CS311H Homework Assignment 8

Due Dec 4, 2018

- 1. (10 points) Consider the function $f(n) = 2^{2n}$.
 - (a) Is it $O(2^n)$? Prove your answer.
 - (b) Is it $\Omega(2^n)$? Prove your answer.
- 2. (15 points) Prove that $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- 3. (20 points) A function f(n) is said to be o(g(n)) (pronounced "little-oh"), if for any positive constant C, there exists a positive constant k such that:

$$\forall n > k. \ f(n) < C \cdot g(n)$$

- (a) Consider the function $f(n) = n^2$ where the domain of f is positive integers. Is it $o(n^2)$? Prove your answer.
- (b) Consider the same function $f(n) = n^2$ where the domain of f is positive integers. Is it $o(n^3)$? Prove your answer.
- (c) Suppose a function h(n) is o(g(n)). Is g(n) always $\Omega(h(n))$? Prove your answer.
- (d) Suppose a function h(n) is $\Theta(g(n))$. Is it possible that h(n) is o(g(n))? Prove your answer.
- 4. (10 points) A vending machine in Europe accepts either 1 Euro bills, 1 Euro coins, or 2 Euro bills. Assume that the order in which money is inserted into the machine matters (i.e., inserting 1 Euro bill followed by 1 Euro coin is different from inserting 1 Euro coin first and then a 1 Euro bill). Let a_n denote the number of ways of inserting n Euros into the vending machine.
 - (a) Determine the values of a_1 and a_2 .

- (b) Write a recurrence relation describing a_n .
- (c) Determine the closed form solution for a_n .
- 5. (10 points) Find the closed form solution to $a_n = 7a_{n-2} + 6a_{n-3}$ for $a_0 = 9$ with initial values $a_1 = 10$ and $a_2 = 32$.
- 6. (10 points) Find a particular solution for the recurrence $a_n = 2a_{n-1} + 3a_{n-2} + 3^n$.
- 7. (10 points) Solve the recurrence $a_n = a_{n-1} + n$ with initial condition $a_0 = 1$.
- 8. (15 points) Consider a "ternary search" algorithm, which is a variation on binary search. In particular, the ternary search algorithm works as follows:
 - ullet It takes as input a sorted array a of size n and an integer i to search for
 - If n = 0, it returns false; and if n = 1, it returns true iff the only element of a is i
 - If $i \leq a[n/3]$; then, it searches the subarray a[0...n/3]
 - If i > a[n/3] and $i \le a[2n/3]$, then it searches the subarray given by a[(n/3+1)...2n/3]
 - Otherwise, searches the subarray a[(2n/3+1)...n]

Let T(n) describe the number of operations performed by ternary search for an input array of size n.

- (a) Write a recurrence relation describing T(n) and give the initial value for n = 1.
- (b) Find a closed form solution for this recurrence assuming that n is a power of 3.
- (c) Use the Master Theorem to obtain a Big-Theta estimate for T(n)