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Işıl Dillig, CS243: Discrete Structures Sequences, Summations, and Cardinality of Infinite Sets 1/42

Announcements

I Homework 2 is graded, scores on Blackboard

I Graded HW and sample solutions given at end of this lecture

I Make sure score matches the one on Blackboard

I If not, let us know within one week

I Mean on homework 2: 66/90 (73%)

I Many of you made mistakes on questions 2, 3

I Similar questions will be on midterm – review the sample
solutions!
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Midterm

I Midterm next Tuesday, Oct. 2, in lecture

I Midterm will cover all topics up to today’s lecture:

I propositional logic, first order logic, inference rules, proof
techniques, sets, functions

I Good way to prepare is to go over lectures and homeworks

I To help you prepare, will give solutions for HW3 on Thursday

I Also, Thursday’s lecture will be a review session

I Weilin will go over difficult homework problems
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More on Midterm

I Midterm is closed-book, closed-notes, closed-phones,
closed-laptops, closed-tablets etc.

I But you are allowed to bring three sheets of hand-written or
typed notes prepared by you

I I’m out of town until next Wednesday, therefore Weilin will be
proctoring the midterm
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Sequences

I A sequence is a discerete structure to represent an ordered list.

I Example: 1, 2, 3, 5, 8 is a finite sequence with five terms

I Example: 1, 2, 3, 5, 8, 13, 21, . . . is an infinite sequence
(Fibonacci numbers)

I Formally, sequence is a function from a subset of Z to a set S .

I Notation an represents n’th term in the sequence

I For Fibonacci sequence, a0 = 1, a1 = 2, a2 = 3, a3 = 5 etc.
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Sequence Examples

I What is the sequence defined by an = 1
n for (n ≥ 1)?

I What is the sequence defined by an = n2 for n ≥ 1?

I What is the sequence defined by an = (−1)n for n ≥ 0?
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Arithmetic Progression

I Some kinds of sequences come up a lot in discete math

I An arithmetic progression is a sequence of the form:

a, a + d , a + 2d , a + 3d , . . .

I Here, the real number a is called the initial term

I Also, d is called the common difference

I Example: 2, 5, 8, 11, . . .

I What is the common difference?

I What is the initial term?
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Arithmetic Progression, cont.

I Arithmetic progressions can always be written as
an = a0 + d · n where a0 is the initial term and d is the
common difference

I Example: an = −1 + 4n for n ≥ 0 is arithmetic progression
with elements:

−1, 3, 7, 11, 15, . . .

I Example: What is the closed-form definition for the sequence
2, 5, 8, 11, . . .?
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Geometric Progression

I Another class of sequences that come up often are geometric
progressions

I A geometric progression is a sequence of the form:

a, ar , ar2, ar3, . . .

I Here, a is called the initial term, and r is the common ratio

I Example: 1,−3, 9,−27, . . .

I What is the initial term?

I What is the common ratio?
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Geometric Progression, cont.

I Geometric progressions can always be written as an = a0 · rn
where a0 is the initial term and r is the common ratio

I Example: The sequence defined by an = 6 · (13)n for n ≥ 0 is
an geometric progression with elements:

6, 2,
2

3
,
2

9
,
2

27
. . .

I Example: What is the closed-form definition for the sequence
1,−3, 9,−27, . . .?
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Summations

I Given a sequence, one common operation is to sum up all the
terms in that sequence

I For this purpose, we use the summation notation:

n∑

j=m

aj = am + am+1 + . . .+ an

I Example:
3∑

j=1

j = 1 + 2 + 3 = 6

I The variable j in this notation is called index of summation

I Also, m and n are called the lower and upper limits of the
summation
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Summation Examples

I Consider the sequence an = n2. What is the value of this
summation?

4∑

j=1

aj

I What is the value of this summation?

8∑

j=4

(−1)j
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Nested Summations

I It is also common to nest summations within one another.

I What is the value of the following summation?

2∑

i=1

3∑

j=1

ij

I Answer:

2∑

i=1

3∑

j=1

ij =
2∑

i=1

i + 2i + 3i =
2∑

i=1

6i = 6 + 12 = 18
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Closed Form of Summations

I Some summations arise all the time in discrete mathematics

I Example: Sum of all numbers from 1 to n:
∑n

i=1 i

I For such common summations, it is often useful to derive a
closed form

I The closed form expresses the value of the summation as a
formula without summations

I The closed form of above summation is:

n∑

i=1

i =
(n)(n + 1)

2
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Example

I Compute the value of the summation:

50∑

i=21

i = 1275− 210 = 1065

I We can rewrite this summation as:

50∑

i=1

i −
20∑

i=1

i

I By previous definition, first summation is:

I Second summation is:
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Useful Property Summations

I Given a summation consisting of addition and multiplication
terms, we can decompose it as follows:

n∑

j=m

(axj + byj ) = a

n∑

j=m

xj + b

n∑

j=m

yj

I Example: Compute the value of
10∑
i=1

3i + 2

I This can be written as 3
10∑
i=1

i +
10∑
i=1

2
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Arithmetic Series

I The sum of the terms in an airthmetic progression
a, a + d , a + 2d , . . . is called an arithmetic series.

I Let’s derive a closed form for arithmetic series:

n∑

i=1

(a + di)

I By the earlier property, we can write this as:

n∑

i=1

a + d
n∑

i=1

i
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Closed Form for Arithmetic Series

n∑

i=1

(a + di) =
n∑

i=1

a + d
n∑

i=1

i

I What is
∑n

i=1 a?

I By earlier closed form, we have:

n∑

i=1

i =
n · (n + 1)

2

I Thus, we can write entire arithmetic series in closed form as:

an +
dn(n + 1)

2
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Example

I What is the closed form for the following summation?

n∑

j=3

(2 + 3j )

I Trick: Write this as the difference of two summations:

n∑

j=1

(2 + 3j )−
2∑

j=1

(2 + 3j )

I Expand the second term:

n∑

j=1

(2 + 3j )− 13
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Example, cont.

n∑

j=1

(2 + 3j )− 13

I Now, compute the closed form for first term:

n∑

j=1

2 + 3
n∑

j=1

j − 13

I Using known closed forms, this can be rewritten as:

2n + 3
n(n + 1)

2
− 13
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Geometric Series

I The sum of the terms in a geometric progression
a, ar , ar2, . . . is called a geometric series

I Theorem: Closed form of geometric series (r 6= 1):

n∑

j=0

(ar j ) = a · r
n+1 − 1

r − 1

I This is very useful to know– memorize it!

I Let’s prove why this closed form is correct
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Derivation of Geometric Series Closed Form

Theorem: Closed form of geometric series (r 6= 1):

n∑

j=0

(ar j ) = a · r
n+1 − 1

r − 1

I First, let’s call the summation on left S

I Now, let’s multiply S by r:

rS = r

n∑

j=0

ar j =

n∑

j=0

ar j+1
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Derivation continued

rS =
n∑

j=0

ar j+1

I Now, change index of summation from j to k where k = j +1:

rS =
n∑

j=0

ar j+1 =
n+1∑

k=1

ark

I Now, rewrite this as:

rS =
n+1∑

k=1

ark =
n∑

k=0

ark − a + arn+1
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Derivation, cont.

rS =
n∑

k=0

ark − a + arn+1

I Now, observe first term on left hand side is S !

I Thus, we have:
rS = S + arn+1 − a

I Collecting S on one side, we get:

S = a
rn+1 − 1

r − 1

I This is exactly the closed form from the theorem!
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Example 1

n∑

j=0

(ar j ) = a · r
n+1 − 1

r − 1

I Compute the value of
5∑

i=0
3 · 2i

I What is a?

I What is r?

I Using closed form, we have:

5∑

i=0

3 · 2i = 3 · 2
6 − 1

2− 1
= 189
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Example 2

I For |r | < 1, derive a closed form for the summation

∞∑

n=0

a · rn

I Using closed form for geometric series, this is equivalent to:

lim
n→∞

a · r
n+1 − 1

r − 1

I Since |r | < 1, rn+1 becomes 0 as n approaches infinity

I Thus, this is equivalent to:

a · 0− 1

r − 1
=

a

1− r
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Example 3

I Compute the value of the summation:

∞∑

k=0

3 · (1
9
)k =

3

1− 1
9

=
27

8

I Using previous formula, this sum is given by a
1−r
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Revisiting Sets

I Earlier we talked about sets and cardinality of sets

I Recall: Cardinality of a set is number of elements in that set

I This definition makes sense for sets with finitely many
element, but more involved for infinite sets

I Agenda: Revisit the notion of cardinality for infinite sets
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Cardinality of Infinite Sets

I Sets with infinite cardinality are classified into two classes:

1. Countably infinite sets (e.g., natural numbers)

2. Uncountably infinite sets (e.g., real numbers)

I A set A is called countably infinite if there is a bijection
between A and the set of positive integers.

I A set A is called countable if it is either finite or countably
infinite

I Otherwise, the set is called uncountable or uncountably infinite

Işıl Dillig, CS243: Discrete Structures Sequences, Summations, and Cardinality of Infinite Sets 29/42

Example

Prove: The set of odd positive integers is countably infinite.

I Need to find a function f from Z+ to the set of odd positive
integers, and prove that f is bijective

I Consider f (n) = 2n − 1 from Z+ to odd positive integers

I We need to show f is bijective (i.e., one-to-one and onto)

I Let’s first prove injectivity, then surjectivity
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Example, cont.

Prove injectivity of f (n) = 2n − 1

I Recall: Function is injective if f (a) = f (b)→ a = b

I Suppose f (a) = f (b). Then 2a − 1 = 2b − 1

I This implies a = b, establishing injectivity
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Example, cont.
Prove surjectivity of f (n) = 2n − 1

I Recall: Function is surjective if for every b ∈ B , there exists
some a ∈ A such that f (a) = b

I Proof by contradiction: Suppose there is some odd positive
integer b such that ∀x ∈ Z+.2x − 1 6= b

I This implies b+1
2 is not an integer.

I But since b is an odd positive integer, b + 1 is even

I Thus, b + 1 is divisible by 2, yielding a contradiction.

I Since we showed that there is a bijection (namely 2n − 1)
from positive integers to odd positive integers, the set of odd
positive integers is countably infinite
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Another Way to Prove Countable-ness

I One way to show a set A is countably infinite is to give
bijection between Z+ and A

I Another way is by showing members of A can be written as a
sequence (a1, a2, a3, . . .)

I Since such a sequence is a bijective function from Z+ to A,
writing A as a sequence a1, a2, a3, . . . establishes one-to-one
correspondence
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Another Example

Prove that the set of all integers is countable

I We can list all integers in a sequence, alternating positive and
negative integers:

an = 0, 1,−1, 2,−2, 3,−3, . . .

I Observe that this sequence defines the bijective function:

f (n) =

{
n/2 if n even
−(n − 1)/2 if n odd

Işıl Dillig, CS243: Discrete Structures Sequences, Summations, and Cardinality of Infinite Sets 34/42

Rational Numbers are Countable

I Not too surprising Z and odd Z+ are countably infinite

I More surprising: Set of rationals is also countably infinite!

I We’ll prove that the set of positive rational numbers is
countable by showing how to enumerate them in a sequence

I Recall: Every positive rational number can be written as the
quotient p/q of two positive integers p, q
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Rationals in a Table

I Now imagine placing rationals in a table such that:

1. Rationals with p = 1 go in first row, p = 2 in second row, etc.

2. Rationals with q = 1 in 1st column, q = 2 in 2nd column, . . .
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Enumerating the Rationals

I How to enumerate entries in this table without missing any?

I Trick: First list those with p + q = 2, then p + q = 3, . . .

I Traverse table diagonally from left-to-right, in the order shown
by arrows
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Enumerating the Rationals, cont.

I This allows us to list all rationals in a sequence:

1

1
,
2

1
,
1

2
,
1

3
,
2

2
,
3

1
,
4

1
,
3

2
, . . .

I Hence, set of rationals is countable
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Uncountability of Real Numbers

I Prime example of uncountably infinite sets is real numbers

I The fact that R is uncountably infinite was proven by George
Cantor using the famous Cantor’s diagonalization argument

I This was a shocking result in mathematics in the 1800’s

I This argument has inspired many similar famous proofs in the
theory of computation

I Brief look at the diagonalization argument
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Cantor’s Diagonalization Argument

I For contradiction, assume the set of reals was countable

I Since any subset of a countable set is also countable, this
would imply the set of reals between 0 and 1 is also countable

I Now, if reals between 0 and 1 are countable, we can list them
in a table in some order:
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Diagonalization Argument, cont

I Now, create a new real number R = 0.a1a2a3 . . . such that:

ai =

{
4 dii 6= 4
5 dii = 4

I Clearly, this new number R differs from each number Ri in
the table in at least one digit (its i ’th digit)
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Diagonalization Argument, concluded

I Since R is not in the table, this is not a complete enumeration
of all reals between 0 and 1

I Hence, the set of real between 0 and 1 is not countable

I Since the superset of any uncountable set is also uncountable,
set of reals is uncountably infinite
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