1. (10 points) Consider the function $f(n) = 2^{2n}$.

 (a) Is it $O(2^n)$? Prove your answer.
 (b) Is it $\Omega(2^n)$? Prove your answer.

2. (15 points) Prove that $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

3. (20 points) A function $f(n)$ is said to be $o(g(n))$ (pronounced “little-oh”), if for any positive constant C, there exists a positive constant k such that:

 $\forall n > k. \quad f(n) < C \cdot g(n)$

 (a) Consider the function $f(n) = n^2$ where the domain of f is positive integers. Is it $o(n^2)$? Prove your answer.
 (b) Consider the same function $f(n) = n^2$ where the domain of f is positive integers. Is it $o(n^3)$? Prove your answer.
 (c) Suppose a function $h(n)$ is $o(g(n))$. Is $g(n)$ always $\Omega(h(n))$? Prove your answer.
 (d) Suppose a function $h(n)$ is $\Theta(g(n))$. Is it possible that $h(n)$ is $o(g(n))$? Prove your answer.

4. (10 points) A vending machine in Europe accepts either 1 Euro bills, 1 Euro coins, or 2 Euro bills. Assume that the order in which money is inserted into the machine matters (i.e., inserting 1 Euro bill followed by 1 Euro coin is different from inserting 1 Euro coin first and then a 1 Euro bill). Let a_n denote the number of ways of inserting n Euros into the vending machine.

 (a) Determine the values of a_1 and a_2.

(b) Write a recurrence relation describing \(a_n \).

(c) Determine the closed form solution for \(a_n \).

5. (10 points) Find the closed form solution to \(a_n = 7a_{n-2} + 6a_{n-3} \) for \(a_0 = 9 \) with initial values \(a_1 = 10 \) and \(a_2 = 32 \).

6. (10 points) Find a particular solution for the recurrence \(a_n = 2a_{n-1} + 3a_{n-2} + 3^n \).

7. (10 points) Solve the recurrence \(a_n = a_{n-1} + n \) with initial condition \(a_0 = 1 \).

8. (15 points) Consider a “ternary search” algorithm, which is a variation on binary search. In particular, the ternary search algorithm works as follows:

- It takes as input a sorted array \(a \) of size \(n \) and an integer \(i \) to search for
- If \(n = 0 \), it returns false; and if \(n = 1 \), it returns true if the only element of \(a \) is \(i \)
- If \(i \leq a\lfloor n/3 \rfloor \), then, it searches the subarray \(a[0...n/3] \)
- If \(i > a\lfloor n/3 \rfloor \) and \(i \leq a\lfloor 2n/3 \rfloor \), then it searches the subarray given by \(a\lfloor (n/3 + 1)...2n/3 \rfloor \)
- Otherwise, searches the subarray \(a\lfloor (2n/3 + 1)...n \rfloor \)

Let \(T(n) \) describe the number of operations performed by ternary search for an input array of size \(n \).

(a) Write a recurrence relation describing \(T(n) \) and give the initial value for \(n = 1 \).

(b) Find a closed form solution for this recurrence assuming that \(n \) is a power of 3.

(c) Use the Master Theorem to obtain a Big-Theta estimate for \(T(n) \)