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Instructor: Işıl Dillig, CS311H: Discrete Mathematics Rules of Inference Mathematical Proofs 1/38

Summary of Inference Rules for Quantifiers

Name Rule of Inference

Universal Instantiation
∀x .P(x )

P(c)
(anyc)

Universal Generalization
P(c) (for arbitraryc)

∀x .P(x )

Existential Instantiation
∃x .P(x )

P(c) for fresh c

Existential Generalization
P(c)

∃x .P(x )
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Example 1

I Prove that these hypotheses imply ∃x .(P(x ) ∧ ¬B(x )):

1. ∃x . (C (x ) ∧ ¬B(x )) (Hypothesis)

2. ∀x . (C (x )→ P(x )) (Hypothesis)
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Example 2

I Prove the below hypotheses are contradictory by deriving false

1. ∀x .(P(x )→ (Q(x ) ∧ S (x ))) (Hypothesis)

2. ∀x .(P(x ) ∧ R(x )) (Hypothesis)

3. ∃x .(¬R(x ) ∨ ¬S (x )) (Hypothesis)
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Example 3

Prove ∃x . father(x ,Evan) from the following premises:

1. ∀x .∀y . ((parent(x , y) ∧male(x ))→ father(x , y))

2. parent(Tom,Evan)

3. male(Tom)
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Example 4

Prove the validity of the following formula:

((∀x .P(x )) ∧ (∀x .Q(x )))→ (∀x .(P(x ) ∧Q(x )))
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Example 5

Is the following formula valid, unsatisfiable, or contingent?

(∀x .(P(x ) ∨Q(x )))→ (∀x .P(x ) ∨ ∀x .Q(x ))
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Example 5, cont.

What’s wrong with the following “proof” of validity?

1. (∀x .(P(x) ∨Q(x))) ∧ ¬(∀x .P(x) ∨ ∀x .Q(x)) premise

2. (∀x .(P(x) ∨Q(x))) ∧ -elim, 1 3. ¬(∀x .P(x) ∨ ∀x .Q(x)) ∧-elim, 1

4. ∃x .¬P(x) ∧ ∃x .¬Q(x) De Morgan, 3

5. ∃x .¬P(x) ∧-elim, 4 6. ∃x .¬Q(x) ∧-elim, 4

7. ¬P(c) ∃-inst, 5 8. ¬Q(c) ∃-inst, 6

9. P(c) ∨Q(c) ∀-inst, 2

10. Q(c) ∨-elim, 9, 7 11. Q(c) ∧ ¬Q(c) ∧-intro, 10, 8
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Introduction to Mathematical Proofs

I Formalizing statements in logic allows formal,
machine-checkable proofs

I But these kinds of proofs can be very long and tedious

I In practice, humans write slight less formal proofs, where
multiple steps are combined into one

I We’ll now move from formal proofs in logic to less formal
mathematical proofs!
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Some Terminology

I Important mathematical statements that can be shown to be
true are theorems

I Many famous mathematical theorems, e.g., Pythagorean
theorem, Fermat’s last theorem

I Pythagorean theorem: Let a, b the length of the two sides of
a right triangle, and let c be the hypotenuse. Then,
a2 + b2 = c2

I Fermat’s Last Theorem: For any integer n greater than 2, the
equation an + bn = cn has no solutions for non-zero a, b, c.
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Theorems, Lemmas, and Propositions

I There are many correct mathematical statements, but not all
of them called theorems

I Less important statements that can be proven to be correct
are propositions

I Another variation is a lemma: minor auxiliary result which
aids in the proof of a theorem/proposition

I Corollary is a result whose proof follows immediately from a
theorem or proposition
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Conjectures vs. Theorems

I Conjecture is a statement that is suspected to be true by
experts but not yet proven

I Goldbach’s conjecture: Every even integer greater than 2 can
be expressed as the sum of two prime numbers.

I This conjecture is one of the oldest unsolved problems in
number theory
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General Strategies for Proving Theorems

Many different strategies for proving theorems:

I Direct proof: p → q proved by directly showing that if p is
true, then q must follow

I Proof by contraposition: Prove p → q by proving ¬q → ¬p

I Proof by contradiction: Prove that the negation of the
theorem yields a contradiction

I Proof by cases: Exhaustively enumerate different possibilities,
and prove the theorem for each case

In many proofs, one needs to combine several different strategies!
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Direct Proof

I To prove p → q in a direct proof, first assume p is true.

I Then use rules of inference, axioms, previously shown
theorems/lemmas to show that q is also true

I Example: If n is an odd integer, than n2 is also odd.

I Proof: Assume n is odd. By definition of oddness, there must
exist some integer k such that n = 2k + 1. Then,
n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, which is odd. Thus, if
n is odd, n2 is also odd.
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More Direct Proof Examples

I An integer a is called a perfect square if there exists an
integer b such that a = b2.

I Example: Prove that every odd number is the difference of
two perfect squares.
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Proof by Contraposition

I In proof by contraposition, you prove p → q by assuming ¬q
and proving that ¬p follows.

I Makes no difference logically, but sometimes the
contrapositive is easier to show than the original

I Prove: If n2 is odd, then n is odd.

I

I

I
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Proof by Contradiction

I Proof by contradiction proves that p → q is true by proving
unsatisfiability of its negation

I What is negation of p → q?

I Assume both p and ¬q are true and show this yields
contradiction
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Example

I Prove by contradiction that ”If 3n + 2 is odd, then n is odd.”
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Another Example

I Recall: Any rational number can be written in the form p
q

where p and q are integers and have no common factors.

I Example: Prove by contradiction that
√
2 is irrational.

I

I

I

I
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Example, cont

I

I

I

I
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Proof by Cases

I In some cases, it is very difficult to prove a theorem by
applying the same argument in all cases

I For example, we might need to consider different arguments
for negative and non-negative integers

I Proof by cases allows us to apply different arguments in
different cases and combine the results

I Specifically, suppose we want to prove statement p, and we
know that we have either q or r

I If we can show q → p and r → p, then we can conclude p
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Proof by Cases, cont.

I In general, there may be more than two cases to consider

I Proof by cases says that to show

(p1 ∨ p2 . . . ∨ pk )→ q

it suffices to show:
p1 → q
p2 → q
. . .

pk → q
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Example

I Prove that |xy | = |x ||y |

I Here, proof by cases is useful because definition of absolute
value depends on whether number is negative or not.

I There are four possibilities:

1. x , y are both non-negative

2. x non-negative, but y negative

3. x negative, y non-negative

4. x , y are both negative

I We’ll prove the property by proving these four cases separately
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Proof

I

I

I

I

I

I Caveat: Your cases must cover all possibilites; otherwise, the
proof is not valid!

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Rules of Inference Mathematical Proofs 24/38

4



Combining Proof Techniques

I So far, our proofs used a single strategy, but often it’s
necessary to combine multiple strategies in one proof

I Example: Prove that every rational number can be expressed
as a product of two irrational numbers.

I Proof: Let’s first employ direct proof.

I Observe that any rational number r can be written as
√
2 r√

2

I We already proved
√
2 is irrational.

I If we can show that r√
2

is also irrational, we have a direct

proof.
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Combining Proofs, cont.

I

I

I

I

I

I
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Lesson from Example

I In this proof, we combined direct and proof-by-contradiction
strategies

I In more complex proofs, it might be necessary to combine two
or even more strategies and prove helper lemmas

I It is often a good idea to think about how to decompose your
proof, what strategies to use in different subgoals, and what
helper lemmas could be useful
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If and Only if Proofs

I Some theorems are of the form ”P if and only if Q” (P ↔ Q)

I The easiest way to prove such statements is to show P → Q
and Q → P

I Therefore, such proofs correspond to two subproofs

I One shows P → Q (typically labeled ⇒)

I Another subproof shows Q → P (typically labeled ⇐)

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Rules of Inference Mathematical Proofs 28/38

Example

I Prove ”A positive integer n is odd if and only if n2 is odd.”

I ⇒ We have already shown this using a direct proof earlier.

I ⇐ We have already shown this by a proof by contraposition.

I Since we have proved both directions, the proof is complete.
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Counterexamples

I So far, we have learned about how to prove statements are
true using various strategies

I But how to prove a statement is false?

I What is a counterexample for the claim ”The product of two
irrational numbers is irrational”?
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Prove or Disprove

Which of the statements below are true, which are false? Prove
your answer.

I For all integers n, if n2 is positive, n is also positive.

I For all integers n, if n3 is positive, n is also positive.

I For all integers n such that n ≥ 0, n2 ≥ 2n
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Existence and Uniqueness

I Common math proofs involve showing existence and
uniqueness of certain objects

I Existence proofs require showing that an object with the
desired property exists

I Uniqueness proofs require showing that there is a unique
object with the desired property
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Existence Proofs

I One simple way to prove existence is to provide an object that
has the desired property

I This sort of proof is called constructive proof

I Example: Prove there exists an integer that is the sum of two
perfect squares

I But not all existence proofs are contructive – can prove
existence through other methods (e.g., proof by contradiction
or proof by cases)

I Such indirect existence proofs called nonconstructive proofs
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Non-Constructive Proof Example

I Prove: ”There exist irrational numbers x , y s.t. x y is rational”

I We’ll prove this using a non-constructive proof (by cases),
without providing irrational x , y

I Consider
√
2
√
2
. Either (i) it is rational or (ii) it is irrational

I Case 1: We have x = y =
√
2 s.t. x y is rational

I Case 2: Let x =
√
2
√
2

and y =
√
2, so both are irrational.

Then,
√
2
√
2
√

2

=
√
2
2
= 2. Thus, x y is rational
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Proving Uniqueness

I Some statements in mathematics assert uniqueness of an
object satisfying a certain property

I To prove uniqueness, must first prove existence of an object x
that has the property

I Second, we must show that for any other y s.t. y 6= x , then y
does not have the property

I Alternatively, can show that if y has the desired property that
x = y
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Example of Uniqueness Proof

I Prove: ”If a and b are real numbers with a 6= 0, then there
exists a unique real number r such that ar + b = 0”

I Existence: Using a constructive proof, we can see r = −b/a
satisfies ar + b = 0

I Uniqueness: Suppose there is another number s such that
s 6= r and as + b = 0. But since ar + b = as + b, we have
ar = as, which implies r = s.
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Summary of Proof Strategies

I Direct proof: p → q proved by directly showing that if p is
true, then q must follow

I Proof by contraposition: Prove p → q by proving ¬q → ¬p

I Proof by contradiction: Prove that the negation of the
theorem yields a contradiction

I Proof by cases: Exhaustively enumerate different possibilities,
and prove the theorem for each case
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Invalid Proof Strategies

I Proof by obviousness: ”The proof is so clear it need not be
mentioned!”

I Proof by intimidation: ”Don’t be stupid – of course it’s true!”

I Proof by mumbo-jumbo: ∀α ∈ θ∃β ∈ α � β ≈ γ

I Proof by intuition: ”I have this gut feeling..”

I Proof by resource limits: ”Due to lack of space, we omit this
part of the proof...”

I Proof by illegibility: ”sdjikfhiugyhjlaks??fskl; QED.”

Don’t use anything like these in CS311!!
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