(CS243: Discrete Structures

Sequences, Summations, and
Cardinality of Infinite Sets

Isil Dillig

Announcements

v

Homework 2 is graded, scores on Blackboard

v

Graded HW and sample solutions given at end of this lecture

» Make sure score matches the one on Blackboard

» If not, let us know within one week

v

Mean on homework 2: 66,/90 (73%)

v

Many of you made mistakes on questions 2, 3

v

Similar questions will be on midterm — review the sample
solutions!
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Midterm

» Midterm next Tuesday, Oct. 2, in lecture

» Midterm will cover all topics up to today's lecture:

> propositional logic, first order logic, inference rules, proof
techniques, sets, functions

v

Good way to prepare is to go over lectures and homeworks

v

To help you prepare, will give solutions for HW3 on Thursday

v

Also, Thursday's lecture will be a review session

> Weilin will go over difficult homework problems

More on Midterm

» Midterm is closed-book, closed-notes, closed-phones,
closed-laptops, closed-tablets etc.

» But you are allowed to bring three sheets of hand-written or
typed notes prepared by you

> I'm out of town until next Wednesday, therefore Weilin will be
proctoring the midterm
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Sequences

» A sequence is a discerete structure to represent an ordered list.

v

Example: 1,2,3,5,8 is a finite sequence with five terms

v

Example: 1,2,3,5,8,13,21,...
(Fibonacci numbers)

is an infinite sequence

v

v

Notation a,, represents n'th term in the sequence

v

For Fibonacci sequence, ap = 1, a1 = 2, a3 = 3, a3 = 5 etc.

Formally, sequence is a function from a subset of Z to a set S.

Sequence Examples

» What is the sequence defined by a, % for (n >1)?

» What is the sequence defined by a,, = n? for n > 1?

> What is the sequence defined by a, = (—1)" for n > 0?7
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Arithmetic Progression

v

Some kinds of sequences come up a lot in discete math

v

An arithmetic progression is a sequence of the form:

a,a+d,a+2d,a+3d,...

v

Here, the real number a is called the initial term

v

Also, d is called the common difference

v

Example: 2,5,8,11,...

What is the common difference?

v

What is the initial term?

v

Arithmetic Progression, cont.

> Arithmetic progressions can always be written as
a, = ag + d - n where ag is the initial term and d is the
common difference

» Example: a,, = —1 + 4n for n > 0 is arithmetic progression
with elements:
-1,3,7,11,15,...

» Example: What is the closed-form definition for the sequence
2,5,8,11,...7
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Geometric Progression

» Another class of sequences that come up often are geometric
progressions

> A geometric progression is a sequence of the form:
3

a,ar,ar?, ard, ...

» Here, a is called the initial term, and r is the common ratio

v

Example: 1,-3,9,-27,...

What is the initial term?

v

What is the common ratio?

v

Geometric Progression, cont.

» Geometric progressions can always be written as a,, = ay - 1"
where ag is the initial term and r is the common ratio

> Example: The sequence defined by a,, =6 (§)" forn >0 is
an geometric progression with elements:

22 2
2, == =...
6 379727

» Example: What is the closed-form definition for the sequence
1,-3,9,-27,...7
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Summations

» Given a sequence, one common operation is to sum up all the
terms in that sequence

» For this purpose, we use the summation notation:

n
Zaj:am+am+1+...+an
j=m
3
» Example: Zj:1+2+3:6
j=1

> The variable j in this notation is called index of summation

» Also, m and n are called the lower and upper limits of the
summation

Summation Examples

» Consider the sequence a, = n%. What is the value of this
summation? .
S
j=1

» What is the value of this summation?

8 .
(—1y
j=4

J
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Nested Summations

> |t is also common to nest summations within one another.

» What is the value of the following summation?

Closed Form of Summations

Some summations arise all the time in discrete mathematics

Example: Sum of all numbers from 1 to n: > | i

5 » For such common summations, it is often useful to derive a
— closed form
> i
i=1 j=1 .
= > The closed form expresses the value of the summation as a
» Answer formula without summations
2 3 2 2 .
. > The closed form of above summation is:
ZZU Zz+21+31 —261 =6+12=18
i=1j=1 i=1 i=1 n+1
3= e
Example Useful Property Summations
» Compute the value of the summation:
© > Given a summation consisting of addition and multiplication
Z i — 1275 — 210 = 1065 terms, we can decompose it as follows:
=21 n n n
Z(azj+byj)=a2xj+b2yj
j=m j=m j=m
> We can rewrite this summation as:
10
50 20 » Example: Compute the value of > 3i + 2
ED
i=1 i=1
) ) 1010
» By previous definition, first summation is: This can be written as 3;::1 s 1:21 2
» Second summation is:

Arithmetic Series

» The sum of the terms in an airthmetic progression
a,a+d,a+ 2d,...is called an arithmetic series.

» Let's derive a closed form for arithmetic series:

n

> (a+ di)

i=1

> By the earlier property, we can write this as:

n n
ZaerZi
i=1 i=1

Closed Form for Arithmetic Series

zn:a-i-dz Za-ﬁ-de
i=1

» What is .7, a?

» By earlier closed form, we have:

n+1)

Zz—

» Thus, we can write entire arithmetic series in closed form as:

dn(n+1)

an + 2
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Example

» What is the closed form for the following summation?

n

> 2+ 3))

Jj=3

» Trick: Write this as the difference of two summations:

n

2
do@+35) =D (2+3))

J=1 J=1

» Expand the second term:

Example, cont.

i@ +3j)—13

j=1

» Now, compute the closed form for first term:
n n
> 243) j-13
j=1 j=1

» Using known closed forms, this can be rewritten as:

1

n 2n+3M_13
E (24 35)—13 2
=1
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Geometric Series

v

The sum of the terms in a geometric progression

a,ar,ar?,... s called a geometric series

v

Theorem: Closed form of geometric series (r # 1):

n ;
T’L+1 —1

Z(arj):a'77«,1

=0

v

This is very useful to know— memorize it!

> Let's prove why this closed form is correct

Derivation of Geometric Series Closed Form

Theorem: Closed form of geometric series (r # 1):

7,,7L+1 —1

n
N=g — =
jz:%(ar) ¢ ——

» First, let's call the summation on left S

> Now, let's multiply S by r:

rS = rzn:m‘j = zn:arj“
=0 =0
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Derivation continued

n
rS = g aritl
j=0

» Now, change index of summation from j to k where k = j 4 1:

n+1

n
rS = g ari ™t = E ark
=0 k=1

» Now, rewrite this as:

n+1 n
rS = Zark :Zark—a—i-ar"H
k=1 k=0

Derivation, cont.

n
rS = Z ar® — a4 ar™tt
k=0

v

Now, observe first term on left hand side is S!

v

Thus, we have:
S =S8+a"—qa
> Collecting S on one side, we get:

rrtl
r—1

S=a

v

This is exactly the closed form from the theorem!
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Example 1

n ntl _q

Z(aTj):a~7T_1

v

5 .
Compute the value of >~ 3-2°
i=0

v

What is a?

What is r7?

v

v

Using closed form, we have:
5
. 261
E 3.-2'=3.-— =189
. 2—-1
=0

Example 2

» For |r| < 1, derive a closed form for the summation
[ee]
o
n=0

» Using closed form for geometric series, this is equivalent to:
Tn+1 —1

lim a-

n—00 r—1

» Since || < 1, 7! becomes 0 as n approaches infinity
» Thus, this is equivalent to:

0-1 a
r—1 1-—r

Isil Dillig, C5243: Discrete Structures  Sequen ions, and Cardinality of Infinite Sets 25/42

Isil Dillg, €5243: Discrete Structures  Sequences, jons, and Cardinality of Infinite Sets

26/42

Example 3

» Compute the value of the summation:

1
235 =11 %

k=0

Ol

> 3 27

a
1—7r

» Using previous formula, this sum is given by

Revisiting Sets

v

Earlier we talked about sets and cardinality of sets

v

Recall: Cardinality of a set is number of elements in that set

v

This definition makes sense for sets with finitely many
element, but more involved for infinite sets

v

Agenda: Revisit the notion of cardinality for infinite sets
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Cardinality of Infinite Sets

v

Sets with infinite cardinality are classified into two classes:
1. Countably infinite sets (e.g., natural numbers)
2. Uncountably infinite sets (e.g., real numbers)

» A set A is called countably infinite if there is a bijection
between A and the set of positive integers.

> A set A is called countable if it is either finite or countably
infinite

Otherwise, the set is called uncountable or uncountably infinite

v

Example

Prove: The set of odd positive integers is countably infinite.

» Need to find a function f from Z* to the set of odd positive
integers, and prove that f is bijective

» Consider f(n) = 2n — 1 from Z™ to odd positive integers
» We need to show f is bijective (i.e., one-to-one and onto)

> Let's first prove injectivity, then surjectivity
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Example, cont.

Prove injectivity of f(n) =2n —1
» Recall: Function is injective if f(a) = f(b) > a=1b
» Suppose f(a) = f(b). Then 2a —1=2b-1

» This implies a = b, establishing injectivity

Example, cont.
Prove surjectivity of f(n) =2n — 1

> Recall: Function is surjective if for every b € B, there exists
some a € A such that f(a) = b

» Proof by contradiction: Suppose there is some odd positive
integer b such that Vo € ZT.2x — 1 # b

» This implies % is not an integer.
» But since b is an odd positive integer, b + 1 is even

» Thus, b+ 1 is divisible by 2, yielding a contradiction.

> Since we showed that there is a bijection (namely 2n — 1)
from positive integers to odd positive integers, the set of odd
positive integers is countably infinite

Isil Dillig, C5243: Discrete Structures  Sequen ions, and Cardinality of Infinite Sets

31/82

Isil Dillg, €5243: Discrete Structures  Sequences, jons, and Cardinality of Infinite Sets

32/42

Another Way to Prove Countable-ness

> One way to show a set A is countably infinite is to give
bijection between Z* and A

» Another way is by showing members of A can be written as a
sequence (ay, az, ag, . ..)

» Since such a sequence is a bijective function from ZT to A,
writing A as a sequence ay, az, ag, . . . establishes one-to-one
correspondence

Another Example

Prove that the set of all integers is countable

» We can list all integers in a sequence, alternating positive and
negative integers:

an =0,1,-1,2,-2,3,-3, ...

> Observe that this sequence defines the bijective function:

n/2 if n even

f("):{ “(n—1)/2 if n odd
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Rational Numbers are Countable

v

Not too surprising Z and odd Z™ are countably infinite
» More surprising: Set of rationals is also countably infinite!

We'll prove that the set of positive rational numbers is
countable by showing how to enumerate them in a sequence

v

v

Recall: Every positive rational number can be written as the
quotient p/q of two positive integers p, ¢

Rationals in a Table

> Now imagine placing rationals in a table such that:

1. Rationals with p = 1 go in first row, p = 2 in second row, etc.

2. Rationals with ¢ = 1 in 1st column, ¢ = 2 in 2nd column, ...

3 10
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ML O T )

I 2 3 a 5
1 4 11
WS A
&lllll
T2 3 a4 5
PO Y
3= 37 37 37 3
I 2 3 4 5
6| 13 18
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S5 34 58 3
T2 3 a4
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5
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Enumerating the Rationals

3 10
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» How to enumerate entries in this table without missing any?
» Trick: First list those with p + ¢ =2, then p+¢ =3, ...

» Traverse table diagonally from left-to-right, in the order shown
by arrows

Enumerating the Rationals, cont.

3 10
Voaime
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» This allows us to list all rationals in a sequence:

12112343

17172’3’2’1'1°2"°

» Hence, set of rationals is countable
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Uncountability of Real Numbers

> Prime example of uncountably infinite sets is real numbers

» The fact that R is uncountably infinite was proven by George
Cantor using the famous Cantor's diagonalization argument

> This was a shocking result in mathematics in the 1800's

» This argument has inspired many similar famous proofs in the
theory of computation

» Brief look at the diagonalization argument

Cantor’s Diagonalization Argument

» For contradiction, assume the set of reals was countable

» Since any subset of a countable set is also countable, this
would imply the set of reals between 0 and 1 is also countable

» Now, if reals between 0 and 1 are countable, we can list them
in a table in some order:

Bi= 0 Jey] ap @y - o
By= 0. ey [an] am - 6y
Ry= 0. ay ap [em] - ag

Bo= 0 oy Gy @z o [am] -
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Diagonalization Argument, cont

Bi= 0 [ey] ap ap = an
= 0. ay [en] am - ay

Ra= 0. a3 ap [am] - o

Bo= 0. an Gy an3

o]

» Now, create a new real number R = 0.a1a2as ... such that:
0 = { ‘51 dii # 4

diy =4
» Clearly, this new number R differs from each number R; in
the table in at least one digit (its ¢'th digit)

Diagonalization Argument, concluded

» Since R is not in the table, this is not a complete enumeration
of all reals between 0 and 1

» Hence, the set of real between 0 and 1 is not countable
> Since the superset of any uncountable set is also uncountable,

set of reals is uncountably infinite
O
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