Announcements

- Homework due now!
- Next HW out, due next Tuesday
- Midterm 2 next Thursday!!

Directed Graphs

- All graphs we considered so far are undirected
- In undirected graphs, edge \((u, v)\) same as \((v, u)\)
- A directed edge (arc) is an ordered pair \((u, v)\) (i.e., \((u, v)\) not same as \((v, u)\))
- A directed graph is a graph with directed edges

In-Degree and Out-Degree of Directed Graphs

- The in-degree of a vertex \(v\), written \(\text{deg}^- (v)\), is the number of edges going into \(v\)
- \(\text{deg}^- (a) = \)
- The out-degree of a vertex \(v\), written \(\text{deg}^+ (v)\), is the number of edges leaving \(v\)
- \(\text{deg}^+ (a) = \)

Handshaking Theorem for Directed Graphs

Let \(G = (V, E)\) be a directed graph. Then:

\[
\sum_{v \in V} \text{deg}^- (v) = \sum_{v \in V} \text{deg}^+ (v) = |E|
\]

- \(\sum_{v \in V} \text{deg}^- (v) = \)
- \(\sum_{v \in V} \text{deg}^+ (v) = \)

Subgraphs

- A graph \(G = (V, E)\) is a subgraph of another graph \(G' = (V', E')\) if \(V \subseteq V'\) and \(E \subseteq E'\)
- Example:
 - Graph \(G\) is a proper subgraph of \(G'\) if \(G \neq G'\).
Consider a graph G with vertices \(\{v_1, v_2, v_3, v_4\} \) and edges \((v_1, v_3), (v_1, v_4), (v_2, v_3)\).

Which of the following are subgraphs of G?

1. Graph G_1 with vertex v_1 and edge (v_1, v_3)
2. Graph G_2 with vertices \(\{v_1, v_3\} \) and no edges
3. Graph G_3 with vertices \(\{v_1, v_2\} \) and edge (v_1, v_2)

Induced Subgraph

- Consider a graph $G = (V, E)$ and a set of vertices V' such that $V' \subseteq V$.
- Graph G' is the induced subgraph of G with respect to V' if:
 1. G' contains exactly those vertices in V'
 2. For all $u, v \in V'$, edge $(u, v) \in G'$ if $(u, v) \in G$
- Subgraph induced by vertices \(\{C, D\} \):

Complete Graphs

- A complete graph is a simple undirected graph in which every pair of vertices is connected by one edge.
- How many edges does a complete graph with n vertices have?

Bipartite graphs

- A simple undirected graph $G = (V, E)$ is called bipartite if V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in E connects a V_1 vertex to a V_2 vertex.

Examples Bipartite and Non-Bi-partite Graphs

- Is this graph bipartite?

- What about this graph?

Questions about Bipartite Graphs

- Does there exist a complete graph that is also bipartite?

- Consider a graph G with 5 nodes and 7 edges. Can G be bipartite?
Graph Coloring

A coloring of a graph is the assignment of a color to each vertex so that no two adjacent vertices are assigned the same color.

A graph is k-colorable if it is possible to color it using k colors.

- e.g., graph on left is 3-colorable
- Is it also 2-colorable?
- The chromatic number of a graph is the least number of colors needed to color it.
 - What is the chromatic number of this graph?

Question

Consider a graph G with vertices $\{v_1, v_2, v_3, v_4\}$ and edges $(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4)$.

Which of the following are valid colorings for G?

1. $v_1 = \text{red}, v_2 = \text{green}, v_3 = \text{blue}$
2. $v_1 = \text{red}, v_2 = \text{green}, v_3 = \text{blue}, v_4 = \text{red}$
3. $v_1 = \text{red}, v_2 = \text{green}, v_3 = \text{red}, v_4 = \text{blue}$

Examples

What are the chromatic numbers for these graphs?

Applications of Graph Coloring

Graph coloring has lots of applications, particularly in scheduling.

Example: What’s the minimum number of time slots needed so that no student is enrolled in conflicting classes?

Complete graphs and Colorability

Prove that any complete graph K_n has chromatic number n.

Bipartite Graphs and Colorability

Prove that a graph $G = (V, E)$ is bipartite if and only if it is 2-colorable.
Degree and Colorability

Theorem: Every simple graph \(G \) is always \(\max\text{-degree}(G) + 1 \) colorable.

- Proof is by induction on the number of vertices \(n \).
- Let \(P(n) \) be the predicate “A simple graph \(G \) with \(n \) vertices is \(\max\text{-degree}(G) \)-colorable”
- **Base case:** \(n = 1 \). If graph has only one node, then it cannot have any edges. Hence, it is 1-colorable.
- **Induction:** Consider a graph \(G = (V, E) \) with \(k + 1 \) vertices.
- Now consider arbitrary \(v \in V \) with neighbors \(v_1, \ldots, v_n \).

Degree and Colorability, cont.

- Two possibilities: (i) \(c_{p+1} \) was used in \(C' \), or (ii) new color
- **Case 1:** Then, \(G \) is \(\max\text{-degree}(G') + 1 \) colorable, and therefore \(\max\text{-degree}(G) + 1 \) colorable.
- **Case 2:** Coloring \(C \) uses \(p \) + 1 colors.
- We know \(p \leq n \), where \(n \) is num neighbors
- What can we say about \(\max\text{-degree}(G) \)?
- Thus, \(p + 1 \leq \max\text{-degree}(G) + 1 \)

Star Graphs and Colorability

- A star graph \(S_n \) is a graph with one vertex \(u \) at the center and the only edges are from \(u \) to each of \(v_1, \ldots, v_{n-1} \).
- Draw \(S_4 \).
- What is the chromatic number of \(S_4 \)?

Connectivity in Graphs

- Typical question: Is it possible to get from some node \(u \) to another node \(v \)?
- Example: Train network – if there is path from \(u \) to \(v \), possible to take train from \(u \) to \(v \) and vice versa.
- If it is possible to get from \(u \) to \(v \), we say \(u \) and \(v \) are connected and there is a path between \(u \) and \(v \).

Question About Star Graphs

Suppose we have two star graphs \(S_k \) and \(S_m \). Now, pick a random vertex from each graph and connect them with an edge.

Which of the following statements must be true about the resulting graph \(G \)?

1. The chromatic number of \(G \) is 3
2. \(G \) is 2-colorable.
3. \(\max\text{-degree}(G) = \max(k, m) \).
Paths

- A path between u and v is a sequence of edges that starts at vertex u, moves along adjacent edges, and ends in v.
- Example: u, x, y, w is a path, but u, a, x, y, w and u, a, x are not.
- Length of a path is the number of edges traversed, e.g., length of u, x, y, w is 3.
- A simple path is a path that does not repeat any edges.
- u, x, y, w is a simple path but u, x, u is not.

Example

- Consider a graph with vertices $\{x, y, z, w\}$ and edges $(x, y), (x, w), (x, z), (y, z)$
- What are all the simple paths from x to w?
- What are all the simple paths from x to y?
- How many paths (can be non-simple) are there from x to y?

Connectedness

- A graph is connected if there is a path between every pair of vertices in the graph.
- Example: This graph not connected; e.g., no path from x to d.
- A connected component of a graph G is a maximal connected subgraph of G.

Example

- Prove: Suppose graph G has exactly two vertices of odd degree, say u and v. Then G contains a path from u to v.

Circuits

- A circuit is a path that begins and ends in the same vertex.
- u, x, y, u and u, x, y, w are both circuits.
- A simple circuit does not contain the same edge more than once.
- u, x, y, u is a simple circuit, but u, x, y, x, u is not.
- Length of a circuit is the number of edges it contains, e.g., length of u, x, y, u is 3.
- In this class, we only consider circuits of length 3 or more.

Cycles

- A cycle is a simple circuit with no repeated vertices other than the first and last ones.
- For instance, u, x, a, b, x, y, u is a circuit but not a cycle.
- However, u, x, y, u is a cycle.
Example

- **Prove:** If a graph has an odd length circuit, then it also has an odd length cycle.
- **Huh?** Recall that not every circuit is a cycle.
- **According to this theorem,** if we can find an odd length circuit, we can also find an odd length cycle.
- **Example:** d, c, a, b, c, d is an odd length circuit, but graph also contains odd length cycle.

Proof

- **Prove:** If a graph has an odd length circuit, then it also has an odd length cycle.

- **Proof by strong induction on the length of the circuit.**
- **Base case:** Length of circuit = 3.
- **Only circuit of length 3 is a triangle, which is also a cycle.

Proof, cont.

- **Prove:** If a graph has an odd length circuit, then it also has an odd length cycle.
 - Let $P(n)$ be the predicate “If a graph has odd length circuit of length n, it also has an odd length cycle.”
 - **Inductive step:** Assume $P(3), P(5), \ldots, P(n)$ and show claim holds for $P(n + 2)$.
 - **Now, consider a circuit of length $n + 2$. There are two cases:**
 - **Case 1:** Circuit is already a cycle: done!