1: >0,y>0

ifz>0
if x <0

v

> Let's use proof by contradiction.

v

Suppose @ # y, but f(z) = f(y)
> Since z,y >0, f(z) =3z +1and f(y) =3y +1

> Since we assume f(z) = f(y), this implies 3z +1 =3y + 1

v

But this implies = y, a contradiction.
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Proving Injectivity Example, cont.

f(@) = { E;ﬂf—:*lQ

Case2: 2>0,y<0

ifz>0
if £ <0

v

v

For contradiction, suppose = # y, but f(z) = f(y)

v

Since z >0, f(z) =3z +1

v

Since y <0, f(y) = -3y +2

» Since we assume f(z) = f(y), this implies 3z +1 = —3y + 2

v

But the equation 3z + 3y = 1 has no solutions over integers,

thus f(z) # f(y)

Proving Injectivity Example, cont.
3z +1

f(“:{ ~3z+2

> Case3: y >0, 2<0

if >0
if <0

v

This proof is same as proof of case 2.
> Case 4: 2 <0,y <0

» Suppose z # y but f(z) = f(y)

v

Then, —3x + 2 = —3y + 2, but this implies z = y, a
contradiction.
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Onto Functions

» A function f from A to B is called onto iff for every element
y € B, there is an element z € A such that f(z) = y:

Vy. (ye€ B— (Fz. (z € ANf(z)=y))
» Onto functions also called surjective functions or surjections

» Another way of desrcibing onto functions: range and
codomain are the same

» s this function onto?

A B

Examples of Onto Functions

» Is this function onto?

A B

» Consider the function f(z) = z? from the set of integers to
the set of integers. Is f surjective?
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Bijective Functions

» Function that is both onto and one-to-one called bijection

» Bijection also called one-to-one correspondence or invertible
function

» Example of bijection:

A B

Bijection Example

» The identity function I on a set A is the function that assigns
every element of 4 to itself, i.e,, Vz € A. I(z) ==z

> Prove that the identity function is a bijection.

> Need to prove I is both one-to-one and onto.

> One-to-one: We need to show Vz,y. (z #y — I(z) # I(y))
> Suppose x # y.

> Since I(z) =z and I(y) =y, and z # y, I(z) # I(y)
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Bijection Example, cont.

» Now, prove [ is onto, i.e., for every b, there exists some a
such that f(a) = b

» For contradiction, suppose there is some b such that
Vaec A I(a) # b

> Since I(a) = a, thismeansVa € A. a # b

» But since b is itself in A, this would imply b # b, yielding a
contradiction.

» Since I is both onto and one-to-one, it is a bijection. |

Inverse Functions

> Every bijection from set A to set B also has an inverse
function

» The inverse of bijection f, written f~1, is the function that
assigns to b € B a unique element a € A such that f(a) = b

» Observe: Inverse functions are only defined for bijections, not
arbitrary functions!

» This is why bijections are also called invertible functions

Isil Dillig, €5243: Discrete Structures Functions 10/35

20/35

il Dillg,

Why are Inverse Functions Only Defined on Bijections?

» Suppose f is not injective, i.e., assigns distinct elements to
the same element.

» Then, the inverse is not a function because it assigns the
same element to distinct elements

Why are Inverse Functions Only Defined on Bijections?

» Suppose f is not surjective, i.e., range and codomain are not

the same
A B

> Then, the inverse is not a function because it does not assign
some element in B to any element in A

» Hence, inverse functions only defined for bijections!

Isil Dillig, C5243: Discrete Structures _Functions 21/35

il Dillg, C5243: Discrete Structures _ Functions 22/35

Inverse Function Examples

> Let f be the function from Z to Z such that f(z) = z2. Is f
invertible?

> Let g be the function from Z to Z such that g(z) =z + 1. Is
g invertible?

» What is g~ 1?

Function Composition

» Let g be a function from A to B, and f from B to C.

» The composition of f and g, written f o g, is defined by:

(fog)(z) = f(g(z))
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Composition Example

> Let f and g be function from Z to Z such that f(z) = 2z + 3
and g(z) =3z +2

» What is f o g?

Another Composition Example

> Prove that /1o f = I where I is the identity function.
» Since I(z) = z, need to show (f~' o f)(z) = =

> First, (f 1o f)(=) = [ (f(2))

> Let f(z) be y

> Then, f~!(f(2)) = f~'(y)

» By definition of inverse, f~1(y) = z iff f(z) = y

> Thus, f71(f(z)) =f"1(y) == -
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Example

> Prove that if f and ¢ are injective, then f o ¢ is also injective.

Floor and Ceiling Functions

» Two important functions in discrete math are floor and ceiling
functions, both from R to Z

» The floor of a real number z, written |z ], is the largest
integer less than or equal to z.

3 L

2 .
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Ceiling Function

» The ceiling of a real number z, written [z], is the smallest
integer greater than or equal to z.

Useful Properties of Floor and Ceiling Functions

L:.vJ o[z

x-1 n X m x.+1
(m-1) (n+1)

1. For integer n and real number z, |z| =niff n <z <n+1
2. For integer n and real number z, [z] =m iff m —1 <z <m

3. Foranyrealz, z — 1< [z| <2 <[z]<az+1
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Proofs about Floor/Ceiling Functions

e [a]

x-1 nox m 41
(m-1) (n+1)

Prove that |—z| = — [z]

> Let m be [z]. Then, by property (2), m —1 <z <m

v

Multiple both sides by —1: —m +1> —z > —m

v

Rewrite thisas: —m < —z < —m +1

v

Now, by property (1), we have |—z| = —m

v

Thus, |[—z] = —m = —[z] O

Another Example

[z]

Lﬂ_vJ

x-1 n X m
(m-1) (n+1)

x+1

Prove that |z + k| = |z] + k where k is an integer
> Let n be [z]. Then, by property (1), n <z <n+1
> Add k to both sides: n+k<z+k<n+k+1

> Again, by property (1), [z + k| =n+Fk

v

Since |z| =n, |z] +kisalso n+ k

v

Hence, |z + k| = |z| + k
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More Examples

Prove that [2z] = |z| + |z + 1|

» Observe: Any real number z can be written as n + € where
n=|z]and 0<e<1

v

To prove desired property, do proof by cases

v

Case1:0§6<%
» Case 2: %§e<1

» First prove property for first case, then second case

Proof of Case 1

Prove that [2z] = |z] + [z + 1|
> Let x be n+ewhere0§e<%

» Then, 22 = 2n + 2e¢ where 0 < 2e < 1

v

Hence, |2z] =2n

v

Furthermore, z + 2 = n+e+ 3

v

Sincee+%<1, Lx-{—%J:n

v

Thus, [z] + |2 + 3] is also 2n = |2z]
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Proof of Case 2

Prove that [2z] = |z| + |z + 1|
> Let z ben+ewhere%§e<1
» Then, 2z = 2n + 2¢ where 1 < 2¢ < 2
> Hence, 2z =2n+1+¢€ where 0 <€ < 1
> Thus, [2z] =2n+1
> Furthermore, z+ 3 =n+e+3=n+1+¢ (0<€ <1)
» Thus, [z-i—%J =n+1

> Thus, [z]+ [z + 3] isalson+n+1=2n+1=2z] [
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