CS311H: Discrete Mathematics
Permutations and Combinations
Instructor: Isil Dillig

Announcements

- Homework 5 is due today
- Homework 6 is out today; due next Thursday
- Can leave answer in the form 2^{12} – don’t have to calculate exact answer

The Pigeonhole Principle

- Suppose there is a flock of 36 pigeons and a set of 35 pigeonholes
- Each pigeon wants to sit in one hole
- But since there are less holes than there are pigeons, one pigeon is left without a hole.

The Pigeonhole Principle: If $n + 1$ or more objects are placed into n boxes, then at least one box contains 2 or more objects

Examples

- Consider an event with 367 people. Is it possible no pair of people have the same birthday?
- Consider function f from a set with $k + 1$ or more elements to a set with k elements. Is it possible f is one-to-one?
- Consider n married couples. How many of the $2n$ people must be selected to guarantee there is at least one married couple?

Generalized Pigeonhole Principle

- If n objects are placed into k boxes, then there is at least one box containing at least $\lceil n/k \rceil$ objects

Proof: (by contradiction) Suppose every box contains less than $\lceil n/k \rceil$ objects

Examples

- If there are 30 students in a class, at least how many must be born in the same month?
- What is the minimum $\#$ of students required to ensure at least 6 students receive the same grade (A, B, C, D, F)?
- What is the min $\#$ of cards that must be chosen to guarantee three have same suit?
Permutations

- A permutation of a set of distinct objects is an ordered arrangement of these objects.
 - No object can be selected more than once.
 - Order of arrangement matters.

Example: $S = \{a, b, c\}$. What are the permutations of S?

How Many Permutations?

- Consider set $S = \{a_1, a_2, \ldots, a_n\}$.
- How many permutations of S are there?
- Decompose using product rule:
 - How many ways to choose first element?
 - How many ways to choose second element?
 - \ldots
 - How many ways to choose last element?
- What is number of permutations of set S?

Examples

- Consider the set $\{7, 10, 23, 4\}$. How many permutations?
- How many permutations of letters A, B, C, D, E, F, G contain "ABC" as a substring?
- \ldots

Computing $P(n, r)$

- Given a set with n elements, what is $P(n, r)$?
- Decompose using product rule:
 - How many ways to pick first element?
 - How many ways to pick second element?
 - \ldots
 - How many ways to pick rth element?
 - How many ways to pick last element?
- Thus, $P(n, r) = n \cdot (n-1) \cdot \ldots \cdot (n-r+1) = \frac{n!}{(n-r)!}$

Examples

- What is the number of 2-permutations of set $\{a, b, c, d, e\}$?
- \ldots
- Salesman must visit 4 cities from list of 10 cities: Must begin in Chicago, but can choose the remaining cities and order.
 - How many possible itinerary choices are there?

r-Permutations

- r-permutation is ordered arrangement of r elements in a set S.
 - S can contain more than r elements.
 - But we want arrangement containing r of the elements in S.
 - The number of r-permutations in a set with n elements is written $P(n, r)$.
- Example: What is $P(n, n)$?
Combinations

An r-combination of set S is the unordered selection of r elements from that set.

Unlike permutations, order does not matter in combinations.

Example: What are 2-combinations of the set \{a, b, c\}?

For this set, there are 6 2-permutations, but only 3 2-combinations.

Number of r-combinations

The number of r-combinations of a set with n elements is written \(\binom{n}{r} \).

\(\binom{n}{r} \) is often also written as \(\frac{n!}{r!(n-r)!} \), read "n choose r".

(\(\binom{n}{r} \)) is also called the binomial coefficient.

Theorem: \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

Proof of Theorem

What is the relationship between \(P(n, r) \) and \(\binom{n}{r} \)?

Let’s decompose \(P(n, r) \) using product rule:

First choose \(r \) elements

Then, order these \(r \) elements

How many ways to choose \(r \) elements from \(n \)?

How many ways to order \(r \) elements?

Thus, \(P(n, r) = \binom{n}{r} \times r! \)

Therefore,

\(\binom{n}{r} = \frac{P(n, r)}{r!} = \frac{n!}{(n-r)! \cdot r!} \)

Examples

We need to create a team with 5 members out of 10 candidates. How many different teams are possible?

When creating a team, we don’t care about order in which players were picked. Thus, we want \(\binom{n}{r} \), not \(P(n, r) \).

How many hands of 5 cards can be dealt from a standard deck of 52 cards?

Another Example

There are 9 faculty members in a math department, and 11 in CS department.

If we must select 3 math and 4 CS faculty for a committee, how many ways are there to form this committee?

A Corollary

Corollary: \(\binom{n}{r} = \binom{n}{n-r} \)
More Complicated Example

- How many bitstrings of length 8 contain at least 6 ones?

One More Example

- How many bitstrings of length 8 contain at least 3 ones and 3 zeros?

Binomial Coefficients

- Recall: \(C(n, r) \) is also denoted as \(\binom{n}{r} \) and is called the binomial coefficient.
- Binomial is polynomial with two terms, e.g., \((a + b), (a + b)^2\)
- \(\binom{n}{r} \) called binomial coefficient b/c it occurs as coefficients in the expansion of \((a + b)^n\)

The Binomial Theorem

- Let \(x, y \) be variables and \(n \) a non-negative integer. Then,

\[
(x + y)^n = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^j
\]

- **Proof:** Each term in the expansion if of the form \(c \cdot x^{n-j} y^j \)
- To get such a term, must choose \(n - j \) of the \(x \)'s and \(j \) \(y \)'s
- Once you pick \(n - j \) \(x \)'s, \# of \(y \)'s determined (and vice versa)
- Since there is \(\binom{n}{n-j} = \binom{n}{j} \) ways to pick \(x^{n-j} \),
 coefficient \(c \) is \(\binom{n}{j} \)

Example

- What is the expansion of \((x + y)^4\)?

 \[
 (x + y)^4 = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 0 & 1 & 2 & 1 \end{pmatrix}
 \]

- Therefore,

\[
(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4
\]
Another Example

- What is the coefficient of \(x^{12}y^{13}\) in the expansion of \((2x - 3y)^{25}\)?

Corollary of Binomial Theorem

- Binomial theorem allows showing a bunch of useful results.
- Corollary: \(\sum_{k=0}^{n} \binom{n}{k} = 2^n\)

Another Corollary

- Corollary: \(\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0\)

One More Corollary

- Corollary: \(\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n\)

Pascal’s Triangle

- Pascal arranged binomial coefficients as a triangle
- \(n\)’th row consists of \(\binom{n}{k}\) for \(k = 0, 1, \ldots n\)

Proof of Pascal’s Identity

\[
\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}
\]

- This identity is known as Pascal’s identity
- Proof:

\[
\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{(k)!(n-k)!}
\]

Multiply first fraction by \(\frac{n-k+1}{n-k+1}\) and second by \(\frac{n-k+1}{n-k+1}\):

\[
\binom{n}{k-1} + \binom{n}{k} = \frac{k
cdot n! + (n-k+1)!(n-k+1)!}{(n-k+1)!(n-k)!}
\]
Proof of Pascal’s Identity, cont.

\[
\binom{n}{k-1} + \binom{n}{k} = \frac{k \cdot n! + (n-k+1)n!}{(k)!((n-k+1))!}
\]

- Factor the numerator:

\[
\binom{n}{k-1} + \binom{n}{k} = \frac{(n+1)!}{k!((n-k+1))!} = \binom{n+1}{k}
\]

- But this is exactly \(\binom{n+1}{k}\)

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Permutations and Combinations 31/37

Interesting Facts about Pascal’s Triangle

- What is the sum of numbers in \(n\)'th row in Pascal’s triangle (starting at \(n = 0\))?

\[
\sum_{k=0}^{n} \binom{n}{k} = 2^n
\]

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Permutations and Combinations 32/37

Some Fun Facts about Pascal’s Triangle, cont.

- Pascal’s triangle is perfectly symmetric
 - Numbers on left are mirror image of numbers on right
 - Which of the theorems we proved today explains this fact?

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Permutations and Combinations 33/37

Permutations with Repetitions

- Earlier, when we defined permutations, we only allowed each object to be used once in the arrangement
 - But sometimes makes sense to use an object multiple times
 - Example: How many strings of length 4 can be formed using letters in English alphabet?
 - Since string can contain same letter multiple times, we want to allow repetition!
 - A permutation with repetition of a set of objects is an ordered arrangement of these objects, where each object may be used more than once

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Permutations and Combinations 34/37

Number of Permutations with Repetition

- How many strings of length \(k\) can be formed using the 26 lower-case letters in the English alphabet?

 - Decompose using product rule:
 - How many ways to choose first letter?
 - How many ways to choose second letter?
 - ...
 - How many possible strings?

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Permutations and Combinations 35/37

General Formula for Permutations with Repetition

- \(P^n(n, r)\) denotes number of \(r\)-permutations with repetition from set with \(n\) elements

- Theorem: \(P^n(n, r) = n^r\)

- Proof: \(n\) ways to select first element, \(n\) ways to select second, ... , \(n\) ways to select \(r\)'th element

 - By product rule, \(n^r\) \(r\)-permutations with repetition are possible
Examples

- How many ways to assign 3 jobs to 6 employees if every employee can be given more than one job?
- How many different four-digit numbers can be formed from the digits 1, 2, 3, 4?
- How many different 3-digit numbers can be formed from 1, 2, 3, 4, 5?