CS311H: Discrete Mathematics

Propositional Logic II

Instructor: Ișıl Dillig

Instructor: Işii Dillig,

CS311H: Discrete Mathematics Propositional Logic II

Converse of a Implication

- ▶ Recall implication $p \rightarrow q$ when does it evaluate to false?
- ▶ The converse of an implication $p \to q$ is $q \to p$.
- What is the converse of "If I am a CS major, then I can program"?
- What is the converse of "If I get an A in CS311, then I am smart"?
- ► Is it possible for a implication to be true, but its converse to be false?

Instructor:

811H: Discrete Mathematics Propositional Logic II

Inverse of an Implication

- ▶ The inverse of an implication $p \to q$ is $\neg p \to \neg q$.
- ► What is the inverse of "If I am a CS major, then I can program"?
- ► What is the inverse of "If I get an A in CS311, then I am smart"?
- ▶ Is it possible for a implication to be true, but its inverse to be false?

Contrapositive of Implication

- ▶ The contrapositive of an implication $p \to q$ is $\neg q \to \neg p$.
- What is the contrapositive of "If I am a CS major, then I can program"?
- What is the contrapositive of "If I get an A in CS311, then I am smart"?
- ► Question: Is it possible for an implication to be true, but its contrapositive to be false?

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Propositional Logic II

Instructor: Ișil Dilli

CS311H: Discrete Mathematics Propositional Logic II

Conditional and its Contrapositive

A conditional $p\to q$ and its contrapositive $\neg q\to \neg p$ always have the same truth value.

- ▶ Proof: We consider all four possible cases:
 - $\qquad \qquad p = T, q = T \colon \ \, \text{Both} \,\, T \to T \,\, \text{and} \,\, F \to F \,\, \text{are true}$
 - p=T, q=F: Both $T \to F$ and $T \to F$ are false
 - $\qquad \qquad p = F, q = T \colon \ \, \text{Both} \,\, F \to T \,\, \text{and} \,\, F \to T \,\, \text{are true}$
 - $\qquad \qquad p = F, \, q = F \colon \ \, \text{Both} \, \, F \to F \, \, \text{and} \, \, T \to T \, \, \text{are true}$

Question

- lacktriangle Consider a conditional p o q
- ▶ Is it possible that its converse is true, but inverse is false?

CS311H: Discrete Mathematics Propositional Logic II

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Propositional Logic II

6/35

Summary

- ▶ Conditional is of the form $p \rightarrow q$
- ▶ Converse: $q \rightarrow p$
- ▶ Inverse: $\neg p \rightarrow \neg q$
- ▶ Contrapositive: $\neg q \rightarrow \neg p$
- ▶ Conditional and contrapositive have same truth value
- ▶ Inverse and converse always have same truth value

Biconditionals

- ▶ A biconditional $p \leftrightarrow q$ is the proposition "p if and only if q".
- ▶ The biconditional $p \leftrightarrow q$ is true if p and q have same truth value, and false otherwise.
- lackbox Exercise: Construct a truth table for $p \leftrightarrow q$
- $lackbox{ Question: How can we express } p \leftrightarrow q \text{ using the other boolean}$ connectives?

Operator Precedence

- ▶ Given a formula $p \land q \lor r$, do we parse this as $(p \land q) \lor r$ or $p \wedge (q \vee r)$?
- ▶ Without settling on a convention, formulas without explicit paranthesization are ambiguous.
- ► To avoid ambiguity, we will specify precedence for logical connectives.

Operator Precedence, cont.

- ▶ Negation (¬) has higher precedence than all other connectives.
- ▶ Question: Does $\neg p \land q$ mean (i) $\neg (p \land q)$ or (ii) $(\neg p) \land q$?
- ► Conjunction (∧) has next highest predence.
- ▶ Question: Does $p \land q \lor q$ mean (i) $(p \land q) \lor r$ or (ii) $p \wedge (q \vee r)$?
- ▶ Disjunction (∨) has third highest precedence.
- ▶ Next highest is precedence is \rightarrow , and lowest precedence is \leftrightarrow

Operator Precedence Example

▶ Which is the correct interpretation of the formula

$$p \vee q \wedge r \leftrightarrow q \rightarrow \neg r$$

- (A) $((p \lor (q \land r)) \leftrightarrow q) \rightarrow (\neg r)$
- (B) $((p \lor q) \land r) \leftrightarrow q) \rightarrow (\neg r)$
- (C) $(p \lor (q \land r)) \leftrightarrow (q \rightarrow (\neg r))$
- (D) $(p \lor ((q \land r) \leftrightarrow q)) \rightarrow (\neg r)$

Validity, Unsatisfiability

- ► The truth value of a propositional formula depends on truth assignments to variables
- **Example:** $\neg p$ evaluates to true under under the assignment p = Fand to false under p = T
- ▶ Some formulas evaluate to true for every assignment, e.g., $p \lor \neg p$
- ► Such formulas are called tautologies or valid formulas
- \blacktriangleright Some formulas evaluate to false for every assignment, e.g., $p \land \neg p$
- ► Such formulas are called unsatisfiable formulas or contradictions

Interpretations

- ► To make satisfability/validity precise, we'll define interpretation of formula
- ightharpoonup An interpretation I for a formula F is a mapping from each propositional variables in F to exactly one truth value

$$I: \{p \mapsto \text{true}, q \mapsto \text{false}, \cdots \}$$

ightharpoonup Each interpretation corresponds to one row in the truth table, so 2^n possible interpretations

Entailment

 $\,\blacktriangleright\,$ Under an interpretation, every propositional formula evaluates to T or F

Formula F + Interpretation I = Truth value

- ▶ We write $I \models F$ if F evaluates to true under I
- ▶ Similarly, $I \not\models F$ if F evaluates to false under I.
- ▶ Theorem: $I \models F$ if and only if $I \not\models \neg F$

Instructor: Isil Dillii

CS311H: Discrete Mathematics Propositional Logic II

Instructor: Ișil Dilli

11H: Discrete Mathematics Propositional Logic I

14/95

Examples

- ▶ Consider the formula $F: p \land q \rightarrow \neg p \lor \neg q$
- ▶ Let I_1 be the interpretation such that $[p \mapsto \text{true}, q \mapsto \text{false}]$
- ▶ What does F evaluate to under I_1 ?
- ▶ Thus, $I_1 \models F$
- ▶ Let I_2 be the interpretation such that $[p \mapsto \text{true}, q \mapsto \text{true}]$
- ▶ What does F evaluate to under I_2 ?
- ▶ Thus, $I_2 \not\models F$

Instructor: Isil Dilli

CS311H: Discrete Mathematics Propositional Logic II

Another Example

- ▶ Let F_1 and F_2 be two propositional formulas
- lacktriangle Suppose F_1 evaluates to true under interpretation I
- ▶ What does $F_2 \land \neg F_1$ evaluate to under I?

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Propositional Logic II

Satisfiability, Validity

- $\blacktriangleright \ F \ \text{is satisfiable iff there exists interpretation} \ I \ \text{s.t.} \ I \models F$
- F is valid iff for all interpretations I, $I \models F$
- ightharpoonup F is unsatisfiable iff for all interpretations $I, I \not\models F$
- ightharpoonup F is contingent if it is satisfiable, but not valid.

True/False Questions

Are the following statements true or false?

- $\,\blacktriangleright\,$ If a formula is valid, then it is also satisfiable.
- ▶ If a formula is satisfiable, then its negation is unsatisfiable.
- ▶ If F_1 and F_2 are satisfiable, then $F_1 \wedge F_2$ is also satisfiable.
- ▶ If F_1 and F_2 are satisfiable, then $F_1 \vee F_2$ is also satisfiable.

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Propositional Logic II

Instructor: Ișil Dillig,

CS311H: Discrete Mathematics Propositional Logic II

18/35

Duality Between Validity and Unsatisfiability

F is valid if and only if $\neg F$ is unsatisfiable

► Proof:

Proving Validity

- ▶ Question: How can we prove that a propositional formula is a tautology?
- ▶ Exercise: Which formulas are tautologies? Prove your answer.
 - 1. $(p \to q) \leftrightarrow (\neg q \to \neg p)$
 - 2. $(p \land q) \lor \neg p$

Proving Satisfiability, Unsatisfiability, Contingency

- ► Similarly, can prove satisfiability, unsatisfiability, contingency using truth tables:
 - ▶ Satisfiable: There exists a row where formula evaluates to true
 - ▶ Unsatisfiable: In all rows, formula evaluates to false
 - ► Contingent: Exists a row where formula evaluates to true, and another row where it evaluates to false

Exercise

▶ Is $(p \rightarrow q) \rightarrow (q \rightarrow p)$ valid, unsatisfiable, or contingent? Prove your answer.

Example

▶ Does $p \lor q$ imply p? Prove your answer.

Implication

▶ Formula F_1 implies F_2 (written $F_1 \Rightarrow F_2$) iff for all interpretations $I, I \models F_1 \rightarrow F_2$

$$F_1 \Rightarrow F_2$$
 iff $F_1 \rightarrow F_2$ is valid

- ▶ Caveat: $F_1 \Rightarrow F_2$ is not a propositional logic formula; \Rightarrow is not part of PL syntax!
- lacktriangle Instead, $F_1 \Rightarrow F_2$ is a semantic judgment, like satisfiability!

Equivalence

- ightharpoonup Two formulas F_1 and F_2 are equivalent if they have same truth value for every interpretation, e.g., $p \lor p$ and p
- \blacktriangleright More precisely, formulas F_1 and F_2 are equivalent, written $F_1 \equiv F_2$ or $F_1 \Leftrightarrow F_2$, iff:

$$F_1 \Leftrightarrow F_2 \text{ iff } F_1 \leftrightarrow F_2 \text{ is valid}$$

▶ \equiv , \Leftrightarrow not part of PL syntax; they are semantic judgments!

Example

 $lackbox{ Prove that } p
ightarrow q \ {
m and} \ \lnot p \lor q \ {
m are equivalent}$

Important Equivalences

- ▶ Some important equivalences are useful to know!
- ▶ Law of double negation: $\neg\neg\phi \equiv \phi$
- ► Identity Laws: $\phi \wedge T \equiv \phi$ $\phi \vee F \equiv \phi$
- ► Domination Laws: $\phi \vee T \equiv T$ $\phi \wedge F \equiv F$
- ► Idempotent Laws: $\phi \lor \phi \equiv \phi$ $\phi \wedge \phi \equiv \phi$
- ▶ Negation Laws: $\phi \land \neg \phi \equiv F \quad \phi \lor \neg \phi \equiv T$
- ▶ Absorption Laws: $\phi_1 \land (\phi_1 \lor \phi_2) \equiv \phi_1 \quad \phi_1 \lor (\phi_1 \land \phi_2) = \phi_2$

Commutativity and Distributivity Laws

- ► Commutative Laws: $\phi_1 \lor \phi_2 \equiv \phi_2 \lor \phi_1$ $\phi_1 \land \phi_2 \equiv \phi_2 \land \phi_1$
- ► Distributivity Law #1: $(\phi_1 \vee (\phi_2 \wedge \phi_3)) \equiv (\phi_1 \vee \phi_2) \wedge (\phi_1 \vee \phi_3)$
- ► Distributivity Law #2: $(\phi_1 \wedge (\phi_2 \vee \phi_3)) \equiv (\phi_1 \wedge \phi_2) \vee (\phi_1 \wedge \phi_3)$
- ► Associativity Laws: $\phi_1 \lor (\phi_2 \lor \phi_3) \equiv (\phi_1 \lor \phi_2) \lor \phi_3$ $\phi_1 \wedge (\phi_2 \wedge \phi_3) \equiv (\phi_1 \wedge \phi_2) \wedge \phi_3$

De Morgan's Laws

- ► Let cs311 be the proposition "John took CS311" and cs314 be the proposition "John took CS314"
- ▶ In simple English what does $\neg(cs311 \land cs314)$ mean?
- ▶ DeMorgan's law expresses exactly this equivalence!
- ▶ De Morgan's Law #1: $\neg(p \land q) \equiv (\neg p \lor \neg q)$
- ▶ De Morgan's Law #2: $\neg(p \lor q) \equiv (\neg p \land \neg q)$
- ▶ When you "push" negations in, ∧ becomes ∨ and vice versa

Why are These Equivalences Useful?

- ▶ Use known equivalences to prove that two formulas are equivalent
- ▶ i.e., rewrite one formula into another using known equivalences
- **Examples:** Prove following formulas are equivalent:
 - 1. $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$
 - 2. $\neg(p \rightarrow q)$ and $p \land \neg q$

Formalizing English Arguments in Logic

- ▶ We can use logic to prove correctness of English arguments.
- ► For example, consider the argument:
 - ▶ If Joe drives fast, he gets a speeding ticket.
 - ▶ Joe did not get a ticket.
 - ► Therefore, Joe did not drive fast.
- ► Let *f* be the proposition "Joe drives fast", and *t* be the proposition "Joe gets a ticket"
- ▶ How do we encode this argument as a logical formula?

Instructor: Isil Dill

CS311H: Discrete Mathematics Propositional Logic II

Instructor

311H: Discrete Mathematics Propositional Logic II

"If Joe drives fast, he gets a speeding ticket. Joe did not get a

ticket. Therefore, he did not drive fast.": $((f o t) \wedge \neg t) o \neg f$

▶ How can we prove this argument is valid?

1. Use truth table to show formula is tautology

2. Use known equivalences to rewrite formula to true

► Can do this in two ways:

Another Example

- ▶ Can also use to logic to prove an argument is not valid.
- ► Suppose your friend George make the following argument:
 - ▶ If Jill carries an umbrella, it is raining.
 - Jill is not carrying an umbrella.
 - ► Therefore it is not raining.
- ▶ Let's use logic to prove George's argument doesn't hold water.
- ▶ Let u = "Jill is carrying an umbrella", and r = "It is raining"
- ▶ How do we encode this argument in logic?

Instructor: Işıl Dill

CS311H: Discrete Mathematics Propositional Logic II

Instructor: Iși

CS311H: Discrete Mathematics Propositional Logic II

Summary

- ▶ A formula is valid if it is true for all interpretations.
- ► A formula is satisfiable if it is true for at least one interpretation.
- ▶ A formula is unsatisfiable if it is false for all interpretations.
- ► A formula is contingent if it is true in at least one interpretation, and false in at least one interpretation.
- ▶ Two formulas F_1 and F_2 are equivalent, written $F_1 \equiv F_2$, if $F_1 \leftrightarrow F_2$ is valid

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Propositional Logic II

35/35

Example, cont.

Example, cont

"If Jill carries an umbrella, it is raining. Jill is not carrying an umbrella. Therefore it is not raining.": $((u \to r) \land \neg u) \to \neg r$

▶ How can we prove George's argument is invalid?