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Işıl Dillig, CS243: Discrete Structures Introduction to Number Theory 1/41

Announcements

I Midterms are graded – scores on Blackboard

I Graded midterms handed back at the end of class

I Make sure score on midterm matches grade on Blackboard

I If not, let us know asap (within a week at latest)

I Sample solutions posted on course webpage – look over them!

I Since only 1-2 students answered Question (4c) correctly and
since there was small typo, did not count (4c) when
calculating grades – thus, grades out of 80 rather than 90
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Announcements, cont.

I Average on midterm 55 out of 80; standard deviation is 17

I Third homework also graded – scores on Blackboard

I Average on HW3 is 67 out of 100
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Introduction

I Number theory is the branch of mathematics that deals with
integers and their properties

I Number theory has a number of applications in computer
science, esp. in modern cryptography

I This lecture: Important results in number theory

I Next lecture: Continue discussion of number theory, look at
applications of number theory in cryptography
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Divisibility

I Given two integers a and b where a 6= 0, we say a divides b if
there is an integer c such that b = ac

I If a divides b, we write a|b; otherwise, a 6 | b

I Example: 2|6, 2 6 | 9

I If a|b, a is called a factor of b

I b is called a multiple of a

I All integers divisible by a can be enumerated as:

. . . ,−3a,−2a,−a, 0, a, 2a, 3a, . . .
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Example

I Question: If n and d are positive integers, how many integers
not exceeding n are divisible by d?

I Recall: All positive integers divisible by d are of the form dk

I We want to find how many numbers dk there are such that
0 < dk ≤ n.

I In other words, we want to know how many integers k there
are such that 0 < k ≤ n

d

I How many integers are there between 1 and n
d ?
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Properties of Divisibility

I Theorem 1: If a|b and a|c, then a|(b + c)

I Proof: If a|b, then ∃ k1 such that b = ak1

I Similarly, if a|b, then ∃ k2 such that c = ak2

I Then, b + c = a(k1 + k2)

I Hence, a|(b + c)
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More Divisibility Properties

I Theorem 2: If a|b, then a|bc for all integers c

I Proof: If a|b, then there exists k such that b = ak .

I Hence, bc = a · ck

I Therefore, a|bc
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Divisibility Properties, cont.

I Theorem 3: If a|b and b|c, then a|c

I Proof: If a|b, there exists k1 such that b = ak1

I Since b|c, there exists k2 such that and c = bk2.

I This implies c = a · k1k2.

I Hence a|c.
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Divisibility Properties, cont.

I Theorem 4 If a|b and a|c, then a|(mb + nc)

I Proof: By Thm 2, if a|b, then a|mb

I By thm 2, if a|c, then a|nc.

I By Thm 1, if a|mb and a|nc, then a|(mb + nc)
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The Division Theorem

I Division theorem: Let a be an integer, and d a positive
integer. Then, there are unique integers q , r with 0 ≤ r < d
such that a = dq + r

I Here, d is called divisor, and a is called dividend

I q is the quotient, and r is the remainder.

I We use the r = a mod d notation to express the remainder

I The notation q = a div d expresses the quotient

I What is 101 mod 11?

I What is 101 div 11?
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Congruence Modulo

I Sometimes, we care if two integers a, b have the same
remainder when divided by some number m.

I If so, a and b are congruent modulo m, a ≡ b (mod m).

I More technically, if a and b are integers and m a positive
integer, a ≡ b (mod m) iff m|(a − b)

I Example: 7 and 13 are congruent modulo 3.

I Example: Find a number congruent to 7 modulo 4.
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Congruence Modulo Theorem

I Theorem: a ≡ b (mod m) iff a mod m = b mod m

I Part 1, ⇒: Suppose a ≡ b (mod m).

I Then, by definition of ≡, m|(a − b)

I By definition of |, there exists k such that a − b = mk , i.e.,
a = b +mk

I By division thm, b = mp + r for some 0 ≤ r < m

I Then, a = mp + r +mk = m(p + k) + r

I Thus, a mod m = r = b mod m
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Congruence Modulo Theorem Proof, cont.

I Theorem: a ≡ b (mod m) iff a mod m = b mod m

I Part 2, ⇐: Suppose a mod m = b mod m

I Then, there exists some p1, p2, r such that a = p1 ·m + r and
b = p2 ·m + r where 0 ≤ r < m

I Then, a − b = p1 ·m + r − p2 ·m − r = m · (p1 − p2)

I Thus, m|(a − b)

I By definition of ≡, a ≡ b (mod m)
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Example

I Prove that if a ≡ b (mod m) and c ≡ d (mod m), then:

a + c ≡ b + d (mod m)

I Proof: Since a ≡ b (mod m), m|(a − b)

I Since c ≡ d (mod m), m|(c − d)

I By definition of |, there exists k1, k2 such that:

a − b = mk1 c − d = mk2

I Adding these, we get: a + c − (b + d) = m(k1 + k2)

I Again, by definition of ≡ and |, this means
a + c ≡ b + d (mod m)
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Applications of Congruence in Cryptography

I Congruences have many applications in cryptography

I For instance, Julius Caesar encrypted messages by shifting
each letter three letters in the alphabet (”Caesar cipher”)

I For example, the message ”I LIKE DISCRETE MATH” would
be encrypted as ”L OLNH GLYFUHVH PDVK”

I Caesar’s cipher example of shift cipher: shifts each letter by k

I For Caesar cipher, k = 3

I We can express express shift ciphers using the modulo
operator
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Shift Ciphers

I First, let’s number letters A-Z with 0− 25

I Represent message with sequence of numbers

I Example: The sequence ”25 0 2” represents ”ZAC”

I To encrypt, apply encryption function f defined as:

f (x ) = (x + k) mod 26

I Because f is bijective, its inverse yields decryption function:

f −1(x ) = (x − k) mod 26
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Ciphers and Congruence Modulo

I Shift cipher is a very primitive and insecure cipher because
very easy to infer what k is

I But contains some useful ideas:

I Encoding words as sequence of numbers

I Use of modulo operator

I Modern encryption schemes much more sophisticated, but
also share these principles

I More on this next lecture!
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Prime Numbers

I A positive integer p that is greater than 1 and divisible only
by 1 and itself is called a prime number.

I First few primes: 2, 3, 5, 7, 11, . . .

I A positive integer that is greater than 1 and that is not prime
is called a composite number

I Example: 2, 4, 6, 8, 9, . . .
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Fundamental Theorem of Arithmetic

I Fundamental Thm: Every positive integer greater than 1 is
either prime or can be written uniquely as a product of primes.

I This unique product of prime numbers for x is called the
prime factorization of x

I Examples:

I 12 =

I 21 =

I 99 =
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Determining Prime-ness

I In many applications, such as crypto, important to determine
if a number is prime – following thm is useful for this:

I Theorem: If n is composite, then it has a prime divisor less
than or equal to

√
n

I Proof: Since n is composite, it can be written as n = ab
where a > 1 and b > 1.

I For contradiction, suppose neither a nor b are ≤ √n, i.e.,
a >
√
n, b >

√
n

I Then, n = ab >
√
n
2
= n, a contradiction.

I Hence, either a ≤ √n, or b ≤ √n, and by the Fundamental
Thm, is either itself a prime or has a factor less than itself.
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Consequence of This Theorem

Theorem: If n is composite, then it has a prime divisor ≤ √n

I Thus, to determine if n is prime, only need to check if it is
divisible by primes ≤ √n

I Example: Show that 101 is prime

I Since
√
101 < 11, only need to check if it is divisible by

2, 3, 5, 7.

I Since it is not divisible by any of these, we know it is prime.
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Infinitely Many Primes
I Theorem: There are infinitely many prime numbers.

I Proof: (by contradiction) Suppose there are finitely many
primes: p1, p2, . . . , pn

I Now consider the number Q = p1p2 . . . pn + 1. Q is either
prime or composite

I Case 1: Q is prime. We get a contradiction, because we
assumed only prime numbers are p1, . . . , pn

I Case 2: Q is composite. In this case, Q can be written as
product of primes.

I But Q is not divisible by any of p1, p2, . . . , pn

I Hence, by Fundamental Thm, not composite ⇒ ⊥
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A Word about Prime Numbers and Cryptography

I Prime numbers play a key role in modern cryptography

I Modern cryotpgraphy techniques rely on prime numbers to
encrypt messages

I Security of encryption relies on prime factorization being
intractable for sufficiently large numbers

I More on this later...
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Greatest Common Divisors

I Suppose a and b are integers, not both 0.

I Then, the largest integer d such that d |a and d |b is called
greatest common divisor of a and b, written gcd(a,b).

I Example: gcd(24, 36) =

I Example: gcd(235, 223) =

I Example: gcd(14, 25) =

I Two numbers whose gcd is 1 are called relatively prime.

I Example: 14 and 25 are relatively prime
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Least Common Multiple

I The least common multiple of a and b, written lcm(a,b), is
the smallest integer c such that a|c and b|c.

I Example: lcm(9, 12)=

I Example: lcm(233572, 2433)=
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Theorem about LCM and GCD

I Theorem: Let a and b be positive integers. Then,
ab = gcd(a, b) · lcm(a, b)

I Proof: Let a = pi11 pi22 . . . pinn and b = pj11 pj22 . . . pjnn

I Then, ab = pi1+j1
1 pi2+j2

2 . . . pin+jn
n

I gcd(a, b) = p
min(i1,j1)
1 p

min(i2,j2)
2 . . . p

min(in ,jn )
n

I lcm(a, b) = p
max(i1,j1)
1 p

max(i2,j2)
2 . . . p

max(in ,jn )
n

I Thus, we need to show ik + jk = min(ik , jk ) +max (ik , jk )
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Proof, cont.

I Show ik + jk = min(ik , jk ) +max (ik , jk )

I Either (i) ik < jk or (ii) ik ≥ jk

I If (i), then min(ik , jk ) = ik and max (ik , jk ) = jk

I Thus, ik + jk = min(ik , jk ) +max (ik , jk )

I If (ii), then min(ik , jk ) = jk and max (ik , jk ) = ik

I Hence min(ik , jk ) +max (ik , jk ) = ik + jk
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Computing GCDs

I Simple algorithm to compute gcd of a, b:

I Factorize a as pi1
1 pi2

2 . . . pin
n

I Factorize b as pj1
1 pj2

2 . . . pjn
n

I gcd(a, b) = p
min(i1,j1)
1 p

min(i2,j2)
2 . . . p

min(in ,jn)
n

I But this algorithm is not very practical because prime
factorization is computationally expensive!

I Much more efficient algorithm to compute gcd, called the
Euclidian algorithm
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Insight Behind Euclid’s Algorithm

I Theorem: Let a = bq + r . Then, gcd(a, b) = gcd(b, r)

I Proof: We’ll show that a, b and b, r have the same common
divisors – implies they have the same gcd.

⇒ Suppose d is a common divisor of a, b, i.e., d |a and d |b

I By theorem we proved earlier, this implies d |a − bq

I Since a − bq = r , d |r . Hence d is common divisor of b, r .

⇐ Now, suppose d |b and d |r . Then, d |bq + r

I Hence, d |a and d is common divisor of a, b
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Using this Theorem

Theorem: Let a = bq + r . Then, gcd(a, b) = gcd(b, r)

I Theorem suggests following strategy to compute gcd(a, b):

I Compute r1 = a mod b (gcd(a, b) = gcd(b, r1))

I Compute r2 = b mod r1 (gcd(a, b) = gcd(r1, r2))

I Compute r3 = r1 mod r2 (gcd(a, b) = gcd(r2, r3))

I Repeat until remainder becomes 0
(gcd(a, b) = gcd(rn , 0) = rn)

I The last non-zero remainder is the gcd of a and b!
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Euclidian Algorithm

I Find gcd of 72 and 20

I 12 = 72%20

I 8 = 20%12

I 4 = 12%8

I 0 = 8%4

I gcd is 4!
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Euclidian Algorithm Example

I Find gcd of 662 and 414

I 248 = 662%414

I 166 = 414%248

I 82 = 248%166

I 2 = 166%82

I 0 = 82%2

I gcd is 2!
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GCD as Linear Combination

I gcd(a, b) can be expressed as a linear combination of a and b

I Theorem: If a and b are positive integers, then there exist
integers s and t such that:

gcd(a, b) = s · a + t · b

I Furthermore, Euclidian algorithm gives us a way to compute
these integers s and t
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Example

I Express gcd(252, 198) as a linear combination of 252 and 198

I First apply Euclid’s algorithm (write a = bq + r at each step):

1. 252 = 1 · 198 + 54

2. 198 = 3 · 54 + 36

3. 54 = 1 · 36 + 18

4. 36 = 2 · 18 + 0 ⇒ gcd is 18

I Now, using (3), write 18 as 54− 1 · 36

I Using (2), write 18 as 54− 1 · (198− 3 · 54)

I Using (1), we have 54 = 252− 1 · 198, thus:

18 = (252− 1 · 198)− 1(198− 3 · (252− 1 · 198))
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Example, cont.

18 = (252− 1 · 198)− 1(198− 3 · (252− 1 · 198))
I Now, let’s simplify this:

18 = 252− 1 · 198− 1 · 198 + 3 · 252− 3 · 198

I Now, collect all 252 and 198 terms together:

18 = 4 · 252− 5 · 198

I Trace steps of Euclid’s algorithm backwards to derive s, t :

gcd(a, b) = s · a + t · b

I This is known as the extended Euclidian algorithm
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A Useful Result

I Lemma: If a, b are relatively prime and a|bc, then a|c.

I Proof: Since a, b are relatively prime gcd(a, b) = 1

I By previous theorem, there exists s, t such that 1 = s · a + t · b

I Multiply both sides by c: c = csa + ctb

I By earlier theorem, since a|bc, a|ctb

I Also, by earlier theorem, a|csa

I Therefore, a|csa + ctb, which implies a|c since c = csa + ctb
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Example

Lemma: If a, b are relatively prime and a|bc, then a|c.

I Suppose 15 | 16 · x

I Here 15 and 16 are relatively prime

I Thus, previous theorem implies: 15|x
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Question

I Suppose ca ≡ cb (mod m). Does this imply a ≡ b (mod m)?

I Counterexample: Consider 14 ≡ 8 (mod 6)

I Thus, 2 · 7 ≡ 2 · 4 (mod 6)

I But 7 6≡ 4 (mod 6)

I Therefore, this implication does not hold in the general case!

I However, if c and m are relatively prime, it does hold
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Another Useful Result

I Theorem: If ca ≡ cb (mod m) and gcd(c,m) = 1, then
a ≡ b (mod m)

I Proof: Since ca ≡ cb (mod m), we have m | ca − cb

I Rewriting, we get: m | c(a − b)

I Since m, c are relatively prime, previous thm implies m | a − b

I By definition of congruence, a ≡ b (mod m)
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Examples

I If 15x ≡ 15y (mod 4), is x ≡ y (mod 4)?

I If 8x ≡ 8y (mod 4), is x ≡ y (mod 4)?

I Counterexample: 8 · 2 ≡ 8 · 3 (mod 4), but 2 6≡ 3 (mod 4)
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