CS311H: Discrete Mathematics

Introduction to Number Theory

Instructor: İşıl Dillig

Introduction to Number Theory

- ▶ Number theory is the branch of mathematics that deals with integers and their properties
- ▶ Number theory has a number of applications in computer science, esp. in modern cryptography in cryptography

Divisibility

- ▶ Given two integers a and b where $a \neq 0$, we say a divides b if there is an integer c such that b = ac
- ▶ If a divides b, we write $a \mid b$; otherwise, $a \nmid b$
- ► Example: 2|6, 2 // 9
- ▶ If a|b, a is called a factor of b
- ightharpoonup b is called a multiple of a

Example

- ightharpoonup Question: If n and d are positive integers, how many positive integers not exceeding n are divisible by d?
- lacktriangleright Recall: All positive integers divisible by d are of the form dk
- ightharpoonup We want to find how many numbers dk there are such that $0 < dk \le n$.
- ightharpoonup In other words, we want to know how many integers k there are such that $0 < k \le \frac{n}{d}$
- ▶ How many integers are there between 1 and $\frac{n}{d}$?

Properties of Divisibility

- ▶ Theorem 1: If a|b and b|c, then a|c

Divisibility Properties, cont.

- ▶ Theorem 2: If a|b and a|c, then a|(mb+nc) for any int m,n
- ► Proof:
- ▶ Corollary 1: If a|b and a|c, then a|(b+c) for any int c
- ▶ Corollary 2: If a|b, then a|mb for any int m

The Division Theorem

- ▶ Division theorem: Let a be an integer, and d a positive integer. Then, there are unique integers q,r with $0 \le r < d$ such that a = dq + r
- ► Here, *d* is called divisor, and *a* is called dividend
- q is the quotient, and r is the remainder.
- We use the $r = a \mod d$ notation to express the remainder
- ▶ The notation $q = a \operatorname{div} d$ expresses the quotient
- ▶ What is 101 mod 11?
- ▶ What is 101 div 11?

Instructor: Isil Dilli

CS311H: Discrete Mathematics Introduction to Number Theory

Congruence Modulo

- ightharpoonup In number theory, we often care if two integers a,b have same remainder when divided by m.
- ▶ If so, a and b are congruent modulo m, $a \equiv b \pmod{m}$.
- ▶ More technically, if a and b are integers and m a positive integer, $a \equiv b \pmod{m}$ iff $m \mid (a b)$
- ▶ Example: 7 and 13 are congruent modulo 3.
- ▶ Example: Find a number congruent to 7 modulo 4.

Instructor: Ișil Dilli

CS311H: Discrete Mathematics Introduction to Number Theory

Instructor: Işii Dilliğ

Congruence Modulo Theorem

- ▶ Theorem: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- ▶ Part 1, \Rightarrow : Suppose $a \equiv b \pmod{m}$.
- ▶ Then, by definition of \equiv , m|(a-b)
- ▶ By definition of |, there exists k such that a-b=mk, i.e., a=b+mk
- ▶ By division thm, b = mp + r for some $0 \le r < m$
- $\blacktriangleright \text{ Then, } a=mp+r+mk=m(p+k)+r$
- ▶ Thus, $a \mod m = r = b \mod m$

Instructor: Ișil Dilli

Congruence Modulo Theorem Proof, cont.

- ▶ Theorem: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- ▶ Part 2, \Leftarrow : Suppose $a \mod m = b \mod m$
- ▶ Then, there exists some p_1, p_2, r such that $a = p_1 \cdot m + r$ and $b = p_2 \cdot m + r$ where $0 \le r < m$
- ▶ Then, $a b = p_1 \cdot m + r p_2 \cdot m r = m \cdot (p_1 p_2)$
- ▶ Thus, m|(a-b)
- ▶ By definition of \equiv , $a \equiv b \pmod{m}$

Instructor: Ișil Dillig

Example

▶ Prove that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:

$$a + c \equiv b + d \pmod{m}$$

- \blacktriangleright
- \blacktriangleright
- •
- •
- •

nstructor: Işıl Dillig

Applications of Congruence in Cryptography

- ► Congruences have many applications in cryptography, e.g., shift ciphers
- ► Shift cipher with key *k* encrypts message by shifting each letter by *k* letters in alphabet (if past *Z*, then wrap around)
- \blacktriangleright What is encryption of "KILL HIM" with shift cipher of key 3?
- ► Shift ciphers also called Ceasar ciphers because Julius Ceasar encrypted secret messages to his generals this way

Instructor: Ișil Dillig,

12/19

Mathematical Encoding of Shift Ciphers

- First, let's number letters A-Z with 0-25
- ▶ Represent message with sequence of numbers
- ► Example: The sequence "25 0 2" represents "ZAC"
- ightharpoonup To encrypt, apply encryption function f defined as:

$$f(x) = (x+k) \bmod 26$$

ightharpoonup Because f is bijective, its inverse yields decryption function:

$$g(x) = (x - k) \bmod 26$$

Instructor: Isil Dill

CS311H: Discrete Mathematics Introduction to Number Theory

Ciphers and Congruence Modulo

- lacktriangle Shift cipher is a very primitive and insecure cipher because very easy to infer what k is
- ▶ But contains some useful ideas:
 - ▶ Encoding words as sequence of numbers
 - ▶ Use of modulo operator
- ► Modern encryption schemes much more sophisticated, but also share these principles (coming lectures)

Instructor: Ișil Dilli

311H: Discrete Mathematics - Introduction to Number Theory

Prime Numbers

- ▶ A positive integer *p* that is greater than 1 and divisible only by 1 and itself is called a prime number.
- First few primes: $2, 3, 5, 7, 11, \ldots$
- ► A positive integer that is greater than 1 and that is not prime is called a composite number
- ightharpoonup Example: $4,6,8,9,\ldots$

Fundamental Theorem of Arithmetic

- ► Fundamental Thm: Every positive integer greater than 1 is either prime or can be written uniquely as a product of primes.
- lacktriangle This unique product of prime numbers for x is called the prime factorization of x
- ► Examples:
 - **▶** 12 =
 - ▶ 21 =
 - **▶** 99 =

Instructor: Isil Dillig

Instructor: Ișil Dilli

16/19

Determining Prime-ness

- ► In many applications, such as crypto, important to determine if a number is prime following thm is useful for this:
- \blacktriangleright Theorem: If n is composite, then it has a prime divisor less than or equal to \sqrt{n}
- L
- •
- •
- •

Instructor: Işıl Dilli

S311H: Discrete Mathematics Introduction to Number Theory

Consequence of This Theorem

Theorem: If n is composite, then it has a prime divisor $\leq \sqrt{n}$

- \blacktriangleright Thus, to determine if n is prime, only need to check if it is divisible by primes $\leq \sqrt{n}$
- ► Example: Show that 101 is prime
- \blacktriangleright Since $\sqrt{101}<11$, only need to check if it is divisible by 2,3,5,7.
- ▶ Since it is not divisible by any of these, we know it is prime.

Instructor: Ișil Dillig,

18/19

Infinitely Many Primes

- ► Theorem: There are infinitely many prime numbers.
- ▶ Proof: (by contradiction) Suppose there are finitely many primes: p_1, p_2, \ldots, p_n
- ▶ Now consider the number $Q = p_1 p_2 \dots p_n + 1$. Q is either prime or composite
- \blacktriangleright Case 1: Q is prime. We get a contradiction, because we assumed only prime numbers are p_1,\ldots,p_n
- $\,\blacktriangleright\,$ Case 2: Q is composite. In this case, Q can be written as product of primes.
- lacksquare But Q is not divisible by any of p_1, p_2, \ldots, p_n
- \blacktriangleright Hence, by Fundamental Thm, not composite $\Rightarrow \bot$

Instructor: Isil Dillig.

CS311H: Discrete Mathematics Introduction to Number Theory

19/19