CS311H: Discrete Mathematics

Graph Theory IV

Instructor: Ișıl Dillig

Instructor: Isil Dillig

3311H: Discrete Mathematics Graph Theory IV

Planar Graphs

► A graph is called planar if it can be drawn in the plane without any edges crossing (called planar representation).

► Is this graph planar?

▶ In this class, we will assume that every planar graph has at least 3 edges.

Instructor: Isil Dillig

311H: Discrete Mathematics Graph Theory IV

A Non-planar Graph

▶ The complete graph K_5 is not planar:

▶ Why can K_5 not be drawn without any edges crossing?

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Graph Theory IV

Regions of a Planar Graph

► The planar representation of a graph splits the plane into regions (sometimes also called faces):

- ▶ Every planar graph has an outer region, which is unbounded.
- \blacktriangleright Degree of a region R, written $\deg(R),$ is the number of edges adjacent to R
- ▶ What is degree of R1, R2, R3, R4?

Instructor: Isil Dillig,

CS311H: Discrete Mathematics Graph Theory IV

Examples

▶ How many regions does this graph have?

- ▶ What is the degree of its outer region?
- ▶ How many regions does a graph have if it has no cycles?

Euler's Formula

Euler's Formula: Let G=(V,E) be a planar connected graph with regions R. Then, the following formula always holds:

$$|R| = |E| - |V| + 2$$

All planar representations of a graph split the plane into the same number of regions!

Instructor: Işıl Dillig,

CS311H: Discrete Mathematics Graph Theory IV

Instructor: Ișil Dillig,

S311H: Discrete Mathematics Graph Theory IV

Proof of Euler's Formula

- ► Case 1: G does not have cycles (i.e., a tree)
- ▶ If G has |V| nodes, how many edges does it have?
- ▶ How many regions does it have?
- |R| = 1 = (|V| 1) |V| + 2

Proof, cont.

- ▶ Case 2: G has at least one cycle.
- ▶ The proof is by induction on the number of edges.
- ▶ Base case: *G* has 3 edges (i.e., a triangle)
- ▶ Induction: Suppose Euler's formula holds for planar connected graphs with e edges and at least one cycle.
- ▶ We need to show it also holds for planar connected graphs with e+1 edges and at least one cycle.

Proof, cont.

- ▶ Create G' by removing one edge from the cycle \Rightarrow has e edges
- ▶ If G' doesn't have cycles, we know |R| = e |V| + 2 (case 1)
- ▶ If G' has cycles, we know from IH that |R| = e |V| + 2
- ▶ Now, add edge back in; G has e+1 edges and |V| vertices
- ▶ How many regions does G have? |R| + 1
- e+1-|V|+2=|R|+1 \checkmark

An Application of Euler's Formula

- ightharpoonup Suppose a connected planar simple graph G has 6 vertices, each with degree 4.
- ▶ How many regions does a planar representation of *G* have?
- ► How many edges?
- ► How many regions?

Seven Bridges of Königsberg

- ▶ Town of Königsberg in Germany divided into four parts by the Pregel river and had seven bridges
- ightharpoonup Townspeople wondered if one can start at point A, cross all bridges exactly once, and come back to \boldsymbol{A}
- ▶ Mathematician Euler heard about this puzzle and solved it

Euler Circuits and Euler Paths

 \blacktriangleright Given graph G, an Euler circuit is a simple circuit containing every edge of G.

▶ Euler path is a simple path containing every edge of *G*.

Examples

▶ Does this graph have a Euler circuit or path?

What about this one?

▶ Are there some criteria that allow us to easily determine if a graph has Euler circuit or path?

Theorem about Euler Circuits

Theorem: A connected multigraph G with at least two vertices contains an Euler circuit if and only if each vertex has even degree.

- ▶ Let's first prove the "only if" part.
- ▶ Euler circuit must enter and leave each vertex the same number of times.
- ▶ But we can't use any edge twice
- ▶ Hence, each vertex must have even number of adjacent edges.

Proof of Sufficiency

- ▶ Now, prove the if part much more difficult!
- \blacktriangleright By strong induction on the number of edges e

▶ Base case: e = 2

- ▶ Induction: Suppose claim holds for every graph with $\leq e$ edges; show it holds for graph with e+1 edges
- lacktriangle Consider graph G with e+1 edges and where every vertex has even degree
- ▶ Observe: G cannot be a tree why?

Proof, cont.

- ightharpoonup This means G must contain a cycle, say C
- ▶ Now, remove all edges in C from G to obtain graph G'
- $lackbox{\ }G'$ may not be connected, suppose it consists of connected components G_1, \ldots, G_n
- ► Each vertex in a cycle has exactly two adjacent edges that are part of the cycle
- lacktriangle Hence, if all nodes in G have even degree, then nodes in each G_i must also have even degree

Proof, cont.

- ightharpoonup Now, each G_i is connected and every vertex has even degree
- ightharpoonup By IH, each G_i has an Euler circuit, say C_i
- ightharpoonup We can now also build an Euler circuit for G using these C_i 's
- lacktriangle Start at some vertex v in C, traverse along C until we reach a vertex v_i in connected component G_i
- Now, traverse C_i and come back to v_i
- ightharpoonup Continue until we are back at v_i
- ► This is an Euler circuit because we've traversed every edge and haven't repeated any edges

Revisiting Example

▶ Does this graph have an Euler circuit?

- An Euler circuit:
- ▶ Does this have an Euler circuit?

Necessary and Sufficient Conditions for Euler Paths

Theorem: A connected multigraph G contains an Euler path iff there are exactly 0 or 2 vertices of odd degree.

- \blacktriangleright Let's first prove necessity: Suppose G has Euler path P with start and end-points u and v
- ightharpoonup Case 1: u,v are the same then P is an Euler circuit, hence it must have 0 vertices of degree
- ► Case 2: *u*, *v* are distinct
- ► Except for u, v, we must enter and leave each vertex same number of times these must have even degree
- ightharpoonup We must leave u one more time than we enter it, and we enter v one more time than we leave it, so they have odd degree

Instructor: Isil Dilli

S311H: Discrete Mathematics Graph Theory IV

19/25

Proof of Sufficiency

- lacktriangle Suppose G has exactly 0 or 2 vertices with odd degree
- ▶ Case 1: If no vertices with odd degree, must have Euler circuit
- \triangleright Case 2: It has exactly two vertices, say u, v, with odd degree
- ightharpoonup Now, add an edge between u, v to generate graph G'
- lacktriangle All vertices in G' have even degree so G' has Euler circuit
- lacktriangle This means G has Euler path with start and end-points u,v

Instructor: Ișil Dillig,

11H: Discrete Mathematics Graph Theory IV

Example

Does this graph have Euler path?

► Graph with an Euler path:

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Graph Theory IV

Hamilton Paths and Circuits

▶ A Hamilton circuit in a graph *G* is a simple circuit that visits every vertex in *G* exactly once (except the start node).

- ▶ Note that all Hamilton circuits are cycles!
- ► A Hamilton path in a graph G is a simple path that visits every vertex in G exactly once.

Instructor: Isil Dillig,

CS311H: Discrete Mathematics Graph Theory IV

22/25

Are All Euler Circuits Also Hamilton Circuits?

▶ Not every Euler circuit is a Hamilton circuit:

▶ Does this graph have a Hamilton path?

Hamilton vs Euler Circuits

▶ Not every Hamilton circuit is an Euler circuit:

▶ Find a graph that has an Euler circuit, but no Hamilton circuit

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Graph Theory IV

Instructor:

CS311H: Discrete Mathematics Graph Theory IV

24/25

Necessary and Sufficient Criteria for Hamilton Circuits

- ► Unlike Euler circuits, no necessary and sufficient criteria for identifying Hamilton circuits or paths
- ► Exercise: Prove that a graph with a vertex of degree 1 cannot have a Hamilton circuit.
- •

- •

Instructor: Ișil Dillig

COMMUNICATION OF THE RESIDENCE OF THE RE

25/25