CS311H: Discrete Mathematics

Number Theory

Instructor: Ișil Dillig

Instructor: Ișil Dillig,

S311H: Discrete Mathematics Number Theory

Review

- ▶ What does it mean for two ints a, b to be congruent mod m?
- ▶ What is the Division theorem?
- ▶ If a|b and b|c, does that mean a|c?
- ▶ If a|b and a|c, does it mean b|c?

Instructor: Isil Dillig.

1H: Discrete Mathematics Number Theory

Applications of Congruence in Cryptography

- Congruences have many applications in cryptography, e.g., shift ciphers
- ightharpoonup Shift cipher with key k encrypts message by shifting each letter by k letters in alphabet (if past Z, then wrap around)
- ▶ What is encryption of "KILL HIM" with shift cipher of key 3?
- ► Shift ciphers also called Ceasar ciphers because Julius Ceasar encrypted secret messages to his generals this way

Mathematical Encoding of Shift Ciphers

- lacktriangle First, let's number letters A-Z with 0-25
- ▶ Represent message with sequence of numbers
- ► Example: The sequence "25 0 2" represents "ZAC"
- ► To encrypt, apply encryption function *f* defined as:

 $f(x) = (x+k) \bmod 26$

ightharpoonup Because f is bijective, its inverse yields decryption function:

$$g(x) = (x - k) \mod 26$$

Instructor: Isil Dillig,

CS311H: Discrete Mathematics Number Theory

CS311H: Discrete Mathematics Number Theorem

Ciphers and Congruence Modulo

- lacktriangle Shift cipher is a very primitive and insecure cipher because very easy to infer what k is
- ▶ But contains some useful ideas:
 - ► Encoding words as sequence of numbers
 - ▶ Use of modulo operator
- Modern encryption schemes much more sophisticated, but also share these principles (coming lectures)

Prime Numbers

- ightharpoonup A positive integer p that is greater than 1 and divisible only by 1 and itself is called a prime number.
- First few primes: $2, 3, 5, 7, 11, \ldots$
- ► A positive integer that is greater than 1 and that is not prime is called a composite number
- ightharpoonup Example: 4, 6, 8, 9, ...

Instructor: Işıl Dilliş

CS311H: Discrete Mathematics Number Theory

Instructor: Ișil

CS311H: Discrete Mathematics Number Theory

Fundamental Theorem of Arithmetic

- ► Fundamental Thm: Every positive integer greater than 1 is either prime or can be written uniquely as a product of primes.
- lacktriangle This unique product of prime numbers for x is called the prime factorization of \boldsymbol{x}
- ► Examples:
 - **▶** 12 =
 - **▶** 21 =
 - ▶ 99 =

Determining Prime-ness

- ▶ In many applications, such as crypto, important to determine if a number is prime – following thm is useful for this:
- ▶ Theorem: If *n* is composite, then it has a prime divisor less than or equal to \sqrt{n}

Consequence of This Theorem

Theorem: If n is composite, then it has a prime divisor $\leq \sqrt{n}$

- lacktriangle Thus, to determine if n is prime, only need to check if it is divisible by primes $\leq \sqrt{n}$
- ► Example: Show that 101 is prime
- ▶ Since $\sqrt{101}$ < 11, only need to check if it is divisible by 2, 3, 5, 7.
- ▶ Since it is not divisible by any of these, we know it is prime.

Infinitely Many Primes

- ► Theorem: There are infinitely many prime numbers.
- ▶ Proof: (by contradiction) Suppose there are finitely many primes: p_1, p_2, \ldots, p_n
- ▶ Now consider the number $Q = p_1 p_2 \dots p_n + 1$. Q is either prime or composite
- lacktriangle Case 1: Q is prime. We get a contradiction, because we assumed only prime numbers are p_1, \ldots, p_n
- ightharpoonup Case 2: Q is composite. In this case, Q can be written as product of primes.
- ▶ But Q is not divisible by any of p_1, p_2, \ldots, p_n
- ▶ Hence, by Fundamental Thm, not composite $\Rightarrow \bot$

Computing GCDs

- ▶ Simple algorithm to compute gcd of *a*, *b*:
 - Factorize a as $p_1^{i_1}p_2^{i_2}\dots p_n^{i_n}$
 - Factorize b as $p_1^{j_1} p_2^{j_2} \dots p_n^{j_n}$
 - $\gcd(a,b) = p_1^{\min(i_1,j_1)} p_2^{\min(i_2,j_2)} \dots p_n^{\min(i_n,j_n)}$
- ▶ But this algorithm is not good because prime factorization is computationally expensive! (not polynomial time)
- ▶ Much more efficient algorithm to compute gcd, called the Euclidian algorithm

Insight Behind Euclid's Algorithm

- ▶ Theorem: Let a = bq + r. Then, gcd(a, b) = gcd(b, r)
- lacktriangle e.g., Consider $a=12,\ b=8$ and $a=12,\ b=5$
- ightharpoonup Proof: We'll show that a, b and b, r have the same common divisors - implies they have the same gcd.
- \Rightarrow Suppose d is a common divisor of a, b, i.e., d|a and d|b
- ▶ By theorem we proved earlier, this implies d|a bq
- ▶ Since a bq = r, d|r. Hence d is common divisor of b, r.
- \leftarrow Now, suppose d|b and d|r. Then, d|bq + r
- ▶ Hence, $d \mid a$ and d is common divisor of a, b

Using this Theorem

Theorem: Let a=bq+r. Then, $\gcd(a,b)=\gcd(b,r)$

- ▶ Suggests following recursive strategy to compute gcd(a, b):
 - ▶ Base case: If b is 0, then gcd is a
 - ► Recursive case: Compute gcd(b, a mod b)
- ► Claim: We'll eventually hit base case why?

Euclidian Algorithm

- ightharpoonup Find gcd of 72 and 20
- ▶ 12 = 72%20
- 8 = 20%12
- 4 = 12%8
- 0 = 8%4
- ▶ gcd is 4!

GCD as Linear Combination

- ightharpoonup gcd(a, b) can be expressed as a linear combination of a and b
- ightharpoonup Theorem: If a and b are positive integers, then there exist integers s and t such that:

$$\gcd(a,b) = \mathbf{s} \cdot a + \mathbf{t} \cdot b$$

▶ Furthermore, Euclidian algorithm gives us a way to compute these integers s and t (known as extended Euclidian algorithm)

Example

- \blacktriangleright Express $\gcd(72,20)$ as a linear combination of 72 and 20
- First apply Euclid's algorithm (write a = bq + r at each step):
 - 1. $72 = 3 \cdot 20 + 12$
 - 2. $20 = 1 \cdot 12 + 8$
 - 3. $12 = 1 \cdot 8 + 4$
 - 4. $8 = 2 \cdot 4 + 0 \Rightarrow \gcd is 4$
- Now, using (3), write 4 as $12 1 \cdot 8$
- ▶ Using (2), write 4 as $12-1\cdot(20-1\cdot12)=2\cdot12-1\cdot20$
- ▶ Using (1), we have $12 = 72 3 \cdot 20$, thus:

$$4 = 2 \cdot (72 - 3 \cdot 20) - 1 \cdot 20 = 2 \cdot 72 + (-7) \cdot 20$$

Exercise

Use the extended Euclid algorithm to compute gcd(38, 16).

A Useful Result

- ▶ Lemma: If a, b are relatively prime and a|bc, then a|c.
- ▶ Proof: Since a, b are relatively prime gcd(a, b) = 1
- ▶ By previous theorem, there exists s, t such that $1 = s \cdot a + t \cdot b$
- ▶ Multiply both sides by c: c = csa + ctb
- ▶ By earlier theorem, since a|bc, a|ctb
- ightharpoonup Also, by earlier theorem, a | csa
- ▶ Therefore, a|csa + ctb, which implies a|c since c = csa + ctb

Example

Lemma: If a, b are relatively prime and a|bc, then a|c.

- ▶ Suppose $15 \mid 16 \cdot x$
- \blacktriangleright Here 15 and 16 are relatively prime
- lacktriangle Thus, previous theorem implies: 15|x

Question

- ▶ Suppose $ca \equiv cb \pmod{m}$. Does this imply $a \equiv b \pmod{m}$?

Another Useful Result

▶ Theorem: If $ca \equiv cb \pmod{m}$ and gcd(c, m) = 1, then $a \equiv b \pmod{m}$

Examples

- ▶ If $15x \equiv 15y \pmod{4}$, is $x \equiv y \pmod{4}$?
- ▶ If $8x \equiv 8y \pmod{4}$, is $x \equiv y \pmod{4}$?

Linear Congruences

- ▶ A congruence of the form $ax \equiv b \pmod{m}$ where a, b, m are integers and x a variable is called a linear congruence.
- ▶ Given such a linear congruence, often need to answer:
 - 1. Are there any solutions?
 - 2. What are the solutions?
- ▶ Example: Does $8x \equiv 2 \pmod{4}$ have any solutions?
- ▶ Example: Does $8x \equiv 2 \pmod{7}$ have any solutions?
- ▶ Question: Is there a systematic way to solve linear congruences?

Determining Existence of Solutions

- ▶ Theorem: The linear congruence $ax \equiv b \pmod{m}$ has solutions iff gcd(a, m)|b.
- ► Proof involves two steps:
 - 1. If $ax \equiv b \pmod{m}$ has solutions, then gcd(a, m)|b.
 - 2. If gcd(a, m)|b, then $ax \equiv b \pmod{m}$ has solutions.
- First prove (1), then (2).

Proof, Part I

If $ax \equiv b \pmod{m}$ has solutions, then gcd(a, m)|b.

Proof, Part II

If gcd(a, m)|b, then $ax \equiv b \pmod{m}$ has solutions.

- ▶ Let $d = \gcd(a, m)$ and suppose $d \mid b$
- ▶ Then, there is a k such that b = dk
- ▶ By earlier theorem, there exist s, t such that $d = s \cdot a + t \cdot m$
- ▶ Multiply both sides by k: $dk = a \cdot (sk) + m \cdot (tk)$
- ▶ Since b = dk, we have $b a \cdot (sk) = m \cdot tk$
- ▶ Thus, $b \equiv a \cdot (sk) \pmod{m}$
- ightharpoonup Hence, sk is a solution.

Examples

- ▶ Does $5x \equiv 7 \pmod{15}$ have any solutions?
- ▶ Does $3x \equiv 4 \pmod{7}$ have any solutions?

Finding Solutions

- ► Can determine existence of solutions, but how to find them?
- ▶ Theorem: Let $d = \gcd(a, m) = sa + tm$. If d|b, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u$$
 where $u \in \mathbb{Z}$

Example

Let $d = \gcd(a, m) = sa + tm$. If d|b, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u$$
 where $u \in \mathbb{Z}$

▶ What are the solutions to the linear congruence $3x \equiv 4 \pmod{7}$?

Another Example

Let $d = \gcd(a, m) = sa + tm$. If d|b, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u$$
 where $u \in \mathbb{Z}$

- ▶ What are the solutions to the linear congruence $3x \equiv 1 \pmod{7}$?

Inverse Modulo m

▶ The inverse of a modulo m, written \overline{a} has the property:

$$a\overline{a} \equiv 1 \pmod{m}$$

- ► Theorem: Inverse of *a* modulo *m* exists if and only if *a* and *m* are relatively prime.
- •
- •
- •
- ▶ Does 3 have an inverse modulo 7?

Instructor: Isl Dilli

S311H: Discrete Mathematics Number Theory

Example

- ► Find an inverse of 3 modulo 7.
- ▶ An inverse is any solution to $3x \equiv 1 \pmod{7}$
- ▶ Earlier, we already computed solutions for this equation as:

$$x = -2 + 7u$$

- ▶ Thus, -2 is an inverse of 3 modulo 7
- $ightharpoonup 5, 12, -9, \dots$ are also inverses

Instructor: Ișil Dillig

S311H: Discrete Mathematics Number Theory

32/43

Example 2

▶ Find inverse of 2 modulo 5.

Cryptography

► Cryptography is the study of techniques for secure transmission of information in the presence of adversaries

► How can Alice send secrete messages to Bob without Eve being able to read them?

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Number Theory

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Number Theory

Private vs. Public Crypto Systems

- ► Two different kinds of cryptography systems:
 - 1. Private key cryptography (also known as symmetric)
 - 2. Public key cryptography (asymmetric)
- ► In private key cryptography, sender and receiver agree on secret key that both use to encrypt/decrypt the message
- ► In public key crytography, a public key is used to encrypt the message, and private key is used to decrypt the message

Private Key Cryptography

- ▶ Private key crypto is classical method, used since antiquity
- ► Caesar's cipher is an example of private key cryptography
- ▶ Caesar's cipher is shift cipher where $f(p) = (p + k) \pmod{26}$
- lacktriangle Both receiver and sender need to know k to encrypt/decrypt
- ▶ Modern symmetric algorithms: RC4, DES, AES, . . .
- Main problem: How do you exchange secret key in a secure way?

Instructor: Işıl Dillig

S311H: Discrete Mathematics Number Theory

Instructor: Ișil Dillig,

S311H: Discrete Mathematics Number Theory

Public Key Cryptography

- ► Public key cryptography is the modern method: different keys are used to encrypt vs. decrypt message
- ▶ Most commonly used public key system is RSA
- ▶ Great application of number theory and things we've learned

Instructor: Ișil Dilli

RSA History

- Named after its inventors Rivest, Shamir, and Adlemann, all researchers at MIT (1978)
- ► Actually, similar system invented earlier by British researcher Clifford Cocks, but classified unknown until 90's

CS311H: Discrete Mathematics Number Theory

Instructor: Isil Dillig.

11H: Discrete Mathematics Number Theory

29 /42

RSA Overview

- ▶ Bob has two keys: public and private
- ► Everyone knows Bob's public key, but only he knows his private key
- Alice encrypts message using Bob's public key
- ▶ Bob decrypts message using private key
- Since public key cannot decrypt, noone can read message accept Bob

Instructor: Işıl Dillig

Discrete Mathematics Number Theory

High Level Math Behind RSA

- ▶ In the RSA system, private key consists of two very large prime numbers p, q
- Public key consists of a number n, which is the product of p, q and another number e, which is relatively prime with (p-1)(q-1)
- lacktriangle Encrypt messages using n,e, but to decrypt, must know p,q
- ▶ In theory, can extract *p*, *q* from *n* using prime factorization, but this is intractable for very large numbers
- Security of RSA relies on inherent computational difficulty of prime factorization

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Number Theory

40/43

Encryption in RSA

- ► To send message to Bob, Alice first represents message as a sequence of numbers
- lacktriangle Call this number representing message M
- lacktriangle Alice then uses Bob's public key n,e to perform encryption as:

$$C = M^e \pmod{n}$$

lacktriangleright C is called the ciphertext

RSA Decryption

▶ Decryption key d is the inverse of e modulo (p-1)(q-1):

$$d \cdot e \equiv 1 \pmod{(p-1)(q-1)}$$

- ▶ Decryption function: $C^d \pmod{n}$
- $\,\blacktriangleright\,$ As we saw earlier, d can be computed reasonably efficiently if we know (p-1)(q-1)
- However, since adversaries do not know p, q, they cannot compute d with reasonable computational effort!

Instructor: Işıl Dilliş

CS311H: Discrete Mathematics Number Theory

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Number Theory

Security of RSA

- ► The encryption function used in RSA is a trapdoor function
- ► Trapdoor function is easy to compute in one direction, but very difficult in reverse direction without additional knowledge
- Decryption without private key is very hard because requires prime factorization (which is intractable for large enough numbers)
- ▶ Interesting fact: There are efficient (poly-time) prime factorization algorithms for quantum computers (e.g., Shor's algorithm)
- ▶ If we could build quantum computers with sufficient "qubits", RSA would no longer be secure!

Instructor: Ișil Dilliș

CS311H: Discrete Mathematics Number Theory