CS311H: Discrete Mathematics

Functions

Instructor: Isil Dillig

Functions

v

A function f from a set A to a set B assigns each element of
A to exactly one element of B.

v

A is called domain of f, and B is called codomain of f.

v

If f maps element a € A to element b € B, we write f(a) = b

v

If f(a) =b, b is called image of a; a is in preimage of b.

v

Range of f is the set of all images of elements in A.
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Function Terminology Examples

» What is the range of this function?
» What is the image of ¢?

» What is the preimage of e?

Image of a Set

> We can extend the definition of image to a set
» Suppose f is a function from A to B and S is a subset of A

> The image of S under f includes exactly those elements of B
that are images of elements of S:

(&) ={t|3se S t=[(s)}

» What is the image of {b, c}?
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One-to-One Functions

» A function f is called one-to-one if and only if f(z) = f(y)
implies © = y for every z, y in the domain of f:

Va,y. (f(z) =f(y) >z =vy)

» One-to-one functions never assign different elements in the
domain to the same element in the codomain:

Va,y. (z#y — f(z) # f(y))
» A one-to-one function also called injection or injective function

» |s this function one-to-one?

More Injective Function Examples

> |s this function injective?

A B

» Consider the function f(z) = 22 from set of integers to set of
integers. Is this injective?

» What about if the domain of f is the set of non-negative
integers?

Instructor: Il Dillg, CS311H: Discrete Mathematics _Functions 9/46

Instructor: Isi Dillig, CS311H: Discrete Mathematics _Functions

10/46

Proving Injectivity Example

» Consider the function f from Z to Z defined as:

)= { —3;;-1-12

> Prove that f is injective.

if x>0
if <0

> We need to show that if z # y, then f(z) # f(y)

» What proof technique do we need to use?

Proving Injectivity Example, cont.
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Proving Injectivity Example, cont.

Onto Functions

» A function f from A to B is called onto iff for every element
y € B, there is an element z € A such that f(z) = y:

Vye Bz e A. f(z) =1y

» Note: 3z € A. ¢ is shorthand for Jz.(z € A A ¢), and
Vz € A. ¢ is shorthand for Vz.(z € A — ¢)

» Onto functions also called surjective functions or surjections
» For onto functions, range and codomain are the same

» s this function onto?
A
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Examples of Onto Functions

» |s this function onto?

A B

» Consider the function f(z) = z2 from the set of integers to
the set of integers. Is f surjective?

Bijective Functions

» Function that is both onto and one-to-one called bijection

» Bijection also called one-to-one correspondence or invertible
function

» Example of bijection:

E=S)
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Bijection Example

» The identity function I on a set A is the function that assigns
every element of 4 to itself, i.e., Vz € A. I(z) ==

» Prove that the identity function is a bijection.

> Need to prove I is both one-to-one and onto.

> One-to-one: We need to show Vz,y. (z # y — I(z) # I(y))
» Suppose z # y.

> Since I(z) =z and I(y) =y, and z # y, I(z) # I(y)

Bijection Example, cont.

» Now, prove [ is onto, i.e., for every b, there exists some a
such that f(a) = b

» For contradiction, suppose there is some b such that
Vae A. I(a) # b

> Since I(a) = a, this means Va € A. a # b

» But since b is itself in A, this would imply b # b, yielding a
contradiction.

» Since [ is both onto and one-to-one, it is a bijection. O
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Inverse Functions

> Every bijection from set A to set B also has an inverse
function

» The inverse of bijection f, written f~, is the function that
assigns to b € B a unique element a € A such that f(a) = b

» Observe: Inverse functions are only defined for bijections, not
arbitrary functions!

» This is why bijections are also called invertible functions

Why are Inverse Functions Only Defined on Bijections?

» Suppose f is not injective, i.e., assigns distinct elements to
the same element.

> Then, the inverse is not a function because it assigns the
same element to distinct elements
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Why are Inverse Functions Only Defined on Bijections?

» Suppose f is not surjective, i.e., range and codomain are not
the same
A B

> Then, the inverse is not a function because it does not assign
some element in B to any element in A

» Hence, inverse functions only defined for bijections!

Inverse Function Examples

> Let f be the function from Z to Z such that f(z) = 22. Is f
invertible?

> Let g be the function from Z to Z such that g(z) =z + 1. Is
g invertible?
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Function Composition

» Let g be a function from A to B, and f from B to C.

» The composition of f and g, written f o g, is defined by:

(fog)(@) = f(g(z))

fog

Composition Example

> Let f and g be function from Z to Z such that f(z) = 2z + 3
and g(z) =3z +2

» What is f o g7

Instructor: Isl Dillg, CS311H: Discrete Mathematics Functions 23/46

Instructor: Isi Dillg, CS311H: Discrete Mathematics Functions 24/46




Another Composition Example

» Prove that f~! o f = I where I is the identity function.

v

Since I(z) = z, need to show (flof)(z) ==

v

First, (f Lo f)(z) = f~1(f(2))

Let f(z) be y

v

v

Then, f~!(f(2)) =/ (»)

v

By definition of inverse, f~'(y) = = iff f(z) =y

v

Thus, [~ (f(2)) ="' (y) == O

Example

> Prove that if f and ¢ are injective, then f o ¢ is also injective.
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Floor and Ceiling Functions

» Two important functions in discrete math are floor and ceiling
functions, both from R to Z

> The floor of a real number z, written |z], is the largest
integer less than or equal to z.

T T T T T
3 o
2 3
s . .
0 .
1 *— B
2 .
3| @

1 1 1 1 | 1

3 2 1 o 1 2 3

Ceiling Function

» The ceiling of a real number z, written [z], is the smallest
integer greater than or equal to z.
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Useful Properties of Floor and Ceiling Functions

Il Il 'l 'l 'l
x-1 n X m x+1

(m-1) (n+1)

1. For integer n and real number z, || =niff n <z <n+1
2. For integer n and real number z, [z] =m iffm—1 <z <m

3. Foranyrealz, 2 — 1< |z| <z <[z]<z+1

Proofs about Floor/Ceiling Functions

lz)  fa]
x-.1 n )'( I'“ x.+1

Prove that |~z | = — [z]
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Another Example

] []
x-'1 n ).( r.n x.+1
(m-1) (n+1)

Prove that [z + k| = |z | + k where k is an integer

More Examples

Prove that [2z] = |z] + |z + 1]

» Observe: Any real number z can be written as n + € where
n=|z]and0<e<1

> To prove desired property, do proof by cases
» Case 1: O§e<%
» Case 2: %§e<1

» First prove property for first case, then second case
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Revisiting Sets

> Earlier we talked about sets and cardinality of sets
» Recall: Cardinality of a set is number of elements in that set

» This definition makes sense for sets with finitely many
element, but more involved for infinite sets

» Agenda: Revisit the notion of cardinality for infinite sets

Cardinality of Infinite Sets

» Sets with infinite cardinality are classified into two classes:
1. Countably infinite sets (e.g., natural numbers)
2. Uncountably infinite sets (e.g., real numbers)

» A set A is called countably infinite if there is a bijection
between A and the set of positive integers.

> A set A is called countable if it is either finite or countably
infinite

» Otherwise, the set is called uncountable or uncountably infinite
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Example

Prove: The set of odd positive integers is countably infinite.

» Need to find a function f from Z* to the set of odd positive
integers, and prove that f is bijective

» Consider f(n) =2n — 1 from ZT to odd positive integers
» We need to show f is bijective (i.e., one-to-one and onto)

> Let's first prove injectivity, then surjectivity

Example, cont.
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Another Way to Prove Countable-ness

> One way to show a set A is countably infinite is to give
bijection between Z* and A

» Another way is by showing members of A can be written as a
sequence (ay, az, ag, . ..)

» Since such a sequence is a bijective function from ZT to A,
writing A as a sequence ay, ag, ag, . . . establishes one-to-one
correspondence

Another Example

Prove that the set of all integers is countable

» We can list all integers in a sequence, alternating positive and
negative integers:

an=0,1,—-1,2,-2,3,-3,...

» Observe that this sequence defines the bijective function:

n/2 if n even

f("):{ “(n—1)/2 if n odd
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Rational Numbers are Countable

» Not too surprising Z and odd Z* are countably infinite
» More surprising: Set of rationals is also countably infinite!

» We'll prove that the set of positive rational numbers is
countable by showing how to enumerate them in a sequence

» Recall: Every positive rational number can be written as the
quotient p/q of two positive integers p, ¢

Rationals in a Table

> Now imagine placing rationals in a table such that:

1. Rationals with p = 1 go in first row, p = 2 in second row, etc.

2. Rationals with ¢ = 1 in 1st column, ¢ = 2 in 2nd column, ...
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Enumerating the Rationals
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» How to enumerate entries in this table without missing any?
» Trick: First list those with p + ¢ =2, then p + ¢ =3, ...

» Traverse table diagonally from left-to-right, in the order shown
by arrows

Enumerating the Rationals, cont.

3 10
e Y
4 1 1 L LI
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3 3] 3 3 =4
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] 13 18
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» This allows us to list all rationals in a sequence:

12112343

1717232171727

» Hence, set of rationals is countable
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Uncountability of Real Numbers

» Prime example of uncountably infinite sets is real numbers

» The fact that R is uncountably infinite was proven by George
Cantor using the famous Cantor's diagonalization argument

» Reminiscient of Russell's paradox

Cantor’s Diagonalization Argument

» For contradiction, assume the set of reals was countable

> Since any subset of a countable set is also countable, this
would imply the set of reals between 0 and 1 is also countable

» Now, if reals between 0 and 1 are countable, we can list them
in the following way:

Bi= 0 fey] ap @y - o
By= 0. ey [an] am - a6y
Ry= 0. ay ap [em] - az

Bpo= 0 oy Gy ez o [am] -
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Diagonalization Argument, cont

Bi= 0 [ey] ap ap = an
Ry= 0. ay [an] axn - ay

Ry= 0. a3 ap [am] - o

Ri= 0. @y Gy g - [Gm] -

» Now, we'll create a new real number R and show that it is not
equal to any of the R;'s in this sequence:

» Let R = 0.a1a2a3 ... such that:

4
ai:{S

» Clearly, this new number R differs from each number R; in
the table in at least one digit (its ¢'th digit)

dii # 4
di; = 4

Diagonalization Argument, concluded

> Since R is not in the table, this is not a complete enumeration
of all reals between 0 and 1

» Hence, the set of real between 0 and 1 is not countable
> Since the superset of any uncountable set is also uncountable,

set of reals is uncountably infinite
O
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