CS311H: Discrete Mathematics

Graph Theory II

Instructor: Ișıl Dillig

Instructor: Işii Dillig,

311H: Discrete Mathematics Graph Theory II

Review

- ▶ What does it mean for a graph to be bipartite?
- ▶ What is the chromatic number of a graph?
- ▶ How do you prove that the chromatic number is n?

tructor: Isl Dillig.

S311H: Discrete Mathematics Granh Theory II

Bipartite Graphs and Colorability

Prove that a graph $\,G=(\,V,E)$ is bipartite if and only if it is 2-colorable.

Complete graphs and Colorability

Prove that any complete graph K_n has chromatic number n.

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Graph Theory II

Instructor:

CS311H: Discrete Mathematics Graph Theory II

Degree and Colorability

Theorem: Let G be a simple graph such that $\max_degree(G) = n$. Then, G is n+1-colorable.

Instructor: Işıl Dillig,

CS311H: Discrete Mathematics Graph Theory II

Degree and Colorability, cont.

structor: Ipil Dillig, CS311H: Discrete Mathematics Graph Theory II

Star Graphs and Colorability

- A star graph S_n is a graph with one vertex u at the center and the only edges are from u to each of v_1, \ldots, v_{n-1} .
- ▶ Draw S_2, S_3, S_4, S_5 .
- ▶ What is the chromatic number of S_n ?

Instructor: Işii Dillig

S311H: Discrete Mathematics Graph Theory II

Question About Star Graphs

Suppose we have two star graphs S_k and S_m . Now, pick a random vertex from each graph and connect them with an edge.

Which of the following statements must be true about the resulting graph \ensuremath{G} ?

- 1. The chromatic number of G is 3
- 2. G is 2-colorable.
- 3. $\max_{\text{degree}}(G) = \max(k, m)$.

Instructor: Ipil

311H: Discrete Mathematics Graph Theory II

Connectivity in Graphs

- ► Typical question: Is it possible to get from some node *u* to another node *v*?
- ► Example: Train network if there is path from u to v, possible to take train from u to v and vice versa.
- If it's possible to get from u to v, we say u and v are connected and there is a path between u and v

Instructor: Isil Dillig

CS311H: Discrete Mathematics Graph Theory II

Paths

- A path between u and v is a sequence of edges that starts at vertex u, moves along adjacent edges, and ends in v.
- $\begin{tabular}{ll} \blacktriangleright Example: u,x,y,w is a path, but u,y,v and u,a,x are not $} \end{tabular}$
- ► Length of a path is the number of edges traversed, e.g., length of u, x, y, w is 3
- A simple path is a path that does not repeat any edges
- ightharpoonup u, x, y, w is a simple path but u, x, u is not

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Graph Theory I

Example

- ▶ Consider a graph with vertices $\{x,y,z,w\}$ and edges (x,y),(x,w),(x,z),(y,z)
- lacktriangle What are all the simple paths from z to w?
- ightharpoonup What are all the simple paths from x to y?
- ▶ How many paths (can be non-simple) are there from x to y?

Connectedness

- ► A graph is connected if there is a path between every pair of vertices in the graph
- ► Example: This graph not connected; e.g., no path from x to d
- ► A connected component of a graph *G* is a maximal connected subgraph of *G*

Instructor: Işıl Dillig

CS311H: Discrete Mathematics Graph Theory II

Instructor: Ișil Dillig,

S311H: Discrete Mathematics Graph Theory II

12/27

Example

- ightharpoonup Prove: Suppose graph G has exactly two vertices of odd degree, say u and v. Then G contains a path from u to v.
- •
- •
- •
- •

Instructor: Isil Dillie

311H: Discrete Mathematics Graph Theory II

Circuits

- ► A circuit is a path that begins and ends in the same vertex.
- ightharpoonup u, x, y, x, u and u, x, y, u are both circuits
- ► A simple circuit does not contain the same edge more than once
- u, x, y, u is a simple circuit, but u, x, y, x, u is not
- ▶ Length of a circuit is the number of edges it contains, e.g., length of u, x, y, u is 3
- ► In this class, we only consider circuits of length 3 or more

Instructor: Isil Dillig.

311H: Discrete Mathematics Graph Theory II

14/07

Cycles

- ► A cycle is a simple circuit with no repeated vertices other than the first and last ones.
- For instance, u, x, a, b, x, y, u is a circuit but not a cycle
- lacksquare However, u, x, y, u is a cycle

CS311H: Discrete Mathematics Graph Theory II

Example

- Prove: If a graph has an odd length circuit, then it also has an odd length cycle.
- ▶ Huh? Recall that not every circuit is a a cycle.
- According to this theorem, if we can find an odd length circuit, we can also find odd length cycle.
- $\,\blacktriangleright\,$ Example: d,c,a,b,c,d is an odd length circuit, but graph also contains odd length cycle

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Graph Theory II

Proof

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

▶ Proof by strong induction on the length of the circuit.

•

Instructor: Ișil Dillig,

S311H: Discrete Mathematics Graph Theory II

Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

- •
- \blacktriangleright
- •

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Graph Theory II

18/27

Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

- •
- •
- •
- •

Instructor: Ișil Dillig

311H: Discrete Mathematics Graph Theory II

Colorability and Cycles

Prove: If a graph is 2-colorable, then all cycles are of even length.

- .
- •
- •
- •
- •

tor: Ișil Dillig, CS311H: Discrete Mathematics Graph

00.107

Example

▶ Is this graph 2-colorable?

Instructor: Işıl Dillig,

CS311H: Discrete Mathematics Graph Theory II

Distance Between Vertices

- ➤ The distance between two vertices u and v is the length of the shortest path between u and v
- ▶ What is the distance between *u* and *b*?
- ▶ What is the distance between *u* and *x*?
- ▶ What is the distance between x and w?

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Graph Theory II

More Colorability and Cycles

Prove: If graph has no odd length cycles, then graph is 2-colorable.

- ► To prove this, we first consider an algorithm for coloring the graph with two colors.
- ► Then, we will show that this algorithm works if graph does not have odd length cycles.

The Algorithm

- $\qquad \qquad \textbf{Pick any vertex} \ v \ \textbf{in the graph}. \\$
- lacksquare If a vertex u has odd distance from v, color it blue
- ► Otherwise, color it red

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Graph Theory II

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Graph Theory I

Proof

- ► We will now prove: "If the graph does not have odd length cycles, the algorithm is correct."
- ▶ Correctness of the algorithm implies graph is 2-colorable.
- ▶ Proof by contradiction.
- ► Suppose graph does not have odd length cycles, but the algorithm produces an invalid coloring.
- $lackbox{f }$ Means there exist two vertices x and y that are assigned the same color.

Instructor: Isil Dill

S311H: Discrete Mathematics Graph Theory II

Proof, cont.

▶ Case 1: They are both assigned red

- ightharpoonup We know n, m are both even
- lacktriangle This means we now have an odd-length circuit involving n,m
- ► By theorem from earlier, this implies that graph has odd length cycle, i.e., contradiction
- Case 2 is exactly the same.

uctor: Isl Dillie.

CS311H: Discrete Mathematics Graph Theory II

Instructor: Işii Dili

Putting It All Together

- ► Theorem: A graph is 2-colorable if and only if it does not have odd-length cycles
- ► Corollary: A graph is bipartite if and only if it does not have odd-length cycles
- \blacktriangleright Example: Consider a graph G with vertices a,b,c,d,e,f
 - ▶ Is G partitle if its edges are (a, f), (e, f), (e, d), (c, d), (a, c)?

Instructor: Ișil Dilliș

CS311H: Discrete Mathematics Graph Theory II

27/27