A Non-planar Graph

- The complete graph K_5 is not planar:

- Why can K_5 not be drawn without any edges crossing?

Regions of a Planar Graph

- The planar representation of a graph splits the plane into regions (sometimes also called faces):

- Every planar graph has an outer region, which is unbounded.
- Degree of a region R, written $\deg(R)$, is the number of edges adjacent to R
- What is degree of R_1, R_2, R_3, R_4?

Examples

- How many regions does this graph have?
- What is the degree of its outer region?
- How many regions does a graph have if it has no cycles?

Euler’s Formula

Euler’s Formula: Let $G = (V, E)$ be a planar connected graph with regions R. Then, the following formula always holds:

$$|R| = |E| - |V| + 2$$

All planar representations of a graph split the plane into the same number of regions!
Proof of Euler’s Formula

- **Case 1:** G does not have cycles (i.e., a tree)
 - If G has $|V|$ nodes, how many edges does it have?
 - How many regions does it have?
 - $|R| = 1 = (|V| - 1) - |V| + 2 \quad \checkmark$

Proof, cont.

- **Case 2:** G has at least one cycle.
 - The proof is by induction on the number of edges.
 - **Base case:** G has 3 edges (i.e., a triangle)
 - **Induction:** Suppose Euler’s formula holds for planar connected graphs with e edges and at least one cycle.
 - We need to show it also holds for planar connected graphs with $e + 1$ edges and at least one cycle.

Create G' by removing one edge from the cycle \Rightarrow has e edges

- If G' doesn’t have cycles, we know $|R| = e - |V| + 2$ (case 1)
- If G' has cycles, we know from IH that $|R| = e - |V| + 2$
- Now, add edge back in; G has $e + 1$ edges and $|V|$ vertices
- How many regions does G have? $|R| + 1$
- $e + 1 - |V| + 2 = |R| + 1 \quad \checkmark$

An Application of Euler’s Formula

- Suppose a connected planar simple graph G has 6 vertices, each with degree 4.
 - How many regions does a planar representation of G have?
 - How many edges?
 - How many regions?

Seven Bridges of Königsberg

- Town of Königsberg in Germany divided into four parts by the Pregel river and had seven bridges
- Townspeople wondered if one can start at point A, cross all bridges exactly once, and come back to A
- Mathematician Euler heard about this puzzle and solved it

Euler Circuits and Euler Paths

- Given graph G, an **Euler circuit** is a simple circuit containing every edge of G.

- **Euler path** is a simple path containing every edge of G.

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Graph Theory IV 7/25

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Graph Theory IV 8/25

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Graph Theory IV 9/25

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Graph Theory IV 10/25

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Graph Theory IV 11/25

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Graph Theory IV 12/25
Theorem about Euler Circuits

Theorem: A connected multigraph G with at least two vertices contains an Euler circuit if and only if each vertex has even degree.

◮ Let’s first prove the “only if” part.

◮ Euler circuit must enter and leave each vertex the same number of times.

◮ But we can’t use any edge twice

◮ Hence, each vertex must have even number of adjacent edges.

Proof of Sufficiency

◮ Now, prove the if part – much more difficult!

◮ By strong induction on the number of edges e

◮ Base case: $e = 2$

◮ Induction: Suppose claim holds for every graph with $\leq e$ edges; show it holds for graph with $e + 1$ edges

◮ Consider graph G with $e + 1$ edges and where every vertex has even degree

◮ Observe: G cannot be a tree – why?

Proof, cont.

◮ Now, each G_i is connected and every vertex has even degree

◮ By IH, each G_i has an Euler circuit, say C_i

◮ We can now also build an Euler circuit for G using these C_i’s

◮ Start at some vertex v in C, traverse along C until we reach a vertex v_i in connected component G_i

◮ Now, traverse C_i and come back to v_i

◮ Continue until we are back at v_i

◮ This is an Euler circuit because we’ve traversed every edge and haven’t repeated any edges

Revisiting Example

◮ Does this graph have an Euler circuit?

◮ An Euler circuit:

◮ Does this have an Euler circuit?