Announcements and Review

- Homework 4 due next lecture
- Plan for today: Finish crypto discussion, talk about mathematical induction
- Review: Difference between private and public key crypto?
- Main problem with private key crypto?
- Most commonly used public key system is RSA; nice application of number theory!

RSA History

- Named after its inventors Rivest, Shamir, and Adleman, all researchers at MIT (1978)
- Actually, similar system invented earlier by British researcher Clifford Cocks, but classified – unknown until 90’s

RSA Overview

- Bob has two keys: public and private
- Everyone knows Bob’s public key, but only he knows his private key
- Alice encrypts message using Bob’s public key
- Bob decrypts message using private key
- Since public key cannot decrypt, no one can read message except Bob

High Level Math Behind RSA

- In the RSA system, private key consists of two very large prime numbers \(p, q \)
- Public key consists of a number \(n \), which is the product of \(p, q \) and another number \(e \), which is relatively prime with \((p - 1)(q - 1) \) (\(\phi(n) \), Euler’s totient function)
- Encrypt messages using \(n, e \), but to decrypt, must know \(p, q \)
- In theory, can extract \(p, q \) from \(n \) using prime factorization, but this is intractable for very large numbers
- Security of RSA relies on inherent computational difficulty of prime factorization

Encryption in RSA

- To send message to Bob, Alice first represents message as a sequence of numbers
- Call this number representing message \(M \)
- Alice then uses Bob’s public key \(n, e \) to perform encryption as:
 \[
 C = M^e \pmod{n}
 \]
- \(C \) is called the ciphertext
Encryption Example

- Encrypt message "STOP" using RSA with $n = 2537$, $e = 13$
- First convert each letter to a number in $[0, 25]$: $S = 18$, $T = 19$, $O = 14$, $P = 15$
- Group sequence into blocks of 4 digits:

$$M = 1819 1415$$
- Now encrypt each block as $C = M^{13} \pmod{2537}$
- For first block, $1819^{13} \pmod{2537} = 2081$; for second block $1415^{13} \pmod{2537} = 2182$
- Ciphertext: $2081 2182$

Why Does RSA Work?

- To show that RSA works, we need to prove that the encryption and decryption function are inverses, i.e.,

$$M^{ed} \equiv M \pmod{\phi(n)}$$
- To prove this, we'll use Euler’s theorem (a, n co-prime):

$$a^{\phi(n)} \equiv 1 \pmod{\phi(n)}$$
- Since d is inverse of e modulo $\phi(n)$, we have:

$$ed - 1 = k \cdot \phi(n)$$

Decryption Example

- Decrypt the cipher text $0981 0461$ for the RSA cipher with $p = 43$, $q = 59$, and $e = 13$.
- First we need to compute d, the inverse of e modulo $(p - 1)(q - 1)$:

$$d \cdot e \equiv 1 \pmod{(p - 1)(q - 1)}$$
- As we saw earlier, d can be computed reasonably efficiently if we know $(p - 1)(q - 1)$
- However, since adversaries do not know p, q, they cannot compute d with reasonable computational effort!

Example, cont.

Decrypt $0981 0461$ using $p = 43$, $q = 59$, $n = 2537$, and $e = 13$.
- To solve $13x \equiv 1 \pmod{2436}$, computed $s = 937$, $t = -5$
- Recall: Solution to this system is given by:

$$x = \frac{sb + m \cdot d}{d} \pmod{n} \text{ where } u \in \mathbb{Z}$$
- Here, $s = 937$, $b, d = 1, m = 2436$, thus solution: $x = 937$
- $0981^{937} \pmod{2537} = 0704$; $0461^{937} \pmod{2537} = 1115$
- Thus, decrypted message is $0704 1115$, or in English, "HELP"

RSA Decryption

- Decryption function: Given cipher text C, decrypt as $C^d \pmod{n}$
- Decryption key d is the inverse of e modulo $(p - 1)(q - 1)$:

$$d \cdot e \equiv 1 \pmod{(p - 1)(q - 1)}$$
- As we saw earlier, d can be computed reasonably efficiently if we know $(p - 1)(q - 1)$

RSA proof sketch, cont.

- Now, consider M^{ed}:

$$M^{ed} = M \cdot M^{ed - 1} = M \cdot M^{\phi(n)} = M \cdot M^{\phi(n)}$$
- Using Euler’s theorem,

$$M \cdot M^{\phi(n)} \equiv M \cdot 1 \pmod{\phi(n)} \equiv M \mod{\phi(n)}$$
- Thus, applying decryption function to cipher text gives us original message!
Security of RSA

- The encryption function used in RSA is a **trapdoor function**
- Trapdoor function is easy to compute in one direction, but very difficult in reverse direction without additional knowledge
- Decryption without private key is very hard because requires prime factorization (which is intractable for large enough numbers)
- **Interesting fact:** There are efficient (poly-time) prime factorization algorithms for quantum computers (e.g., Shor’s algorithm)
- If we could build quantum computers with sufficient “qubits”, RSA would no longer be secure!

Book Recommendation

If you are interested in (history of) cryptography, read "The Code Book" by Simon Singh!

Induction

- Suppose we have an infinite ladder, and we know two things:
 1. We can reach the first rung of the ladder
 2. If we reach a particular rung, then we can also reach the next rung
- From these two facts, can we conclude we can reach every step of the infinite ladder?
- Answer is yes, and mathematical induction allows us to make arguments like this

Mathematical Induction

- Used to prove statements of the form $\forall x \in \mathbb{Z}^+. P(x)$
- An inductive proof has two steps:
 1. **Base case:** Prove that $P(1)$ is true
 2. **Inductive step:** Prove $\forall n \in \mathbb{Z}^+. P(n) \rightarrow P(n+1)$
- Induction says if you can prove (1) and (2), you can conclude:
 $\forall x \in \mathbb{Z}^+. P(x)$

Example 1

- Prove the following statement by induction:
 $$\forall n \in \mathbb{Z}^+. \sum_{i=1}^{n} i = \frac{(n)(n+1)}{2}$$
- **Base case:** $n = 1$. In this case, $\sum_{i=1}^{1} i = 1$ and $\frac{(1)(1+1)}{2} = 1$; thus, the base case holds.
- **Inductive step:** By the inductive hypothesis, we assume $P(k)$:
 $$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$
 Now, we want to show $P(k+1)$:
 $$\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$$
Example 1, cont.

- First, observe:
 \[k + 1 \sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k + 1) \]

- By the inductive hypothesis, \(\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \); thus:
 \[\sum_{i=1}^{k+1} i = \frac{k(k+1)}{2} + (k + 1) \]

- Rewrite left hand side as:
 \[\sum_{i=1}^{k+1} i = \frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2} \]

- Since we proved both base case and inductive step, property holds.

Example 2

- Prove the following statement for all non-negative integers \(n \):
 \[\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \]

Example 3

- Prove that \(2^n < n! \) for all integers \(n \geq 4 \)

Example 4

- Prove that \(3 \mid (n^3 - n) \) for all positive integers \(n \).

The Horse Paradox

- Easy to make subtle errors when trying to prove things by induction – pay attention to details!
- Consider the statement: All horses have the same color
- What is wrong with the following **bogus proof** of this statement?
 - \(P(n) \): A collection of \(n \) horses have the same color
 - Base case: \(P(1) \) \(\checkmark \)
Bogus Proof, cont.

- Induction: Assume $P(k)$; prove $P(k + 1)$
- Consider a collection of $k + 1$ horses: $h_1, h_2, \ldots, h_{k+1}$
 - By IH, h_1, h_2, \ldots, h_k have the same color; let this color be c
 - By IH, h_2, \ldots, h_{k+1} have same color; call this color c'
 - Since h_2 has color c and c', we have $c = c'$
- Thus, $h_1, h_2, \ldots, h_{k+1}$ also have same color
- What’s the fallacy?

Strengthening the Inductive Hypothesis

- Suppose we want to prove $\forall x \in \mathbb{Z}^+. P(x)$, but proof doesn’t go through
- Common trick: Prove a stronger property $Q(x)$
 - If $\forall x \in \mathbb{Z}^+. Q(x) \rightarrow P(x)$ and $\forall x \in \mathbb{Z}^+. Q(x)$ is provable, this implies $\forall x \in \mathbb{Z}^+. P(x)$
 - In many situations, strengthening inductive hypothesis allows proof to go through!

Example

- Prove the following theorem: “For all $n \geq 1$, the sum of the first n odd numbers is a perfect square.”
- We want to prove $\forall n \in \mathbb{Z}^+. P(n)$ where:
 $$P(n) = \sum_{i=1}^{n} 2i - 1 = k^2$$
 for some integer k
- Try to prove this using induction...

Example, cont.

- Let’s use a stronger predicate:
 $$Q(n) = \sum_{i=1}^{n} 2i - 1 = n^2$$
- Clearly, $Q(n) \Rightarrow P(n)$
- Now, prove $\forall n \in \mathbb{Z}^+. Q(n)$ using induction!