CS311H Problem Set 7

Due Tuesday, November 5

- 1. (10 points) Prove by induction that the sum of the first n positive odd integers is n^2 . Explicitly state whether you are using regular or strong induction.
- 2. (10 points) Use induction to prove that the following equality holds for every positive integer n:

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{n+1} + 2$$

State whether you are using regular or strong induction.

3. (5 points) Explain what is wrong with the following "proof":

Claim: $\forall n \geq 0. \ 3n = 0$

Proof: By strong induction on n. For the base case, we have n = 0. Since $3 \cdot 0 = 0$, the claim holds for the base case.

For the inductive step, we prove the property for k+1, i.e., $3 \cdot (k+1) = 0$. Observe that k+1 can be written as i+j for some natural numbers i,j where $i \leq k$ and $j \leq k$. Now, by the inductive hypothesis, we have 3i=0 and 3j=0. Hence, $3 \cdot (k+1) = 3i+3j = 0+0 = 0$. Hence the property holds.

- 4. (10 points) Prove by induction that $3^n < n!$ for all integers n greater than 6. State whether you are using regular or strong induction.
- 5. (15 points) Prove by induction that every integer n > 17 can be written in the form n = 4a + 7b where $a, b \ge 0$. State whether you are using regular or strong induction.
- 6. (10 points, 5 points each) Give a recursive definition of the following:

- (a) the set of positive integers congruent to 4 modulo 5
- (b) the sequence defined by $a_n = n(n+1)$ for $n \ge 1$
- 7. (15 points) Consider the subset S of the set of ordered pairs of integers defined recursively as follows:
 - Base case: $(0,0) \in S$
 - Recursive case: If $(a,b) \in S$, then $(a+2,b+3) \in S$, and $(a+3,b+2) \in S$

Based on this definition:

- (a) (5 points) List the first five elements in S
- (b) (10 points) Use structural induction to show that 5|(a+b) for all $(a,b) \in S$
- 8. (15 points) A bitstring is a string consisting of only 0's and 1's. Consider the following recursive definition of the function "count", which counts the number of 1's in the bitstring:
 - Base case: $count(\epsilon) = 0$
 - Recursive case 1: $count(1 \cdot s) = 1 + count(s)$
 - Recursive case 2: $count(0 \cdot s) = count(s)$

Use structural induction to prove that count(st) = count(s) + count(t).