CS311H: Discrete Mathematics

Number Theory

Instructor: Isil Dillig

Review

» What does it mean for two ints a, b to be congruent mod m?
> What is the Division theorem?

> If a|b and b

¢, does that mean a|c?

> If alb and alc, does it mean b|c?
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Applications of Congruence in Cryptography

» Congruences have many applications in cryptography, e.g.,
shift ciphers

» Shift cipher with key & encrypts message by shifting each
letter by k letters in alphabet (if past Z, then wrap around)

» What is encryption of "KILL HIM" with shift cipher of key 37

» Shift ciphers also called Ceasar ciphers because Julius Ceasar
encrypted secret messages to his generals this way

Mathematical Encoding of Shift Ciphers

» First, let's number letters A-Z with 0 — 25
> Represent message with sequence of numbers
» Example: The sequence "25 0 2" represents "ZAC"
» To encrypt, apply encryption function f defined as:
f(z) = (z + k) mod 26
» Because f is bijective, its inverse yields decryption function:

g(z) = (z — k) mod 26
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Ciphers and Congruence Modulo

» Shift cipher is a very primitive and insecure cipher because
very easy to infer what & is

» But contains some useful ideas:

» Encoding words as sequence of numbers
» Use of modulo operator

> Modern encryption schemes much more sophisticated, but
also share these principles (coming lectures)

Prime Numbers

> A positive integer p that is greater than 1 and divisible only
by 1 and itself is called a prime number.

» First few primes: 2,3,5,7,11,...

> A positive integer that is greater than 1 and that is not prime
is called a composite number

» Example: 4,6,8,9,...
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Fundamental Theorem of Arithmetic

» Fundamental Thm: Every positive integer greater than 1 is

either prime or can be written uniquely as a product of primes.

» This unique product of prime numbers for x is called the
prime factorization of x

» Examples:

> 12 =
> 21 =

> 99 =

Determining Prime-ness

> In many applications, such as crypto, important to determine

if a number is prime — following thm is useful for this:

» Theorem: If n is composite, then it has a prime divisor less
than or equal to /n
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Consequence of This Theorem

Theorem: If n is composite, then it has a prime divisor < /1

> Thus, to determine if n is prime, only need to check if it is
divisible by primes < /n

» Example: Show that 101 is prime

» Since v/101 < 11, only need to check if it is divisible by
2,3,5,7.

» Since it is not divisible by any of these, we know it is prime.

Infinitely Many Primes

» Theorem: There are infinitely many prime numbers.

» Proof: (by contradiction) Suppose there are finitely many
primes: p1,p2, .-, Pn

» Now consider the number @ = pips...p, + 1. Q is either
prime or composite

» Case 1: @ is prime. We get a contradiction, because we
assumed only prime numbers are py,..., D,

» Case 2: (@) is composite. In this case, ) can be written as
product of primes.

» But @ is not divisible by any of p1,pa,...,pn

> Hence, by Fundamental Thm, not composite = L
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Computing GCDs

» Simple algorithm to compute ged of a, b:
> Factorize a as pj'p2 ... pir
» Factorize b as pJ'pJ ... pir

man(iy,j1), min(iz,j2)
) s

> ged(a,b) = py

p;m'n(in Jn)

» But this algorithm is not good because prime factorization is
computationally expensive! (not polynomial time)

» Much more efficient algorithm to compute gcd, called the
Euclidian algorithm

Insight Behind Euclid’s Algorithm
> Theorem: Let a = bg + r. Then, ged(a, b) = ged(b, r)

» eg., Consider a =12, b=8and a=12,0=5

» Proof: We'll show that a, b and b, r have the same common
divisors — implies they have the same gcd.

= Suppose d is a common divisor of a, b, i.e., d|a and d|b
» By theorem we proved earlier, this implies d|a — bg

> Since a — bg = r, d|r. Hence d is common divisor of b, r.
< Now, suppose d|b and d|r. Then, d|bq+ r

» Hence, d|a and d is common divisor of a, b
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Using this Theorem

Theorem: Let a = bg + r. Then, ged(a, b) = ged(b, r)
» Suggests following recursive strategy to compute ged(a, b):

> Base case: If bis 0, then ged is a
> Recursive case: Compute ged(b, a mod b)

» Claim: We'll eventually hit base case — why?

Euclidian Algorithm

> Find ged of 72 and 20
‘ Stxa:n\gi:h | > 12 = 72%20
‘ > 8 =20%12
=07 > 4 =12%8
A Y
N
VES > 0 =8%4
‘ Answer is X H
| > gcd is 4!
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GCD as Linear Combination

» gcd(a, b) can be expressed as a linear combination of a and b

» Theorem: If a and b are positive integers, then there exist
integers s and ¢ such that:

ged(a,b) =s-a+t-b

> Furthermore, Euclidian algorithm gives us a way to compute
these integers s and ¢ (known as extended Euclidian

Example

> Express gcd(72,20) as a linear combination of 72 and 20

> First apply Euclid’s algorithm (write a = bg + r at each step):

1. 72=3-20+12
2.20=1-12+8
3.12=1-8+4

4. 8=2-440=gcdis 4

> Now, using (3), write 4 as 12 —1-8

algorithm) > Using (2), write4as12—1-(20—1-12) =2-12—-1-20
> Using (1), we have 12 = 72 — 3 - 20, thus:
4=2-(712-3-20)—1-20=2-72+ (=7) - 20
Exercise A Useful Result

Use the extended Euclid algorithm to compute ged(38, 16).

> Lemma: If a, b are relatively prime and a|bc, then alc.
> Proof: Since a, b are relatively prime ged(a, b) =1

> By previous theorem, there exists s, ¢ such that 1 = s-a+¢-b

v

Multiply both sides by ¢: ¢ = c¢sa + ctb

v

By earlier theorem, since a|bc, a|ctb

v

Also, by earlier theorem, a|csa

v

Therefore, alcsa + ctb, which implies a|c since ¢ = csa + ctb O
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Example

Lemma: If a, b are relatively prime and a|bc, then a|c.

Question

> Suppose ca = ¢b (mod m). Does this imply a = b (mod m)?

>
> Suppose 15 | 16 -z >
> Here 15 and 16 are relatively prime >
» Thus, previous theorem implies: 15|z >
>
Another Useful Result Examples

» Theorem: If ca = ¢b (mod m) and ged(c, m) = 1, then
a = b (mod m)

> If 152 = 15y (mod 4), is z = y (mod 4)?

> If 82 = 8y (mod 4), is = y (mod 4)?
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Linear Congruences

» A congruence of the form az = b (mod m) where a, b, m are
integers and x a variable is called a linear congruence.

» Given such a linear congruence, often need to answer:

1. Are there any solutions?

2. What are the solutions?
» Example: Does 8z = 2 (mod 4) have any solutions?
» Example: Does 8z = 2 (mod 7) have any solutions?

> Question: Is there a systematic way to solve linear
congruences?

Determining Existence of Solutions

» Theorem: The linear congruence az = b (mod m) has
solutions iff ged(a, m)|b.

» Proof involves two steps:

1. If az = b (mod m) has solutions, then gcd(a, m)|b.

2. If ged(a, m)

b, then az = b (mod m) has solutions.

> First prove (1), then (2).
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Proof, Part |

If az = b (mod m) has solutions, then ged(a, m)|b.

Proof, Part Il
If ged(a, m)

b, then az = b (mod m) has solutions.

> Let d = ged(a, m) and suppose d|b

>
» Then, there is a k£ such that b = dk
>
> By earlier theorem, there exist s, ¢ such that d =s-a+t-m
>
> Multiply both sides by k: dk = a - (sk) + m - (tk)
>
> Since b = dk, we have b — a - (sk) = m - tk
>
> Thus, b= a- (sk) (mod m)
»>
> Hence, sk is a solution.
Examples Finding Solutions

» Does 5z = 7 (mod 15) have any solutions?

» Does 3z =4 (mod 7) have any solutions?

» Can determine existence of solutions, but how to find them?

> Theorem: Let d = ged(a, m) = sa + tm. If d|b, then the
solutions to az = b (mod m) are given by:
sbm
z=—+ —u where u € Z

d d
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Example

Let d = ged(a, m) = sa + tm. If d|b, then the solutions to

az = b (mod m) are given by:

b
z=%+%u where u € Z

> What are the solutions to the linear congruence 3z = 4 (mod 7)?

Another Example

Let d = ged(a, m) = sa + tm. If d|b, then the solutions to
az = b (mod m) are given by:

z=%+%u where u € Z

> What are the solutions to the linear congruence 3z =1 (mod 7)?
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Inverse Modulo m

» The inverse of a modulo m, written @ has the property:
aa =1 (mod m)

» Theorem: Inverse of a modulo m exists if and only if ¢ and m
are relatively prime.

» Does 3 have an inverse modulo 77

Example

> Find an inverse of 3 modulo 7.

> An inverse is any solution to 3z = 1 (mod 7)

» Earlier, we already computed solutions for this equation as:
T =—-2+"Tu

» Thus, —2 is an inverse of 3 modulo 7

> 5,12,—9,... are also inverses
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Example 2

» Find inverse of 2 modulo 5.

Cryptography

» Cryptography is the study of techniques for secure
transmission of information in the presence of adversaries

i- message to Bob =-

Alice Bob

A E. A

Eve

» How can Alice send secrete messages to Bob without Eve
being able to read them?
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Private vs. Public Crypto Systems

» Two different kinds of cryptography systems:

1. Private key cryptography (also known as symmetric)
2. Public key cryptography (asymmetric)

> In private key cryptography, sender and receiver agree on
secret key that both use to encrypt/decrypt the message

> In public key crytography, a public key is used to encrypt the
message, and private key is used to decrypt the message

Private Key Cryptography

v

Private key crypto is classical method, used since antiquity

v

Caesar's cipher is an example of private key cryptography

v

Caesar's cipher is shift cipher where f(p) = (p + k) (mod 26)

v

Both receiver and sender need to know % to encrypt/decrypt

v

Modern symmetric algorithms: RC4, DES, AES, ...

v

Main problem: How do you exchange secret key in a secure
way?
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Public Key Cryptography

» Public key cryptography is the modern method: different keys
are used to encrypt vs. decrypt message

» Most commonly used public key system is RSA

» Great application of number theory and things we've learned

RSA History

» Named after its inventors Rivest, Shamir, and Adlemann, all
researchers at MIT (1978)

> Actually, similar system invented earlier by British researcher
Clifford Cocks, but classified — unknown until 90's
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RSA Overview

> Bob has two keys: public and private

Alice >

Hello
Bob! — Encrypt 4—0—..

Everyone knows Bob's public key, but
only he knows his private key

puerey > Alice encrypts message using Bob's
------------------------- public key
g;léu!“— Decrvpt‘_h
oiorey > Bob decrypts message using private key

S
Bob n

» Since public key cannot decrypt, noone

can read message accept Bob

High Level Math Behind RSA

> In the RSA system, private key consists of two very large
prime numbers p, ¢

» Public key consists of a number n, which is the product of
p, ¢ and another number e, which is relatively prime with

VERYUERY
» Encrypt messages using n, e, but to decrypt, must know p, g

> In theory, can extract p, ¢ from n using prime factorization,
but this is intractable for very large numbers

» Security of RSA relies on inherent computational
difficulty of prime factorization
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Encryption in RSA

> To send message to Bob, Alice first represents message as a
sequence of numbers

> Call this number representing message M
» Alice then uses Bob's public key n, e to perform encryption as:
C = M° (mod n)

» (' is called the ciphertext

RSA Decryption

» Decryption key d is the inverse of ¢ modulo (p — 1)(¢ — 1):
d-e=1 (mod(p—1)(¢g—1))
» Decryption function: C'¢ (mod n)

> As we saw earlier, d can be computed reasonably efficiently if
we know (p —1)(¢g —1)

» However, since adversaries do not know p, ¢, they cannot
compute d with reasonable computational effort!
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Security of RSA

>

Instructor: Isil Dilli,

The encryption function used in RSA is a trapdoor function

Trapdoor function is easy to compute in one direction, but
very difficult in reverse direction without additional knowledge

Decryption without private key is very hard because requires
prime factorization (which is intractable for large enough
numbers)

Interesting fact: There are efficient (poly-time) prime
factorization algorithms for quantum computers (e.g., Shor's

algorithm)

If we could build quantum computers with sufficient "qubits”,
RSA would no longer be secure!
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