
CS311H: Discrete Mathematics
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Functions

I A function f from a set A to a set B assigns each element of
A to exactly one element of B .

I A is called domain of f , and B is called codomain of f .

I If f maps element a ∈ A to element b ∈ B , we write f (a) = b

I If f (a) = b, b is called image of a; a is in preimage of b.

I Range of f is the set of all images of elements in A.
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Functions Examples and Non-Examples

Is this mapping a function?

A B
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Function Terminology Examples

A B
a

b

c

d

e

f

I What is the range of this function?

I What is the image of c?

I What is the preimage of e?
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Image of a Set

I We can extend the definition of image to a set

I Suppose f is a function from A to B and S is a subset of A

I The image of S under f includes exactly those elements of B
that are images of elements of S :

f (S ) = {t | ∃s ∈ S . t = f (s)}

I What is the image of {b, c}?
A B

a

b

c

d

e

f
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One-to-One Functions

I A function f is called one-to-one if and only if f (x ) = f (y)
implies x = y for every x , y in the domain of f :

∀x , y . (f (x ) = f (y)→ x = y)

I One-to-one functions never assign different elements in the
domain to the same element in the codomain:

∀x , y . (x 6= y → f (x ) 6= f (y))

I A one-to-one function also called injection or injective function

I Is this function one-to-one?

A B
a

b

c

d

e

f
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More Injective Function Examples

I Is this function injective?

A B
a

b

c

d
e
f
g

I Consider the function f (x ) = x 2 from set of integers to set of
integers. Is this injective?

I What about if the domain of f is the set of non-negative
integers?
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Proving Injectivity Example

I Consider the function f from Z to Z defined as:

f (x ) =

{
3x + 1 if x ≥ 0
−3x + 2 if x < 0

I Prove that f is injective.

I We need to show that if x 6= y , then f (x ) 6= f (y)

I What proof technique do we need to use?
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Proving Injectivity Example, cont.
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Proving Injectivity Example, cont.
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Onto Functions
I A function f from A to B is called onto iff for every element

y ∈ B , there is an element x ∈ A such that f (x ) = y :

∀y ∈ B .∃x ∈ A. f (x ) = y

I Note: ∃x ∈ A. φ is shorthand for ∃x .(x ∈ A ∧ φ), and
∀x ∈ A. φ is shorthand for ∀x .(x ∈ A→ φ)

I Onto functions also called surjective functions or surjections

I For onto functions, range and codomain are the same

I Is this function onto?

A B
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Examples of Onto Functions

I Is this function onto?

A B
a

b

c

d
e
f
g

I Consider the function f (x ) = x 2 from the set of integers to
the set of integers. Is f surjective?
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Bijective Functions

I Function that is both onto and one-to-one called bijection

I Bijection also called one-to-one correspondence or invertible
function

I Example of bijection:

A B
a

b

c

d
e
f
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Bijection Example

I The identity function I on a set A is the function that assigns
every element of A to itself, i.e., ∀x ∈ A. I (x ) = x

I Prove that the identity function is a bijection.

I Need to prove I is both one-to-one and onto.

I One-to-one: We need to show ∀x , y . (x 6= y → I (x ) 6= I (y))

I Suppose x 6= y .

I Since I (x ) = x and I (y) = y , and x 6= y , I (x ) 6= I (y)
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Bijection Example, cont.

I Now, prove I is onto, i.e., for every b, there exists some a
such that f (a) = b

I For contradiction, suppose there is some b such that
∀a ∈ A. I (a) 6= b

I Since I (a) = a, this means ∀a ∈ A. a 6= b

I But since b is itself in A, this would imply b 6= b, yielding a
contradiction.

I Since I is both onto and one-to-one, it is a bijection.
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Inverse Functions

I Every bijection from set A to set B also has an inverse
function

I The inverse of bijection f , written f −1, is the function that
assigns to b ∈ B a unique element a ∈ A such that f (a) = b

A B

a
b

f

f -1

I Observe: Inverse functions are only defined for bijections, not
arbitrary functions!

I This is why bijections are also called invertible functions
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Why are Inverse Functions Only Defined on Bijections?

I Suppose f is not injective, i.e., assigns distinct elements to
the same element.

A B
a

b

c

d

e

f

I Then, the inverse is not a function because it assigns the
same element to distinct elements
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Why are Inverse Functions Only Defined on Bijections?

I Suppose f is not surjective, i.e., range and codomain are not
the same

A B
a

b

c

d
e
f
g

I Then, the inverse is not a function because it does not assign
some element in B to any element in A

I Hence, inverse functions only defined for bijections!
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Inverse Function Examples

I Let f be the function from Z to Z such that f (x ) = x 2. Is f
invertible?

I Let g be the function from Z to Z such that g(x ) = x + 1. Is
g invertible?
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Function Composition

I Let g be a function from A to B , and f from B to C .

I The composition of f and g , written f ◦ g , is defined by:

(f ◦ g)(x ) = f (g(x ))

A B

a

g(a)

f Cg

f(g(a))

f g
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Composition Example

I Let f and g be function from Z to Z such that f (x ) = 2x + 3
and g(x ) = 3x + 2

I What is f ◦ g?
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Another Composition Example

I Prove that f −1 ◦ f = I where I is the identity function.

I Since I (x ) = x , need to show (f −1 ◦ f )(x ) = x

I First, (f −1 ◦ f )(x ) = f −1(f (x ))

I Let f (x ) be y

I Then, f −1(f (x )) = f −1(y)

I By definition of inverse, f −1(y) = x iff f (x ) = y

I Thus, f −1(f (x )) = f −1(y) = x
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Example

I Prove that if f and g are injective, then f ◦ g is also injective.
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Floor and Ceiling Functions

I Two important functions in discrete math are floor and ceiling
functions, both from R to Z

I The floor of a real number x , written bxc, is the largest
integer less than or equal to x .
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Ceiling Function

I The ceiling of a real number x , written dxe, is the smallest
integer greater than or equal to x .
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Useful Properties of Floor and Ceiling Functions

I I I I I
x x+1x-1    n

(m-1)
   m
(n+1)

1. For integer n and real number x , bxc = n iff n ≤ x < n + 1

2. For integer n and real number x , dxe = m iff m − 1 < x ≤ m

3. For any real x , x − 1 < bxc ≤ x ≤ dxe < x + 1
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Proofs about Floor/Ceiling Functions

I I I I I
x x+1x-1    n

(m-1)
   m
(n+1)

Prove that b−xc = −dxe
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Another Example

I I I I I
x x+1x-1    n

(m-1)
   m
(n+1)

Prove that bx + kc = bxc+ k where k is an integer
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More Examples

Prove that b2xc = bxc+
⌊
x + 1

2

⌋

I Observe: Any real number x can be written as n + ε where
n = bxc and 0 ≤ ε < 1

I To prove desired property, do proof by cases

I Case 1: 0 ≤ ε < 1
2

I Case 2: 1
2 ≤ ε < 1

I First prove property for first case, then second case
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Revisiting Sets

I Earlier we talked about sets and cardinality of sets

I Recall: Cardinality of a set is number of elements in that set

I This definition makes sense for sets with finitely many
element, but more involved for infinite sets

I Agenda: Revisit the notion of cardinality for infinite sets
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Cardinality of Infinite Sets

I Sets with infinite cardinality are classified into two classes:

1. Countably infinite sets (e.g., natural numbers)

2. Uncountably infinite sets (e.g., real numbers)

I A set A is called countably infinite if there is a bijection
between A and the set of positive integers.

I A set A is called countable if it is either finite or countably
infinite

I Otherwise, the set is called uncountable or uncountably infinite
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Example

Prove: The set of odd positive integers is countably infinite.

I Need to find a function f from Z+ to the set of odd positive
integers, and prove that f is bijective

I Consider f (n) = 2n − 1 from Z+ to odd positive integers

I We need to show f is bijective (i.e., one-to-one and onto)

I Let’s first prove injectivity, then surjectivity

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Functions 35/46

Example, cont.
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Another Way to Prove Countable-ness

I One way to show a set A is countably infinite is to give
bijection between Z+ and A

I Another way is by showing members of A can be written as a
sequence (a1, a2, a3, . . .)

I Since such a sequence is a bijective function from Z+ to A,
writing A as a sequence a1, a2, a3, . . . establishes one-to-one
correspondence
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Another Example

Prove that the set of all integers is countable

I We can list all integers in a sequence, alternating positive and
negative integers:

an = 0, 1,−1, 2,−2, 3,−3, . . .

I Observe that this sequence defines the bijective function:

f (n) =

{
n/2 if n even
−(n − 1)/2 if n odd
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Rational Numbers are Countable

I Not too surprising Z and odd Z+ are countably infinite

I More surprising: Set of rationals is also countably infinite!

I We’ll prove that the set of positive rational numbers is
countable by showing how to enumerate them in a sequence

I Recall: Every positive rational number can be written as the
quotient p/q of two positive integers p, q
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Rationals in a Table

I Now imagine placing rationals in a table such that:

1. Rationals with p = 1 go in first row, p = 2 in second row, etc.

2. Rationals with q = 1 in 1st column, q = 2 in 2nd column, . . .
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Enumerating the Rationals

I How to enumerate entries in this table without missing any?

I Trick: First list those with p + q = 2, then p + q = 3, . . .

I Traverse table diagonally from left-to-right, in the order shown
by arrows
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Enumerating the Rationals, cont.

I This allows us to list all rationals in a sequence:

1

1
,
2

1
,
1

2
,
1

3
,
2

2
,
3

1
,
4

1
,
3

2
, . . .

I Hence, set of rationals is countable
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Uncountability of Real Numbers

I Prime example of uncountably infinite sets is real numbers

I The fact that R is uncountably infinite was proven by George
Cantor using the famous Cantor’s diagonalization argument

I Reminiscient of Russell’s paradox
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Cantor’s Diagonalization Argument

I For contradiction, assume the set of reals was countable

I Since any subset of a countable set is also countable, this
would imply the set of reals between 0 and 1 is also countable

I Now, if reals between 0 and 1 are countable, we can list them
in the following way:
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Diagonalization Argument, cont

I Now, we’ll create a new real number R and show that it is not
equal to any of the Ri ’s in this sequence:

I Let R = 0.a1a2a3 . . . such that:

ai =

{
4 dii 6= 4
5 dii = 4

I Clearly, this new number R differs from each number Ri in
the table in at least one digit (its i ’th digit)
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Diagonalization Argument, concluded

I Since R is not in the table, this is not a complete enumeration
of all reals between 0 and 1

I Hence, the set of real between 0 and 1 is not countable

I Since the superset of any uncountable set is also uncountable,
set of reals is uncountably infinite
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